
VOLTTRON Documentation
Release 8.1.3

The VOLTTRON Community

Jan 12, 2022

INTRODUCTION

1 Key Use-Cases 3

2 Features 5

3 Indices and tables 699

Python Module Index 701

Index 703

i

ii

VOLTTRON Documentation, Release 8.1.3

VOLTTRON™ is an open source, scalable, and distributed platform that seamlessly integrates data, devices, and
systems for sensing and control applications. It is built on extensible frameworks allowing contributors to easily
expand the capabilities of the platform to meet their use cases. Features are implemented as loosely coupled software
components, called agents, enabling flexible deployment options and easy customization.

INTRODUCTION 1

VOLTTRON Documentation, Release 8.1.3

2 INTRODUCTION

CHAPTER

ONE

KEY USE-CASES

• Developing scalable, reusable applications to deploy in the field without spending development resources on
operational components not specific to the application

• Low-cost data collection deployable on commodity hardware

• Integration hub for connecting a diverse set of devices together in a common interface

• Testbed for developing applications for a simulated environment

3

VOLTTRON Documentation, Release 8.1.3

4 Chapter 1. Key Use-Cases

CHAPTER

TWO

FEATURES

• A message bus allowing connectivity between agents on individual platforms and between platform instances in
large scale deployments

• Integrated security features enabling the management of secure communication between agents and platform
instances

• A flexible agent framework allowing users to adapt the platform to their unique use-cases

• A configurable driver framework for collecting data from and sending control signals to buildings and devices

• automatic data capture and retrieval through our historian framework

• An extensible web framework allowing users and services to securely connect to the platform from anywhere

• Capability to interface with simulation engines and applications to evaluate applications prior to deployment

VOLTTRON™ is publicly available from GitHub. The project is supported by the U.S. Department of Energy and
receives ongoing updates from a team of core developers at PNNL. The VOLTTRON team encourages and appreciates
community involvement including issues and pull requests on Github, meetings at our bi-weekly office-hours and on
Slack. To be invited to office-hours or slack, please send the team an email.

2.1 Installing the Platform

VOLTTRON is written in Python 3.6+ and runs on Linux Operating Systems. For users unfamiliar with those tech-
nologies, the following resources are recommended:

• Python 3.6 Tutorial

• Linux Tutorial

This guide will specify commands to use to successfully install the platform on supported Linux distributions, but a
working knowledge of Linux will be helpful for troubleshooting and may improve your ability to get more out of your
deployment.

Note: Volttron version 7.0rc1 is currently tested for Ubuntu versions 18.04 and 18.10 as well as Linux Mint version
19.3. Version 6.x is tested for Ubuntu versions 16.04 and 18.04 as well as Linux Mint version 19.1.

5

https://github.com/volttron/volttron.git
mailto:volttron@pnnl.gov
https://docs.python.org/3.6/tutorial/
http://ryanstutorials.net/linuxtutorial

VOLTTRON Documentation, Release 8.1.3

2.1.1 Step 1 - Install prerequisites

The following packages will need to be installed on the system:

• git

• build-essential

• python3.6-dev

• python3.6-venv

• openssl

• libssl-dev

• libevent-dev

On Debian-based systems, these can all be installed with the following command:

sudo apt-get update
sudo apt-get install build-essential python3-dev python3-venv openssl libssl-dev
→˓libevent-dev git

On Ubuntu-based systems, available packages allow you to specify the Python3 version, 3.6 or greater is required
(Debian itself does not provide those packages).

sudo apt-get install build-essential python3.6-dev python3.6-venv openssl libssl-dev
→˓libevent-dev git

On arm-based systems (including, but not limited to, Raspbian), you must also install libffi-dev, you can do this with:

sudo apt-get install libffi-dev

Note: On arm-based systems, the available apt package repositories for Raspbian versions older than buster (10) do
not seem to be able to be fully satisfied. While it may be possible to resolve these dependencies by building from
source, the only recommended usage pattern for VOLTTRON 7 and beyond is on raspberry pi OS 10 or newer.

On Redhat or CENTOS systems, these can all be installed with the following command:

sudo yum update
sudo yum install make automake gcc gcc-c++ kernel-devel python3-devel openssl openssl-
→˓devel libevent-devel git

Warning: Python 3.6 or greater is required, please ensure you have installed a supported version with python3
--version

If you have an agent which requires the pyodbc package, install the following additional requirements:

• freetds-bin

• unixodbc-dev

On Debian-based systems these can be installed with the following command:

sudo apt-get install freetds-bin unixodbc-dev

6 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

On Redhat or CentOS systems, these can be installed from the Extra Packages for Enterprise Linux (EPEL) reposi-
tory:

sudo yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.
→˓rpm
sudo yum install freetds unixODBC-devel

Note: The above command to install the EPEL repository is for Centos/Redhat 8. Change the number to match your
OS version. EPEL packages are included in Fedora repositories, so installing EPEL is not required on Fedora.

It may be possible to deploy VOLTTRON on a system not listed above but may involve some troubleshooting and
dependency management on the part of the user.

In order to support historians, the python installation must include the built-in sqlite3 support (a compile time option).
This is included in all of the linux distribution packages referenced above, which is the recommended and supported
way of running python. In cases where a user needs to compile their own python (not an officially supported configu-
ration), make sure that the sqlite3 option is enabled.

2.1.2 Step 2 - Clone VOLTTRON code

Repository Structure

There are several options for using the VOLTTRON code depending on whether you require the most stable version
of the code or want the latest updates as they happen. In order of decreasing stability and increasing currency:

• Main - Most stable release branch, current major release is 7.0. This branch is default.

• develop - contains the latest finished features as they are developed. When all features are stable, this branch
will be merged into Main.

Note: This branch can be cloned by those wanting to work from the latest version of the platform but should
not be used in deployments.

• Features are developed on “feature” branches or developers’ forks of the main repository. It is not recommended
to clone these branches except for exploring a new feature.

Note: VOLTTRON versions 6.0 and newer support two message buses - ZMQ and RabbitMQ.

git clone https://github.com/VOLTTRON/volttron --branch <branch name>

2.1.3 Step 3 - Setup virtual environment

The bootstrap.py script in the VOLTTRON root directory will create a virtual environment and install the package’s
Python dependencies. Options exist for upgrading or rebuilding existing environments, and for adding additional
dependencies for optional drivers and agents included in the repository.

Note: The --help option for bootstrap.py can specified to display all available optional parameters.

2.1. Installing the Platform 7

https://docs.python-guide.org/dev/virtualenvs/

VOLTTRON Documentation, Release 8.1.3

Steps for ZeroMQ

Run the following command to install all required packages:

cd <volttron clone directory>
python3 bootstrap.py

Then activate the Python virtual environment:

source env/bin/activate

Proceed to step 4.

Note: You can deactivate the environment at any time by running deactivate.

Steps for RabbitMQ

Step 1 - Install Required Packages and Activate the Virtual Environment

Setting up RabbmitMQ requires additional steps; but before running those steps we still need to install the required
packages and activate the virtual environment just as we did in the Steps for ZeroMQ. To do so, see Steps for ZeroMQ.
Once finished, proceed to the next step.

Step 2 - Install Erlang packages

For RabbitMQ based VOLTTRON, some of the RabbitMQ specific software packages have to be installed.

On Debian based systems and CentOS 6/7

If you are running a Debian or CentOS system, you can install the RabbitMQ dependencies by running the “rab-
bit_dependencies.sh” script, passing in the OS name and appropriate distribution as parameters. The following are
supported:

• debian bionic (for Ubuntu 18.04)

• debian xenial (for Ubuntu 16.04 or Linux Mint 18.04)

• debian stretch (for Debian Stretch)

• debian buster (for Debian Buster)

• raspbian buster (for Raspbian/Raspberry Pi OS Buster)

Example command:

./scripts/rabbit_dependencies.sh debian xenial

8 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Alternatively

You can download and install Erlang from Erlang Solutions. Please include OTP/components - ssl, public_key, asn1,
and crypto. Also lock your version of Erlang using the yum-plugin-versionlock.

Note:

Currently VOLTTRON only officially supports specific versions of Erlang for each operating system:

• 1:22.1.8.1-1 for Debian

• 1:21.2.6+dfsg-1 for Raspbian

• Specific Erlang 21.x versions correspond to CentOS versions 6, 7, and 8, these can be found here

Step 3 - Configure hostname

Make sure that your hostname is correctly configured in /etc/hosts. See this StackOverflow post. If you are testing
with VMs make please make sure to provide unique host names for each of the VMs you are using.

The hostname should be resolvable to a valid IP when running on bridged mode. RabbitMQ checks for this during
initial boot. Without this (for example, when running on a VM in NAT mode) RabbitMQ start-up would fail with the
error “unable to connect to empd (port 4369) on <hostname>.”

Note: RabbitMQ startup error would show up in the VM’s syslog (/var/log/messages) file and not in RabbitMQ logs
(/var/log/rabbitmq/rabbitmq@hostname.log)

Step 4 - Bootstrap the environment

cd volttron
python3 bootstrap.py --rabbitmq [optional install directory. defaults to <user_home>/
→˓rabbitmq_server]

This will build the platform and create a virtual Python environment and dependencies for RabbitMQ. It also installs
RabbitMQ server as the current user. If an install path is provided, that path should exist and the user should have write
permissions. RabbitMQ will be installed under <install dir>/rabbitmq_server-3.7.7. The rest of the documentation
refers to the directory <install dir>/rabbitmq_server-3.7.7 as $RABBITMQ_HOME.

Note: There are many additional options for bootstrap.py for including dependencies, altering the environment, etc.

By bootstrapping the environment for RabbitMQ, an environmental variable $RABBITMQ_HOME is created for
your convenience. Thus, you can use $RABBITMQ_HOME to see if the RabbitMQ server is installed by checking its
status:

$RABBITMQ_HOME/sbin/rabbitmqctl status

Note: The RABBITMQ_HOME environment variable can be set in ~/.bashrc. If doing so, it needs to be set to the
RabbitMQ installation directory (default path is <user_home>/rabbitmq_server/rabbitmq_server-3.7.7)

2.1. Installing the Platform 9

https://www.erlang-solutions.com/resources/download.html
https://access.redhat.com/solutions/98873
https://dl.bintray.com/rabbitmq-erlang/rpm/erlang
https://stackoverflow.com/questions/24797947/os-x-and-rabbitmq-error-epmd-error-for-host-xxx-address-cannot-connect-to-ho
mailto:/var/log/rabbitmq/rabbitmq@hostname.log

VOLTTRON Documentation, Release 8.1.3

echo 'export RABBITMQ_HOME=$HOME/rabbitmq_server/rabbitmq_server-3.7.7'|sudo tee --
→˓append ~/.bashrc
source ~/.bashrc
$RABBITMQ_HOME/sbin/rabbitmqctl status

Step 5 - Configure RabbitMQ setup for VOLTTRON

vcfg rabbitmq single [--config optional path to rabbitmq_config.yml]

A sample configuration file can be found in the VOLTTRON repository in exam-
ples/configurations/rabbitmq/rabbitmq_config.yml. At a minimum you will need to provide the host name
and a unique common-name (under certificate-data) in the configuration file.

Note: common-name must be unique and the general convention is to use <volttron instance name>-root-ca.

Running the above command without the optional configuration file parameter will cause the user user to be prompted
for all the required data in the command prompt. “vcfg” will use that data to generate a rabbitmq_config.yml file in
the VOLTTRON_HOME directory.

Note: If the above configuration file is being used as a basis for creating your own configuration file, be sure to update
it with the hostname of the deployment (this should be the fully qualified domain name of the system).

This script creates a new virtual host and creates SSL certificates needed for this VOLTTRON instance. These cer-
tificates get created under the subdirectory “certificates” in your VOLTTRON home (typically in ~/.volttron). It then
creates the main VIP exchange named “volttron” to route message between the platform and agents and alternate
exchange to capture unrouteable messages.

Note: We configure the RabbitMQ instance for a single VOLTTRON_HOME and VOLTTRON_INSTANCE. This
script will confirm with the user the volttron_home to be configured. The VOLTTRON instance name will be read
from volttron_home/config if available, if not the user will be prompted for VOLTTRON instance name. To run
the scripts without any prompts, save the the VOLTTRON instance name in volttron_home/config file and pass the
VOLTTRON home directory as a command line argument. For example:

vcfg --vhome /home/vdev/.new_vhome --rabbitmq single

Note: The default behavior generates a certificate which is valid for a period of 1 year.

The Following are the example inputs for vcfg rabbitmq single command. Since no config file is passed the script
prompts for necessary details.

Your VOLTTRON_HOME currently set to: /home/vdev/new_vhome2

Is this the volttron you are attempting to setup? [Y]:
Creating rmq config yml
RabbitMQ server home: [/home/vdev/rabbitmq_server/rabbitmq_server-3.7.7]:
Fully qualified domain name of the system: [cs_cbox.pnl.gov]:

(continues on next page)

10 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

Enable SSL Authentication: [Y]:

Please enter the following details for root CA certificates
Country: [US]:
State: Washington
Location: Richland
Organization: PNNL
Organization Unit: Volttron-Team
Common Name: [volttron1-root-ca]:
Do you want to use default values for RabbitMQ home, ports, and virtual host: [Y]: N
Name of the virtual host under which RabbitMQ VOLTTRON will be running: [volttron]:
AMQP port for RabbitMQ: [5672]:
http port for the RabbitMQ management plugin: [15672]:
AMQPS (SSL) port RabbitMQ address: [5671]:
https port for the RabbitMQ management plugin: [15671]:
INFO:rmq_setup.pyc:Starting rabbitmq server
Warning: PID file not written; -detached was passed.
INFO:rmq_setup.pyc:**Started rmq server at /home/vdev/rabbitmq_server/rabbitmq_server-
→˓3.7.7
INFO:requests.packages.urllib3.connectionpool:Starting new HTTP connection (1):
→˓localhost
INFO:requests.packages.urllib3.connectionpool:Starting new HTTP connection (1):
→˓localhost
INFO:requests.packages.urllib3.connectionpool:Starting new HTTP connection (1):
→˓localhost
INFO:rmq_setup.pyc:
Checking for CA certificate

INFO:rmq_setup.pyc:
Root CA (/home/vdev/new_vhome2/certificates/certs/volttron1-root-ca.crt) NOT Found.
→˓Creating root ca for volttron instance
Created CA cert
INFO:requests.packages.urllib3.connectionpool:Starting new HTTP connection (1):
→˓localhost
INFO:requests.packages.urllib3.connectionpool:Starting new HTTP connection (1):
→˓localhost
INFO:rmq_setup.pyc:**Stopped rmq server
Warning: PID file not written; -detached was passed.
INFO:rmq_setup.pyc:**Started rmq server at /home/vdev/rabbitmq_server/rabbitmq_server-
→˓3.7.7
INFO:rmq_setup.pyc:

#######################

Setup complete for volttron home /home/vdev/new_vhome2 with instance name=volttron1
Notes:

- Please set environment variable `VOLTTRON_HOME` to `/home/vdev/new_vhome2` before
→˓starting volttron

- On production environments, restrict write access to
/home/vdev/new_vhome2/certificates/certs/volttron1-root-ca.crt to only admin user.

→˓ For example: sudo chown root /home/vdev/new_vhome2/certificates/certs/volttron1-
→˓root-ca.crt

- A new admin user was created with user name: volttron1-admin and password=default_
→˓passwd.

(continues on next page)

2.1. Installing the Platform 11

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

You could change this user's password by logging into <https://cs_cbox.pnl.
→˓gov:15671/> Please update /home/vdev/new_vhome2/rabbitmq_config.yml if you change
→˓password

#######################

2.1.4 Test the VOLTTRON Deployment

We are now ready to start VOLTTRON instance. If configured with RabbitMQ message bus a config file would have
been generated in $VOLTTRON_HOME/config with the entry message-bus=rmq. If you need to revert back to
ZeroMQ based VOLTTRON, you will have to either remove the message-bus parameter or set it to the default
“zmq” in $VOLTTRON_HOME/config.

The following command starts volttron process in the background:

volttron -vv -l volttron.log&

This enters the virtual Python environment and then starts the platform in debug (vv) mode with a log file named
volttron.log. Alternatively you can use the utility script start-volttron script that does the same.

./start-volttron

To stop the platform, use the vct command:

volttron-ctl shutdown --platform

or use the included stop-volttron script:

./stop-volttron

Warning: If you plan on running VOLTTRON in the background and detaching it from the terminal with the
disown command be sure to redirect stderr and stdout to /dev/null. Some libraries which VOLTTRON relies
on output directly to stdout and stderr. This will cause problems if those file descriptors are not redirected to
/dev/null

#To start the platform in the background and redirect stderr and stdout
#to /dev/null
volttron -vv -l volttron.log > /dev/null 2>&1&

Installing and Running Agents

VOLTTRON platform comes with several built in services and example agents out of the box. To install a agent use
the script install-agent.py

python scripts/install-agent.py -s <top most folder of the agent> [-c <config file.
→˓Might be optional for some agents>]

For example, we can use the command to install and start the Listener Agent - a simple agent that periodically publishes
heartbeat message and listens to everything on the message bus. Install and start the Listener agent using the following
command:

12 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

python scripts/install-agent.py -s examples/ListenerAgent --start

Check volttron.log to ensure that the listener agent is publishing heartbeat messages.

tail volttron.log

2016-10-17 18:17:52,245 (listeneragent-3.2 11367) listener.agent INFO: Peer: 'pubsub',
→˓ Sender: 'listeneragent-3.2_1':, Bus: u'', Topic: 'heartbeat/listeneragent-3.2_1',
→˓Headers: {'Date': '2016-10-18T01:17:52.239724+00:00', 'max_compatible_version': u'',
→˓ 'min_compatible_version': '3.0'}, Message: {'status': 'GOOD', 'last_updated':
→˓'2016-10-18T01:17:47.232972+00:00', 'context': 'hello'}

You can also use the volttron-ctl (or vctl) command to start, stop or check the status of an agent

(volttron)volttron@volttron1:~/git/rmq_volttron$ vctl status
AGENT IDENTITY TAG STATUS HEALTH

6 listeneragent-3.2 listeneragent-3.2_1 running [13125] GOOD
f platform_driveragent-3.2 platform.driver platform_driver

vctl stop <agent id>

Note: The default working directory is ~/.volttron. The default directory for creation of agent packages is ~/.volt-
tron/packaged

2.1.5 Next Steps

There are several walk-throughs and detailed explanations of platform features to explore additional aspects of the
platform:

• Agent Framework

• Driver Framework

• Demonstration of the management UI

• RabbitMQ setup with Federation and Shovel plugins

2.2 Definition of Terms

This page lays out a common terminology for discussing the components and underlying technologies used by the
platform. The first section discusses capabilities and industry standards that VOLTTRON conforms to while the latter
is specific to the VOLTTRON domain.

2.2. Definition of Terms 13

VOLTTRON Documentation, Release 8.1.3

2.2.1 Industry Terms

Agent Software which acts on behalf of a user to perform a set of tasks.

BACNet Building Automation and Control network that leverages ASHRAE, ANSI, and IOS 16484-5 standard pro-
tocols

DNP3 (Distributed Network Protocol 3) Communications protocol used to coordinate processes in distributed au-
tomation systems

JSON (JavaScript Object Notation) JavaScript object notation is a text-based, human-readable, open data inter-
change format, similar to XML but less verbose

IEEE 2030.5 Utilities communication standard for managing energy demand and load (previously Smart Energy
Profile version 2, SEP2)

JSON-RPC (JSON-Remote Procedure Call) JSON-encoded Remote Procedure Call

Modbus Communications protocol for talking with industrial electronic devices

PLC (Programmable Logic Controller) Computer used in industrial applications to manage processes of groups of
industrial devices

Python Virtual Environment The Python-VENV library allows users to create a virtualized copy of the local envi-
ronment. A virtual environment allows the user to isolate the dependencies for a project which helps prevent
conflicts between dependencies across projects.

Publish/Subscribe A message delivery pattern where senders (publishers) and receivers (subscribers) do not com-
municate directly nor necessarily have knowledge of each other, but instead exchange messages through an
intermediary based on a mutual class or topic.

Note: The Publish/Subscribe paradigm is often notated as pub/sub in VOLTTRON documentation.

RabbitMQ Open-Source message brokering system used by VOLTTRON for sending messages between services on
the platform.

Remote Procedure Call Protocol used to request services of another computer located elsewhere on the network or
on a different network.

SSH Secure Shell is a network protocol providing encryption and authentication of data using public-key cryptogra-
phy.

SSL Secure Sockets Layer is a technology for encryption and authentication of network traffic based on a chain of
trust.

TLS Transport Layer Security is the successor to SSL.

ZeroMQ (also ØMQ) A library used for inter-process and inter-computer communication.

2.2.2 VOLTTRON Terms

Activated Environment An activated environment is the environment a VOLTTRON instance is run in. The bootstrap
process creates the environment from the shell.

AIP (Agent Instantiation and Packaging) This is the module responsible for creating agent wheels, the agent exe-
cution environment and running agents. Found in the VOLTTRON repository in the volttron/platform directory.

Agent Framework Framework which provides connectivity to the VOLTTRON platform and subsystems for soft-
ware agents.

14 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Bootstrap the Environment The process by which an operating environment (activated environment) is produced.
From the VOLTTRON_ROOT directory, executing python bootstrap.py will start the bootstrap process.

Config Store Agent data store used by the platform for storing configuration files and automating the management of
agent configuration

Driver Module that implements communication paradigms of a device to provide an interface to devices for the
VOLTTRON platform.

Driver Framework Framework for implementing communication between the VOLTTRON platform and devices on
the network (or a remote network)

Historian Historians in VOLTTRON are special purpose agents for automatically collecting data from the platform
message bus and storing in a persistent data store.

VIP VOLTTRON Interconnect Protocol is a secure routing protocol that facilitates communications between agents,
controllers, services, and the supervisory VOLTTRON_INSTANCE.

VIP address Public address bound to by a VOLTTRON platform instance for communication (Example: tcp:///
192.168.1.20:22916). Communication to external platform instances requires that the address be in range
for external communication from the host.

VIP Identity Unique identifier for an agent connected to an instance. Used for messaging, routing and security.

VOLTTRON Central VOLTTRON Central (VC) is a special purpose agent for managing multiple platforms in a
distributed VOLTTRON deployment

VOLTTRON_HOME The location for a specific VOLTTRON_INSTANCE to store its specific information. There
can be many VOLTTRON_HOME`s on a single computing resource such as a VM, machine, etc. Each `VOLT-
TRON_HOME will correspond to a single instance of VOLTTRON.

VOLTTRON_INSTANCE A single VOLTTRON process executing instructions on a computing resource. For
each VOLTTRON_INSTANCE, there WILL BE only one VOLTTRON_HOME associated with it. For a VOLT-
TRON_INSTANCE to participate outside its computing resource, it must be bound to an external IP address.

VOLTTRON_ROOT The cloned directory from Github. When executing the command:

git clone https://github.com/VOLTTRON/volttron.git

the top level volttron folder is the VOLTTRON_ROOT.

Web Framework Framework used by VOLTTRON agents to implement web services with HTTP and HTTPS

2.3 License

Copyright 2019, Battelle Memorial Institute.

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

The patent license grant shall only be applicable to the following patent and patent application (Battelle IPID 17008-
E), as assigned to the Battelle Memorial Institute, as used in conjunction with this Work: • US Patent No. 9,094,385,
issued 7/28/15 • USPTO Patent App. No. 14/746,577, filed 6/22/15, published as US 2016-0006569.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

2.3. License 15

http://www.apache.org/licenses/LICENSE-2.0

VOLTTRON Documentation, Release 8.1.3

2.3.1 Terms

This material was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor the United States Department of Energy, nor Battelle, nor any of their employees,
nor any jurisdiction or organization that has cooperated in the development of these materials, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness or any
information, apparatus, product, software, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPART-
MENT OF ENERGY under Contract DE-AC05-76RL01830

2.4 Join the Community

The VOLTTRON project is transitioning into the Eclipse Foundation as Eclipse VOLTTRON. Current resources will
still be used during this time. Please watch this space!

The Eclipse VOLTTRON team aims to work with users and contributors to continuously improve the platform with
features requested by the community as well as architectural features that improve robustness, security, and scalabil-
ity. Contributing back to the project, which is encouraged but not required, enhances its capabilities for the whole
community. To learn more, check out Contributing and Documentation.

2.4.1 Slack Channel

volttron-community.slack.com is where the VOLTTRON™ community at large can ask questions and meet with others
using VOLTTRON™. To be added to Slack please email the VOLTTRON team at volttron@pnnl.gov.

2.4.2 Mailing List

Join the mailing list by emailing volttron@pnnl.gov.

2.4.3 Stack Overflow

The VOLTTRON community supports questions being asked and answered through Stack Overflow. The questions
tagged with the volttron tag can be found at http://stackoverflow.com/questions/tagged/volttron.

2.4.4 Office Hours

PNNL hosts office hours every other week on Fridays at 11 AM (PST). These meetings are designed to be very
informal where VOLTTRON developers can answer specific questions about the inner workings of VOLTTRON.
These meetings are also available for topical discussions of different aspects of the VOLTTRON platform. Currently
the office hours are available through a Zoom meeting. To be invited to the link meeting, contact the volttron team via
email: mailto:volttron@pnnl.gov

Meetings are recorded and can be reviewed here.

16 Chapter 2. Features

mailto:volttron@pnnl.gov?subject=Subscribe%20To%20List
mailto:volttron@pnnl.gov?subject=Subscribe%20To%20List
http://stackoverflow.com/questions/tagged/volttron
mailto:volttron@pnnl.gov
https://volttron.org/office-hours

VOLTTRON Documentation, Release 8.1.3

2.4.5 Publications

VOLTTRON white papers and technical reports can be found at https://volttron.org/publications

2.5 Setting Up a Development Environment

An example development environment used by the VOLTTRON team would consist of a Linux VM running on the
host development machine on which an IDE would be running. The guides can be used to set up a development
environment.

2.5.1 Forking the Repository

The first step to editing the repository is to fork it into your own user space. Creating a fork makes a copy of the
repository in your GitHub for you to make any changes you may require for your use-case. This allows you to make
changes without impacting the core VOLTTRON repository.

Forking is done by pointing your favorite web browser to http://github.com/VOLTTRON/volttron and then clicking
“Fork” on the upper right of the screen. (Note: You must have a GitHub account to fork the repository. If you don’t
have one, we encourage you to sign up.)

Note: After making changes to your repository, you may wish to contribute your changes back to the Core VOLT-
TRON repository. Instructions for contributing code may be found here.

Cloning ‘YOUR’ VOLTTRON forked repository

The next step in the process is to copy your forked repository onto your computer to work on. This will create
an identical copy of the GitHub repository on your local machine. To do this you need to know the address of
your repository. The URL to your repository address will be https://github.com/<YOUR USERNAME>/
volttron.git. From a terminal execute the following commands:

Here, we are assuming you are doing develop work in a folder called `git`. If you'd
→˓rather use something else, that's OK.
mkdir -p ~/git
cd ~/git
git clone -b develop https://github.com/<YOUR USERNAME>/volttron.git
cd volttron

Note: VOLTTRON uses develop as its main development branch rather than the standard main branch (the default).

2.5. Setting Up a Development Environment 17

https://volttron.org/publications
http://github.com/VOLTTRON/volttron
https://github.com/join?source_repo=VOLTTRON%2Fvolttron

VOLTTRON Documentation, Release 8.1.3

Adding and Committing files

Now that you have your repository cloned, it’s time to start doing some modifications. Using a simple text editor you
can create or modify any file in the volttron directory. After making a modification or creating a file it is time to move
it to the stage for review before committing to the local repository. For this example let’s assume we have made a
change to README.md in the root of the volttron directory and added a new file called foo.py. To get those files in
the staging area (preparing for committing to the local repository) we would execute the following commands:

git add foo.py
git add README.md

Alternatively in one command
git add foo.py README.md

After adding the files to the stage you can review the staged files by executing:

git status

Finally, in order to commit to the local repository we need to think of what change we actually did and be able to
document it. We do that with a commit message (the -m parameter) such as the following.

git commit -m "Added new foo.py and updated copyright of README.md"

Pushing to the remote repository

The next step is to share our changes with the world through GitHub. We can do this by pushing the commits from
your local repository out to your GitHub repository. This is done by the following command:

git push

2.5.2 Installing a Linux Virtual Machine

VOLTTRON requires a Linux system to run. For Windows users this will require a virtual machine (VM).

This section describes the steps necessary to install VOLTTRON using Oracle VirtualBox software. Virtual Box is
free and can be downloaded from https://www.virtualbox.org/wiki/Downloads.

18 Chapter 2. Features

https://www.virtualbox.org/wiki/Downloads

VOLTTRON Documentation, Release 8.1.3

After installing VirtualBox download a virtual box appliance from https://www.osboxes.org/linux-mint/ extract the
VDI from the downlaoded archive, or download a system installation disk. VOLTTRON version 7.0.x has been tested
using Ubuntu 18.04, 18.10; Linux Mint 19; VOLTTRON version 6.0.x has been tested with Ubuntu 16.04, 18.04.
However, any modern apt based Linux distribution should work out of the box. Linux Mint 19.3 with the Xfce desktop
is used as an example, however platform setup in Ubuntu should be identical.

Note: A 32-bit version of Linux should be used when running VOLTTRON on a system with limited hardware (less
than 2 GB of RAM).

Adding a VDI Image to VirtualBox Environment

2.5. Setting Up a Development Environment 19

https://www.osboxes.org/linux-mint/

VOLTTRON Documentation, Release 8.1.3

The below info holds the VM’s preset username and password.

Create a new VirtualBox Image.

Select the amount of RAM for the VM. The recommended minimum is shown in the image below:

20 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Specify the hard drive image using the extracted VDI file.

With the newly created VM selected, choose Machine from the VirtualBox menu in the top left corner of the VirtualBox
window; from the drop down menu, choose Settings.

To enable bidirectional copy and paste, select the General tab in the VirtualBox Settings. Enable Shared Clipboard
and Drag’n’Drop as Bidirectional.

2.5. Setting Up a Development Environment 21

VOLTTRON Documentation, Release 8.1.3

Note: Currently, this feature only works under certain circumstances (e.g. copying / pasting text).

Go to System Settings. In the processor tab, set the number of processors to two.

Go to Storage Settings. Confirm that the Linux Mint VDI is attached to Controller: SATA.

Danger: Do NOT mount the Linux Mint iso for Controller: IDE. Will result in errors.

22 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Start the machine by saving these changes and clicking the “Start” arrow located on the upper left hand corner of the
main VirtualBox window.

2.5.3 Pycharm Development Environment

Pycharm is an IDE dedicated to developing python projects. It provides coding assistance and easy access to debugging
tools as well as integration with py.test. It is a popular tool for working with VOLTTRON. Jetbrains provides a free
community version that can be downloaded from https://www.jetbrains.com/pycharm/

Open Pycharm and Load VOLTTRON

When launching Pycharm for the first time we have to tell it where to find the VOLTTRON source code. If you
have already cloned the repo then point Pycharm to the cloned project. Pycharm also has options to access remote
repositories.

Subsequent instances of Pycharm will automatically load the VOLTTRON project.

Note: When getting started make sure to search for gevent in the settings and ensure that support for it is enabled.

2.5. Setting Up a Development Environment 23

https://www.jetbrains.com/pycharm/

VOLTTRON Documentation, Release 8.1.3

24 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Set the Project Interpreter

This step should be completed after running the bootstrap script in the VOLTTRON source directory. Pycharm needs
to know which python environment it should use when running and debugging code. This also tells Pycharm where to
find python dependencies. Settings menu can be found under the File option in Pycharm.

Running the VOLTTRON Process

If you are not interested in running the VOLTTRON process itself in Pycharm then this step can be skipped.

In Run > Edit Configurations create a configuration that has <your source dir>/env/bin/volttron in the script field,
-vv in the script parameters field (to turn on verbose logging), and set the working directory to the top level source
directory.

VOLTTRON can then be run from the Run menu.

2.5. Setting Up a Development Environment 25

VOLTTRON Documentation, Release 8.1.3

Running an Agent

Running an agent is configured similarly to running VOLTTRON proper. In Run > Edit Configurations add a
configuration and give it the same name as your agent. The script should be the path to scripts/pycharm-launch.py and
and the script parameter must be the path to your agent’s agent.py file.

In the Environment Variables field add the variable AGENT_CONFIG that has the path to the agent’s configuration file
as its value, as well as AGENT_VIP_IDENTITY, which must be unique on the platform.

A good place to keep configuration files is in a directory called config in top level source directory; git will ignore
changes to these files.

Note: There is an issue with imports in Pycharm when there is a secondary file (i.e. not agent.py but another module
within the same package). When that happens right click on the directory in the file tree and select Mark Directory
As -> Source Root

26 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Note: There will be issues if two agents create a file with the same name in the same working directory. For instance:
SQLHistorian agent and Forwarder agent both create a backup.sqlite directory on the same working directory. When
that happens both the agents attempt to use the same backup db and eventually lock the db. To avoid this situation,
create different working directories for each agent and add the absolute path for the config file. The best way to go

2.5. Setting Up a Development Environment 27

VOLTTRON Documentation, Release 8.1.3

about this is to create a new folder and assign working directory to that folder as shown below.

28 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Testing an Agent

Agent tests written in py.test can be run simply by right-clicking the tests directory and selecting Run ‘py.test in tests,
so long as the root directory is set as the VOLTTRON source root.

2.5. Setting Up a Development Environment 29

VOLTTRON Documentation, Release 8.1.3

2.6 Agent Development

The VOLTTRON platform now has utilities to speed the creation and installation of new agents. To use these utilities
the VOLTTRON environment must be activated.

From the project directory, activate the VOLTTRON environment with:

source env/bin/activate

2.6.1 Create Agent Code

Run the following command to start the Agent Creation Wizard:

vpkg init TestAgent tester

TestAgent is the directory that the agent code will be placed in. The directory must not exist when the command is
run. tester is the name of the agent module created by wizard.

The Wizard will prompt for the following information:

30 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Agent version number: [0.1]: 0.5
Agent author: []: VOLTTRON Team
Author's email address: []: volttron@pnnl.gov
Agent homepage: []: https://volttron.org/
Short description of the agent: []: Agent development tutorial.

Once the last question is answered the following will print to the console:

2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent
2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent/tester
2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent/setup.
→˓py
2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent/config
2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent/
→˓tester/agent.py
2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent/
→˓tester/__init__.py

The TestAgent directory is created with the new Agent inside.

Agent Directory

At this point, the contents of the TestAgent directory should look like:

TestAgent/
setup.py
config
tester

agent.py
__init__.py

Agent Skeleton

The agent.py file in the tester directory of the newly created agent module will contain skeleton code (below). De-
scriptions of the features of this code as well as additional development help are found in the rest of this document.

"""
Agent documentation goes here.
"""

__docformat__ = 'reStructuredText'

import logging
import sys
from volttron.platform.agent import utils
from volttron.platform.vip.agent import Agent, Core, RPC

_log = logging.getLogger(__name__)
utils.setup_logging()
__version__ = "0.1"

def tester(config_path, **kwargs):
"""

(continues on next page)

2.6. Agent Development 31

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

Parses the Agent configuration and returns an instance of
the agent created using that configuration.

:param config_path: Path to a configuration file.
:type config_path: str
:returns: Tester
:rtype: Tester
"""
try:

config = utils.load_config(config_path)
except Exception:

config = {}

if not config:
_log.info("Using Agent defaults for starting configuration.")

setting1 = int(config.get('setting1', 1))
setting2 = config.get('setting2', "some/random/topic")

return Tester(setting1, setting2, **kwargs)

class Tester(Agent):
"""
Document agent constructor here.
"""

def __init__(self, setting1=1, setting2="some/random/topic", **kwargs):
super(Tester, self).__init__(**kwargs)
_log.debug("vip_identity: " + self.core.identity)

self.setting1 = setting1
self.setting2 = setting2

self.default_config = {"setting1": setting1,
"setting2": setting2}

Set a default configuration to ensure that self.configure is called
→˓immediately to setup

the agent.
self.vip.config.set_default("config", self.default_config)
Hook self.configure up to changes to the configuration file "config".
self.vip.config.subscribe(self.configure, actions=["NEW", "UPDATE"], pattern=

→˓"config")

def configure(self, config_name, action, contents):
"""
Called after the Agent has connected to the message bus. If a configuration

→˓exists at startup
this will be called before onstart.

Is called every time the configuration in the store changes.
"""
config = self.default_config.copy()
config.update(contents)

_log.debug("Configuring Agent")
(continues on next page)

32 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

try:
setting1 = int(config["setting1"])
setting2 = str(config["setting2"])

except ValueError as e:
_log.error("ERROR PROCESSING CONFIGURATION: {}".format(e))
return

self.setting1 = setting1
self.setting2 = setting2

self._create_subscriptions(self.setting2)

def _create_subscriptions(self, topic):
"""
Unsubscribe from all pub/sub topics and create a subscription to a topic in

→˓the configuration which triggers
the _handle_publish callback
"""
self.vip.pubsub.unsubscribe("pubsub", None, None)

self.vip.pubsub.subscribe(peer='pubsub',
prefix=topic,
callback=self._handle_publish)

def _handle_publish(self, peer, sender, bus, topic, headers, message):
"""
Callback triggered by the subscription setup using the topic from the agent's

→˓config file
"""
pass

@Core.receiver("onstart")
def onstart(self, sender, **kwargs):

"""
This is method is called once the Agent has successfully connected to the

→˓platform.
This is a good place to setup subscriptions if they are not dynamic or
do any other startup activities that require a connection to the message bus.
Called after any configurations methods that are called at startup.

Usually not needed if using the configuration store.
"""
Example publish to pubsub
self.vip.pubsub.publish('pubsub', "some/random/topic", message="HI!")

Example RPC call
self.vip.rpc.call("some_agent", "some_method", arg1, arg2)
pass

@Core.receiver("onstop")
def onstop(self, sender, **kwargs):

"""
This method is called when the Agent is about to shutdown, but before it

→˓disconnects from
the message bus.
"""

(continues on next page)

2.6. Agent Development 33

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

pass

@RPC.export
def rpc_method(self, arg1, arg2, kwarg1=None, kwarg2=None):

"""
RPC method

May be called from another agent via self.vip.rpc.call
"""
return self.setting1 + arg1 - arg2

def main():
"""Main method called to start the agent."""
utils.vip_main(tester,

version=__version__)

if __name__ == '__main__':
Entry point for script
try:

sys.exit(main())
except KeyboardInterrupt:

pass

The resulting code is well documented with comments and documentation strings. It gives examples of how to do
common tasks in VOLTTRON Agents. The main agent code is found in tester/agent.py.

2.6.2 Building an Agent

The following section includes guidance on several important components for building agents in VOLTTRON.

Parse Packaged Configuration and Create Agent Instance

The code to parse a configuration file packaged and installed with the agent is found in the tester function:

def tester(config_path, **kwargs):
"""
Parses the Agent configuration and returns an instance of
the agent created using that configuration.

:param config_path: Path to a configuration file.
:type config_path: str
:returns: Tester
:rtype: Tester
"""
try:

config = utils.load_config(config_path)
except Exception:

config = {}

if not config:
_log.info("Using Agent defaults for starting configuration.")

(continues on next page)

34 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

setting1 = int(config.get('setting1', 1))
setting2 = config.get('setting2', "some/random/topic")

return Tester(setting1, setting2, **kwargs)

The configuration is parsed with the utils.load_config function and the results are stored in the config variable. An
instance of the Agent is created from the parsed values and is returned.

Initialization and Configuration Store Support

The configuration store is a powerful feature. The agent template provides a simple example of setting up default
configuration store values and setting up a configuration handler.

class Tester(Agent):
"""
Document agent constructor here.
"""

def __init__(self, setting1=1, setting2="some/random/topic", **kwargs):
super(Tester, self).__init__(**kwargs)
_log.debug("vip_identity: " + self.core.identity)

self.setting1 = setting1
self.setting2 = setting2

self.default_config = {"setting1": setting1,
"setting2": setting2}

Set a default configuration to ensure that self.configure is called
→˓immediately to setup

the agent.
self.vip.config.set_default("config", self.default_config)
Hook self.configure up to changes to the configuration file "config".
self.vip.config.subscribe(self.configure, actions=["NEW", "UPDATE"], pattern=

→˓"config")

def configure(self, config_name, action, contents):
"""
Called after the Agent has connected to the message bus. If a configuration

→˓exists at startup
this will be called before onstart.

Is called every time the configuration in the store changes.
"""
config = self.default_config.copy()
config.update(contents)

_log.debug("Configuring Agent")

try:
setting1 = int(config["setting1"])
setting2 = str(config["setting2"])

except ValueError as e:
_log.error("ERROR PROCESSING CONFIGURATION: {}".format(e))
return

(continues on next page)

2.6. Agent Development 35

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

self.setting1 = setting1
self.setting2 = setting2

self._create_subscriptions(self.setting2)

Note: Support for the configuration store is instantiated by subscribing to configuration changes with
self.vip.config.subscribe.

self.vip.config.subscribe(self.configure_main, actions=["NEW", "UPDATE"], pattern=
→˓"config")

Values in the default config can be built into the agent or come from the packaged configuration file. The subscribe
method tells our agent which function to call whenever there is a new or updated config file. For more information on
using the configuration store see Agent Configuration Store.

_create_subscriptions (covered in a later section) will use the value in self.setting2 to create a new subscription.

Agent Lifecycle Events

The agent lifecycle is controlled in the agents VIP core. The agent lifecycle manages scheduling and periodic function
calls, the main agent loop, and trigger a number of signals for callbacks in the concrete agent code. These callbacks
are listed and described in the skeleton code below:

Note: The lifecycle signals can trigger any method. To cause a method to be triggered by a lifecycle signal, use a
decorator:

@Core.receiver("<lifecycle_method>")
def my_callback(self, sender, **kwargs):

do my lifecycle method callback
pass

@Core.receiver("onsetup")
def onsetup(self, sender, **kwargs)

"""
This method is called after the agent has successfully connected to the platform,

→˓but before the scheduled
methods loop has started. This method not often used, but is most commonly used

→˓to define periodic
functions or do some pre-configuration.
"""
self.vip.core.periodic(60, send_request)

@Core.receiver("onstart")
def onstart(self, sender, **kwargs):

"""
This method is called once the Agent has successfully connected to the platform.
This is a good place to setup subscriptions if they are not dynamic or to
do any other startup activities that require a connection to the message bus.
Called after any configurations methods that are called at startup.

(continues on next page)

36 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

Usually not needed if using the configuration store.
"""
#Example publish to pubsub
self.vip.pubsub.publish('pubsub', "some/random/topic", message="HI!")

#Example RPC call
self.vip.rpc.call("some_agent", "some_method", arg1, arg2)

@Core.receiver("onstop")
def onstop(self, sender, **kwargs):

"""
This method is called when the Agent is about to shutdown, but before it

→˓disconnects from
the message bus. Common use-cases for this method are to stop periodic

→˓processing, closing connections and
setting agent state prior to cleanup.
"""
self.publishing = False
self.cache.close()

@Core.receiver("onfinish")
def onfinish(self, sender, **kwargs)

"""
This method is called after all scheduled threads have concluded. This method is

→˓rarely used, but could be
used to send shut down signals to other agents, etc.
"""
self.vip.pubsub.publish('pubsub', 'some/topic', message=f'agent {self.core.

→˓identity} shutdown')

Periodics and Scheduling

Periodic and Scheduled callback functions are callbacks made to functions in agent code from the thread scheduling
in the agent core.

Scheduled Callbacks

Scheduled callback functions are often used similarly to cron jobs to perform tasks at specific times, or to schedule
tasks ad-hoc as agent state is updated. There are 2 ways to schedule callbacks: using a decorator, or calling the core’s
scheduling function. Example usage follows.

using the agent's core to schedule a task
self.core.schedule(periodic(5), self.sayhi)

def sayhi(self):
print("Hello-World!")

using the decorator to schedule a task
@Core.schedule(cron('0 1 * * *'))
def cron_function(self):

print("this is a cron-scheduled function")

2.6. Agent Development 37

VOLTTRON Documentation, Release 8.1.3

Note: Scheduled Callbacks can use CRON scheduling, a datetime object, a number of seconds (from current time),
or a periodic which will make the schedule function as a periodic.

inside some agent method
self.core.schedule(t, function)
self.core.schedule(periodic(t), periodic_function)
self.core.schedule(cron('0 1 * * *'), cron_function)

Periodic Callbacks

Periodic call back functions are functions which are repeatedly called at a regular interval until the periodic is can-
celled in the agent code or the agent stops running. Like scheduled callbacks, periodics can be specified using either
decorators or using core function calls.

self.core.periodic(10, self.saybye)

def saybye(self):
print('Good-bye Cruel World!')

@Core.periodic(60)
def poll_api(self):

return requests.get("https://lmgtfy.com").json()

Note: Periodic intervals are specified in seconds.

Publishing Data to the Message Bus

The agent’s VIP connection can be used to publish data to the message bus. The message published and topic to
publish to are determined by the agent implementation. Classes of agents already specified by VOLTTRON may have
well-defined intended topic usage, see those agent specifications for further detail.

def publish_oscillating_update(self):
"""
Publish an "oscillating_value" which cycles between values 1 and 0 to the message

→˓bus using the topic
"some/topic/oscillating_value"
"""
self.publish_value = 1 if self.publish_value = 0 else 0
self. vip.pubsub.publish('pubsub', 'some/topic/', message=f'{"oscillating_value":

→˓"{self.publish_value}"')

38 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Setting up a Subscription

The Agent creates a subscription to a topic on the message bus using the value of self.setting2 in the method _cre-
ate_subscription. The messages for this subscription are handled with the _handle_publish method:

def _create_subscriptions(self, topic):
"""
Unsubscribe from all pub/sub topics and create a subscription to a topic in the

→˓configuration which triggers
the _handle_publish callback
"""
Unsubscribe from everything.
self.vip.pubsub.unsubscribe("pubsub", None, None)

self.vip.pubsub.subscribe(peer='pubsub',
prefix=topic,
callback=self._handle_publish)

def _handle_publish(self, peer, sender, bus, topic, headers, message):
"""
Callback triggered by the subscription setup using the topic from the agent's

→˓config file
"""
By default no action is taken.
pass

Alternatively, a decorator can be used to specify the function as a callback:

@PubSub.subscribe('pubsub', "topic_prefix")
def _handle_publish(self, peer, sender, bus, topic, headers, message):

"""
Callback triggered by the subscription setup using the topic from the agent's

→˓config file
"""
By default no action is taken.
pass

self.vip.pubsub.unsubscribe can be used to unsubscribe from a topic:

self.vip.pubsub.unsubscribe(peer='pubsub',
prefix=topic,
callback=self._handle_publish)

Giving None as values for the prefix and callback argument will unsubscribe from everything on that bus. This is
handy for subscriptions that must be updated base on a configuration setting.

Heartbeat

The heartbeat subsystem provides access to a periodic publish so that others can observe the agent’s status. Other
agents can subscribe to the heartbeat topic to see who is actively publishing to it. It it turned off by default.

Enabling the heartbeat publish:

self.vip.heartbeat.start_with_period(self._heartbeat_period)

Subscribing to the heartbeat topic:

2.6. Agent Development 39

VOLTTRON Documentation, Release 8.1.3

self.vip.pubsub.subscribe(peer='pubsub',
prefix='heartbeat',
callback=handle_heartbeat)

Health

The health subsystem adds extra status information to the an agent’s heartbeat. Setting the status will start the heartbeat
if it wasn’t already. Health is used to represent the internal state of the agent at runtime. GOOD health indicates that
all is fine with the agent and it is operating normally. BAD health indicates some kind of problem, such as if an agent
is unable to reach a remote web API.

Example of setting health:

from volttron.platform.messaging.health import STATUS_BAD, STATUS_GOOD,

self.vip.health.set_status(STATUS_GOOD, "Configuration of agent successful")

Remote Procedure Calls

An agent may receive commands from other agents via a Remote Procedure Call (RPC). This is done with the
@RPC.export decorator:

@RPC.export
def rpc_method(self, arg1, arg2, kwarg1=None, kwarg2=None):

"""
RPC method. May be called from another agent via self.vip.rpc.call
"""
return self.setting1 + arg1 - arg2

To send an RPC call to another agent running on the platform, the agent must invoke the rpc.call method of its VIP
connection.

in agent code
def send_remote_procedure_call(self):

peer = "<agent identity>"
peer_method = "<method in peer agent API>"
args = ["list", "of", "peer", "method", "arguments", "..."]
self.vip.rpc.call(peer, peer_method, *args)

Agent Resiliency

The VOLTTRON team has come up with a number of methods to help users develop more robust agents.

1. Use gevent.sleep(<seconds>) in callbacks which perform long running functions. Long running functions can
cause other agent functions including those in the base agent to be delayed. Calling gevent.sleep transfers control
from the current executing greenlet to the next scheduled greenlet for the duration of the sleep, allowing other
components of the agent code to run.

2. Call .get(<timeout>) on VIP subsystem calls (i.e. ``self.vip.rpc.call(. . .).get()`) to ensure that the call returns a
value or throws an Exception in a timely manner. A number of seconds can be provided to specify a timeout
duration.

3. Many of the Operations Agents can be used to monitor agent health, status, publishing frequency and more.
Read up on the “ops agents” for more information.

40 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Note: If an agent crashes, becomes unreachable, etc., it is up to the user to restart or reconnect the
agent.

4. The main agent thread should monitor any spawned threads or processes to ensure they’re cleaned up and/or
exit safely.

Building a resilient API

Many agents export RPC calls or expose an API (application programming interface) which can be used by other
agents on the platform. The agent should include validation against input data for its API to ensure the agent is able to
continue to operate even if asked to handle faulty or malicious requests.

Type-hints

Type-hints can be used in function definitions to help the user determine what the agent expects as input.

Warning: Type-hints do not validate the type of data input to a function call, they are merely suggestions about
what the function is expecting.

• To specify the type expected as input:

When calling this RPC method, the user should supply a string as input
@RPC.export
def type_hint_rpc(input_string: str):

• To specify the type of function output:

This demonstrates a function that expects a string as input and that will return an
→˓integer value
@RPC.export
def type_hint_rpc(input_string: str) -> int:

• Specifying multiple types:

Here our function expects either a string or dictionary
@RPC.export
def type_hint_rpc(input_json: Union[str, dict]) -> str:

• To specify an optional argument with None as the default value:

'Optional' is used to specify either a string should be passed or the default value
→˓'None' will be used
@RPC.export
def type_hint_rpc(optional_input: Optional[str] = None) -> str:

• These techniques can be combined:

'Optional' can be used in combination with 'Union' for optional arguments which
→˓expect one of multiple types and
default to None
@RPC.export
def type_hint_rpc(optional_input: Optional[Union[str, dict]] = None) -> str:

2.6. Agent Development 41

https://docs.python.org/3/library/typing.html

VOLTTRON Documentation, Release 8.1.3

API Validation

Each function within an agent should validate its input parameters, especially with structured data.

• Make use of isinstance to do type checking:

@RPC.export
def type_checking_rpc(input_str: str) -> dict:

if not isinstance(input_str, str):
Include a descriptive error message to help the user determine

→˓why input validation failed
You can make use of 'f-strings' to help the user with debugging
raise ValueError(

f'The expected input type for function "type_checking_rpc" is
→˓str, received {type(input_str)}')

• Add logic to validate the range of values supplied as input with a valid type:

@RPC.export
def value_checking_rpc(input_json: Union[str, dict]) -> dict:

if not isinstance(input_json, str) or not isinstance(input_json,
→˓dict):

You can make use of 'f-strings' to help the user determine why
→˓input validation failed

raise ValueError(
f'The expected input type for function "type_checking_rpc" is

→˓str or dict, received {type(input_str)}')
else:

since we expected the input to be valid JSON, be sure that it
→˓can be correctly parsed

if isinstance(input_json, str):
input_json = json.loads(input_json)

for this example, we expect our JSON to include two fields:
→˓test1 and test2

Use 'dict.get(<key>)' rather than 'dict[<key>]' to return None
→˓and avoid causing a KeyError if the key

is not present. Optionally, a second argument can be added to
→˓specify a default value to use in

place of None: 'dict.get(<key>, <default value>)'
test_1 = input_json.get("test1")
test_2 = input_json.get("test2")
test 1 must be any string value
if not isinstance(test_1, str):

raise ValueError('Input JSON should contain key "test1" with
→˓value of type str')

test 2 must be an integer value with value between 0 and 100
→˓inclusive

if not isinstance(test_2, int) and 0 <= test_2 <= 100:
_log.warning(f'Field "test2" in input JSON was out of range

→˓(0 - 100): {test_2}, defaulting to 50')
test_2 = 50

Note: It is possible to restrict access to RPC functions using an agent’s authentication capabilities.

42 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

2.6.3 Packaging Configuration

The wizard will automatically create a setup.py file. This file sets up the name, version, required packages, method to
execute, etc. for the agent based on your answers to the wizard. The packaging process will also use this information
to name the resulting file.

from setuptools import setup, find_packages

MAIN_MODULE = 'agent'

Find the agent package that contains the main module
packages = find_packages('.')
agent_package = 'tester'

Find the version number from the main module
agent_module = agent_package + '.' + MAIN_MODULE
_temp = __import__(agent_module, globals(), locals(), ['__version__'], -1)
__version__ = _temp.__version__

Setup
setup(

name=agent_package + 'agent',
version=__version__,
author_email="volttron@pnnl.gov",
url="https://volttron.org/",
description="Agent development tutorial.",
author="VOLTTRON Team",
install_requires=['volttron'],
packages=packages,
entry_points={

'setuptools.installation': [
'eggsecutable = ' + agent_module + ':main',

]
}

)

2.6.4 Launch Configuration

In TestAgent, the wizard will automatically create a JSON file called “config”. It contains configuration information
for the agent. This file contains examples of every data type supported by the configuration system:

{
VOLTTRON config files are JSON with support for python style comments.
"setting1": 2, # Integers
"setting2": "some/random/topic2", #Strings
"setting3": true, # Booleans: remember that in JSON true and false are not

→˓capitalized.
"setting4": false,
"setting5": 5.1, # Floating point numbers.
"setting6": [1,2,3,4], #Lists
"setting7": {"setting7a": "a", "setting7b": "b"} #Objects

}

2.6. Agent Development 43

VOLTTRON Documentation, Release 8.1.3

2.6.5 Packaging and Installation

To install the agent the platform must be running. Start the platform with the command:

./start-volttron

Note: If you are not in an activated environment, this script will start the platform running in the background in the
correct environment. However the environment will not be activated for you; you must activate it yourself.

Now we must install it into the platform. Use the following command to install it and add a tag for easily referring to
the agent. From the project directory, run the following command:

python scripts/install-agent.py -s TestAgent/ -c TestAgent/config -t testagent

To verify it has been installed, use the following command:

vctl list

This will result in output similar to the following:

AGENT IDENTITY TAG Status Health PRI
df testeragent-0.5 testeragent-0.5_1 testagent

• The first string is a unique portion of the full UUID for the agent

• AGENT is the “name” of the agent based on the contents of its class name and the version in its setup.py.

• IDENTITY is the agent’s identity in the platform. This is automatically assigned based on class name and
instance number. This agent’s ID is _1 because it is the first instance.

• TAG is the name we assigned in the command above

• Status indicates the running status of an agent - running agents are running, agents which are not running will
have no listed status

• Health is an indication of the internal state of the agent. ‘Healthy’ agents will have GOOD health. If an agent
enters an error state, it will continue to run, but its health will be BAD.

• PRI is the priority for agents which have been “enabled” using the vctl enable command.

When using lifecycle commands on agents, they can be referred to by the UUID (default) or AGENT (name) or TAG.

2.6.6 Running and Testing the Agent

Now that the first pass of the agent code is complete, we can see if the agent works. It is highly-suggested to build
a set of automated tests for the agent code prior to writing the agent, and running those tests after the agent is code-
complete. Another quick way to determine if the agent is going the right direction is to run the agent on the platform
using the VOLTTRON command line interface.

44 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

From the Command Line

To test the agent, we will start the platform (if not already running), launch the agent, and check the log file. With the
VOLTTRON environment activated, start the platform by running (if needed):

./start-volttron

You can launch the agent in three ways, all of which you can find by using the vctl list command:

• By using the <uuid>:

vctl start <uuid>

• By name:

vctl start --name testeragent-0.1

• By tag:

vctl start --tag testagent

Check that it is running:

vctl status

• Start the ListenerAgent as in the platform installation guide.

• Check the log file for messages indicating the TestAgent is receiving the ListenerAgents messages:

2021-01-12 16:46:58,291 (listeneragent-3.3 12136) __main__ INFO: Peer: pubsub,
→˓Sender: testeragent-0.1_1:, Bus: , Topic: some/random/topic, Headers: {'min_
→˓compatible_version': '5.0', 'max_compatible_version': ''}, Message: 'HI!'

Automated Test Cases and Documentation

Before contributing a new agent to the VOLTTRON source code repository, please consider adding two other essential
elements.

1. Integration and unit test cases

2. README file that includes details of pre-requisite software, agent setup details (such as setting up databases,
permissions, etc.) and sample configuration

VOLTTRON uses pytest as a framework for executing tests. All unit tests should be based on the pytest framework.
For instructions on writing unit and integration tests with pytest, refer to the Writing Agent Tests documentation.

pytest is not installed with the distribution by default. To install py.test and it’s dependencies execute the following:

python bootstrap.py --testing

Note: There are other options for different agent requirements. To see all of the options use:

python bootstrap.py --help

in the Extra Package Options section.

To run a single test module, use the command

2.6. Agent Development 45

VOLTTRON Documentation, Release 8.1.3

pytest <testmodule.py>

To run all of the tests in the volttron repository execute the following in the root directory using an activated command
prompt:

./ci-integration/run-tests.sh

2.6.7 Scripts

In order to make repetitive tasks less repetitive the VOLTTRON team has create several scripts in order to help. These
tasks are available in the scripts directory.

Note: In addition to the scripts directory, the VOLTTRON team has added the config directory to the .gitignore file.
By convention this is where we store customized scripts and configuration that will not be made public. Please feel
free to use this convention in your own processes.

The scripts/core directory is laid out in such a way that we can build scripts on top of a base core. For example
the scripts in sub-folders such as the historian-scripts and demo-comms use the scripts that are present in the core
directory.

The most widely used script is scripts/install-agent.py. The install_agent.py script will remove an agent if the tag
is already present, create a new agent package, and install the agent to VOLTTRON_HOME. This script has three
required arguments and has the following signature:

Note: Agent to Package must have a setup.py in the root of the directory. Additionally, the user must be in an
activated Python Virtual Environment for VOLTTRON

cd $VOLTTRON_ROOT
source env/bin/activate

python scripts/install_agent.py -s <agent path> -c <agent config file> -i <agent VIP
→˓identity> --tag <Tag>

Note: The --help optional argument can be used with scripts/install-agent.py to view all available options for the
script

The install_agent.py script will respect the VOLTTRON_HOME specified on the command line or set in the global
environment. An example of setting VOLTTRON_HOME to /tmp/v1home is as follows.

VOLTTRON_HOME=/tmp/v1home python scripts/install-agent.py -s <Agent to Package> -c
→˓<Config file> --tag <Tag>

46 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Agent Configuration Store Interface

The Agent Configuration Store Subsystem provides an interface for facilitating dynamic configuration via the platform
configuration store. It is intended to work alongside the original configuration file to create a backwards compatible
system for configuring agents with the bundled configuration file acting as default settings for the agent.

If an Agent Author does not want to take advantage of the platform configuration store they need to make no
changes. To completely disable the Agent Configuration Store Subsystem an Agent may pass enable_store=False
to the Agent.__init__ method.

The Agent Configuration Store Subsystem caches configurations as the platform sends updates to the agent. Updates
from the platform will usually trigger callbacks on the agent.

Agent access to the Configuration Store is managed through the self.vip.config object in the Agent class.

The “config” Configuration

The configuration name config is considered the canonical name of an Agents main configuration. As such the Agent
will always run callbacks for that configuration first at startup and when a change to another configuration triggers any
callbacks for config.

Configuration Callbacks

Agents may setup callbacks for different configuration events. The callback method must have the following signature:

my_callback(self, config_name, action, contents)

Note: The example above is for a class member method, however the method does not need to be a member of the
agent class.

• config_name - The method to call when a configuration event occurs.

• action - The specific configuration event type that triggered the callback. Possible values are “NEW”, “UP-
DATE”, “DELETE”. See Configuration Events

• contents - The actual contents of the configuration. Will be a string, list, or dictionary for the actions “NEW”
and “UPDATE”. None if the action is “DELETE”.

Note: All callbacks which are connected to the “NEW” event for a configuration will called during agent startup with
the initial state of the configuration.

Configuration Events

• NEW - This event happens for every existing configuration at Agent startup and whenever a new configuration
is added to the Configuration Store.

• UPDATE - This event happens every time a configuration is changed.

• DELETE - The event happens every time a configuration is removed from the store.

2.6. Agent Development 47

VOLTTRON Documentation, Release 8.1.3

Setting Up a Callback

A callback is setup with the self.vip.config.subscribe method.

Note: Subscriptions may be setup at any point in the life cycle of an Agent. Ideally they are setup in __init__.

subscribe(callback, actions=["NEW", "UPDATE", "DELETE"], pattern="*")

• callback - The method to call when a configuration event occurs.

• actions - The specific configuration event that will trigger the callback. May be a string with the name of a
single action or a list of actions.

• pattern - The pattern used to match configuration names to trigger the callback.

Configuration Name Pattern Matching

Configuration name matching uses Unix file name matching semantics. Specifically the python module fnmatch is
used.

Name matching is not case sensitive regardless of the platform VOLTTRON is running on.

For example, the pattern devices/* will trigger the supplied callback for any configuration name that starts with de-
vices/.

The default pattern matches all configurations.

Getting a Configuration

Once RPC methods are available to an agent (once onstart methods have been called or from any configuration call-
back) the contents of any configuration may be acquired with the self.vip.config.get method.

get(config_name="config")

If the Configuration Subsystem has not been initialized with the starting values of the agent configuration that will
happen in order to satisfy the request.

If initialization occurs to satisfy the request callbacks will not be called before returning the results.

Typically an Agent will only obtain the contents of a configuration via a callback. This method is included for agents
that want to save state in the store and only need to retrieve the contents of a configuration at startup and ignore any
changes to the configuration going forward.

Setting a Configuration

Once RPC methods are available to an agent (once onstart methods have been called) the contents of any configuration
may be set with the self.vip.config.set method.

set(config_name, contents, trigger_callback=False, send_update=False)

The contents of the configuration may be a string, list, or dictionary.

This method is intended for agents that wish to maintain a copy of their state in the store for retrieval at startup with
the self.vip.config.get method.

48 Chapter 2. Features

https://docs.python.org/3.6/library/fnmatch.html#module-fnmatch

VOLTTRON Documentation, Release 8.1.3

Warning: This method may not be called from a configuration callback. The Configuration Subsystem will
detect this and raise a RuntimeError, even if trigger_callback or send_update is False.

The platform has a locking mechanism to prevent concurrent configuration updates to the Agent. Calling
self.vip.config.set would cause the Agent and the Platform configuration store for that Agent to deadlock until
a timeout occurs.

Optionally an agent may trigger any callbacks by setting trigger_callback to True. If trigger_callback is set to
False the platform will still send the updated configuration back to the agent. This ensures that a subsequent call
to self.cip.config.get will still return the correct value. This way the agent’s configuration subsystem is kept in sync
with the platform’s copy of the agent’s configuration store at all times.

Optionally the agent may prevent the platform from sending the updated file to the agent by setting send_update to
False. This setting is available strictly for performance tuning.

Warning: This setting will allow the agent’s view of the configuration to fall out of sync with the platform.
Subsequent calls to self.vip.config.get will return an old version of the file if it exists in the agent’s view of the
configuration store.

This will also affect any configurations that reference the configuration changed with this setting.

Care should be taken to ensure that the configuration is only retrieved at agent startup when using this option.

Setting a Default Configuration

In order to more easily allow agents to use both the Configuration Store while still supporting configuration via the
tradition method of a bundled configuration file the self.vip.config.set_default method was created.

set_default(config_name, contents)

Warning: This method may not be called once the Agent Configuration Store Subsystem has been initialized.
This method should only be called from __init__ or an onsetup method.

The set_default method adds a temporary configuration to the Agents Configuration Subsystem. Nothing is sent to the
platform. If a configuration with the same name exists in the platform store it will be presented to a callback method
in place of the default configuration.

The normal way to use this is to set the contents of the packaged Agent configuration as the default contents for the
configuration named config. This way the same callback used to process config configuration in the Agent will be
called when the Configuration Subsystem can be used to process the configuration file packaged with the Agent.

Note: No attempt is made to merge a default configuration with a configuration from the store.

If a configuration is deleted from the store and a default configuration exists with the same name the Agent Configu-
ration Subsystem will call the UPDATE callback for that configuration with the contents of the default configuration.

2.6. Agent Development 49

https://docs.python.org/3.6/library/exceptions.html#RuntimeError

VOLTTRON Documentation, Release 8.1.3

Other Methods

In a well thought out configuration scheme these methods should not be needed but are included for completeness.

List Configurations

A current list of all configurations for the Agent may be called with the self.vip.config.list method.

Unsubscribe

All subscriptions can be removed with a call to the self.vip.config.unsubscribe_all method.

Delete

A configuration can be deleted with a call to the self.vip.config.delete method.

delete(config_name, trigger_callback=False)

Note: This method may not be called from a callback for the same reason as the self.vip.config.set method.

Delete Default

A default configuration can be deleted with a call to the self.vip.config.delete_default method.

delete_default(config_name)

Warning: This method may not be called once the Agent Configuration Store Subsystem has been initialized.
This method should only be called from __init__ or an onsetup method.

Example Agent

The following example shows how to use set_default with a basic configuration and how to setup callbacks.

def my_agent(config_path, **kwargs):

config = utils.load_config(config_path) #Now returns {} if config_path does not
→˓exist.

setting1 = config.get("setting1", 42)
setting2 = config.get("setting2", 2.5)

return MyAgent(setting1, setting2, **kwargs)

class MyAgent(Agent):
def __init__(self, setting1=0, setting2=0.0, **kwargs):

super(MyAgent, self).__init__(**kwargs)

(continues on next page)

50 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

self.default_config = {"setting1": setting1,
"setting2": setting2}

self.vip.config.set_default("config", self.default_config)
#Because we have a default config we don't have to worry about "DELETE"
self.vip.config.subscribe(self.configure_main, actions=["NEW", "UPDATE"],

→˓pattern="config")
self.vip.config.subscribe(self.configure_other, actions=["NEW", "UPDATE"],

→˓pattern="other_config/*")
self.vip.config.subscribe(self.configure_delete, actions="DELETE", pattern=

→˓"other_config/*")

def configure_main(self, config_name, action, contents):
#Ensure that we use default values from anything missing in the configuration.
config = self.default_config.copy()
config.update(contents)

_log.debug("Configuring MyAgent")

#Sanity check the types.
try:

setting1 = int(config["setting1"])
setting2 = float(config["setting2"])

except ValueError as e:
_log.error("ERROR PROCESSING CONFIGURATION: {}".format(e))
#TODO: set a health status for the agent
return

_log.debug("Using setting1 {}, setting2 {}". format(setting1, setting2))
#Do something with setting1 and setting2.

def configure_other(self, config_name, action, contents):
_log.debug("Configuring From {}".format(config_name))
#Do something with contents of configuration.

def configure_delete(self, config_name, action, contents):
_log.debug("Removing {}".format(config_name))
#Do something in response to the removed configuration.

Writing Agent Tests

The VOLTTRON team strongly encourages developing agents with a set of unit and integration tests. Test-driven
development can save developers significant time and effort by clearly defining behavioral expectations for agent
code. We recommend developing agent tests using Pytest. Agent code contributed to VOLTTRON is expected to
include a set of tests using Pytest in the agent module directory. Following are instructions for setting up Pytest,
structuring your tests, how to write unit and integration tests (including some helpful tools using Pytest and Mock)
and how to run your tests.

2.6. Agent Development 51

VOLTTRON Documentation, Release 8.1.3

Installation

To get started with Pytest, install it in an activated environment:

pip install pytest

Or when running VOLTTRON’s bootstrap process, specify the --testing optional argument.

python bootstrap.py --testing

Pytest on PyPI

Module Structure

We suggest the following structure for your agent module:

UserAgent
user_agent

data
user_agent_data.csv

__init__.py
agent.py

tests
test_user_agent.py

README.md
config.json
contest.py
requirements.txt
setup.py

The test suite should be in a tests directory in the root agent directory, and should contain one or more test code files
(with the test_<name of test> convention). conftest.py can be used to give all agent tests access to some portion of the
VOLTTRON code. In many cases, agents use conftest.py to import VOLTTRON testing fixtures for integration tests.

Naming Conventions

Pytest tests are discovered and run using some conventions:

• Tests will be found recursively in either the directory specified when running Pytest, or the current working
directory if no argument was supplied

• Pytest will search in those directories for files called test_<name of test>.py or <name of test>_test.py

• In those files, Pytest will test:

– functions and methods prefixed by “test” outside of any class

– functions and methods prefixed by “test” inside of any class prefixed by “test”

TestDir
MoreTests

test2.py
test1.py
file.py

52 Chapter 2. Features

https://pypi.org/project/pytest/

VOLTTRON Documentation, Release 8.1.3

test1.py

def helper_method():
return 1

def test_success():
assert helper_method()

test2.py

def test_success():
assert True

def test_fail():
assert False

file.py

def test_success():
assert True

def test_fail():
assert False

In the above example, Pytest will run the tests test_success from the file test1.py and test_success and test_fail from
test2.py. No tests will be run from file.txt, even though it contains test code, nor will it try to run helper_method from
test1.py as a test.

Writing Unit Tests

These tests should test the various methods of the code base, checking for success and fail conditions. These tests
should capture how the components of the system should function; and describe all the possible output conditions
given the possible range of inputs including how they should fail if given improper input.

Pytest guide to Unit Testing

Mocking Dependencies

VOLTTRON agents include code for many platform features; these features can be mocked to allow unit tests to test
only the features of the agent without having to account for the behaviors of the core platform. While there are many
tools that can mock dependencies of an agent, we recommend Volttron’s AgentMock or Python’s Mock testing library.

AgentMock

AgentMock was specifically created to run unit tests on agents. AgentMock takes an Agent class and mocks the
attributes and methods of that Agent’s dependencies. AgentMock also allows you to customize the behavior of depen-
dencies within each individual test. Below is an example:

Import the Pytest, Mock, base Agent, and Agent mock utility from VOLTTRON's
→˓repository
import pytest
import mock
from volttron.platform.vip.agent import Agent

(continues on next page)

2.6. Agent Development 53

https://docs.python-guide.org/writing/tests/#unittest

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

from volttrontesting.utils.utils import AgentMock
Import your agent code
from UserAgent import UserAgentClass

UserAgentClass.__bases__ = (AgentMock.imitate(Agent, Agent()),)
agent = UserAgentClass()

def test_success_case():
result = agent.do_function("valid input")
assert isinstance(result, dict)
for key in ['test1', 'test2']:

assert key in result
assert result.get("test1") == 10
assert isinstance(result.get("test2"), str)
...

def test_success_case_custom_mocks():
agent.some_dependency.some_method.return_value = "foobar"
agent.some_attribute = "custom, dummy value"
result = agent.do_function_that_relies_on_custom_mocks("valid input")
...

def test_failure_case()
pytests.raises can be useful for testing exceptions, more information about

→˓usage below
with pytest.raises(ValueError, match=r'Invalid input string for do_function')

result = agent.do_function("invalid input")

Mock

Simliar to AgentMock, Python’s Mock testing library allows a user to replace the behavior of dependencies with a
user-specified behavior. This is useful for replacing VOLTTRON platform behavior, remote API behavior, modules,
etc. where using them in unit or integration tests is impractical or impossible. Below is an example that uses the patch
decorator to mock an Agent’s web request.

Mock documentation

class UserAgent()

def __init__():
Code here

def get_remote_data()
response = self._get_data_from_remote()
return "Remote response: {}".format(response)

it can be useful to create private functions for use with mock for things like
→˓making web requests

def _get_data_from_remote():
url = "test.com/test1"
headers = {}
return requests.get(url, headers)

~~

(continues on next page)

54 Chapter 2. Features

https://docs.python.org/3/library/unittest.mock.html#quick-guide

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

import pytest
import mock

def get_mock_response():
return "test response"

here we're mocking the UserAgent's _get_data_from_remote method and replacing it
→˓with our get_mock_response method
to feed our test some fake remote data
@mock.patch.object(UserAgent, '_get_data_from_remote', get_mock_response)
def test_get_remote_data():

assert UserAgent.get_remote_Data() == "Remote response: test response"

Pytest Tools

Pytest includes many helpful tools for developing your tests. We’ll highlight a few that have been useful for VOLT-
TRON core tests, but checkout the Pytest documentation for additional information on each tool as well as tools not
covered in this guide.

Pytest Fixtures

Pytest fixtures can be used to create reusable code for tests that can be accessed by every test in a module based on
scope. There are several kinds of scopes, but commonly used are “module” (the fixture is run once per module for all
the tests of that module) or “function” (the fixture is run once per test). For fixtures to be used by tests, they should be
passed as parameters.

Pytest Fixture documentation

Here is an example of a fixture, along with using it in a test:

Fixtures with scope function will be run once per test if the test accepts the
→˓fixture as a parameter
@pytest.fixture(scope="function")
def cleanup_database():

This fixture cleans up a sqlite database in between each test run
sqlite_conn = sqlite.connect("test.sqlite")
cursor = sqlite_conn.cursor()
cursor.execute("DROP TABLE 'TEST'")
cursor.commit()

cursor.execute("CREATE TABLE TEST (ID INTEGER, FirstName TEXT, LastName TEXT,
→˓Occupation Text)")

cursor.commit()
sqlite.conn.close()

when we pass the cleanup function, we expect that the table will be dropped and
→˓rebuilt before the test runs
def test_store_data(cleanup_database):

sqlite_conn = sqlite.connect("test.sqlite")
cursor = sqlite_conn.cursor()
after this insert, we'd expect to only have 1 value in the table
cursor.execute("INSERT INTO TEST VALUES(1, 'Test', 'User', 'Developer')")
cursor.commit()

(continues on next page)

2.6. Agent Development 55

https://docs.pytest.org/
https://docs.pytest.org/en/latest/fixture.html

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

validate the row count
cursor.execute("SELECT COUNT(*) FROM TEST")
count = cursor.fetchone()
assert count == 1

Pytest.mark

Pytest marks are used to set metadata for test functions. Defining your own custom marks can allow you to run
subsections of your tests. Parametrize can be used to pass a series of parameters to a test, so that it can be run many
times to cover the space of potential inputs. Marks also exist to specify expected behavior for tests.

Mark documentation

Custom Marks

To add a custom mark, add the name of the mark followed by a colon then a description string to the ‘markers’ section
of Pytest.ini (an example of this exists in the core VOLTTRON repository). Then add the appropriate decorator:

@pytest.mark.UserAgent
def test_success_case():

TODO unit test here
pass

The VOLTTRON team also has a dev mark for running individual (or a few) one-off tests.

@pytest.mark.dev
@pytest.mark.UserAgent
def test_success_case():

TODO unit test here
pass

Parametrize

Parametrize will allow tests to be run with a variety of parameters. Add the parametrize decorator, and for parameters
include a list of parameter names matching the test parameter names as a comma-delimited string followed by a list of
tuples containing parameters for each test.

Parametrize docs

@pytest.mark.parametrize("test_input1, test_input2, expected", [(1, 2, 3), (-1, 0, "
→˓")])
def test_user_agent(param1, param2, param3):

TODO unit test here
pass

56 Chapter 2. Features

https://docs.pytest.org/en/latest/mark.html
https://docs.pytest.org/en/latest/parametrize.html

VOLTTRON Documentation, Release 8.1.3

Skip, skipif, and xfail

The skip mark can be used to skip a test for any reason every time the test suite is run:

This test will be skipped!
@pytest.mark.skip
def test_user_agent():

TODO unit test here
pass

The skipif mark can be used to skip a test based on some condition:

This test will be skipped if RabbitMQ hasn't been set up yet!
@pytest.mark.skipif(not isRabbitMQInstalled)
def test_user_agent():

TODO unit test here
pass

The xfail mark can be used to run a test, but to show that the test is currently expected to fail

This test will fail, but will not cause the module tests to be considered failing!
@pytest.mark.xfail
def test_user_agent():

TODO unit test here
assert False

Skip, skipif, and xfail docs

Writing Integration Tests

Integration tests are useful for testing the faults that occur between integrated units. In the context of VOLTTRON
agents, integration tests should test the interactions between the agent, the platform, and other agents installed on
the platform that would interface with the agent. It is typical for integration tests to test configuration, behavior and
content of RPC calls and agent Pub/Sub, the agent subsystems, etc.

Pytest best practices for Integration Testing

Volttrontesting Directory

The Volttrontesting directory includes several helpful fixtures for your tests. Including the following line at the top of
your tests, or in conftest.py, will allow you to utilize the platform wrapper fixtures, and more.

from volttrontesting.fixtures.volttron_platform_fixtures import *

Here is an example success case integration test:

import pytest
import mock
from volttrontesting.fixtures.volttron_platform_fixtures import *

If the test requires user specified values, setting environment variables or having
→˓settings files is recommended
API_KEY = os.environ.get('API_KEY')

(continues on next page)

2.6. Agent Development 57

https://docs.pytest.org/en/documentation-restructure/how-to/skipping.html
https://docs.pytest.org/en/latest/goodpractices.html

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

request object is a pytest object for managing the context of the test
@pytest.fixture(scope="module")
def Weather(request, volttron_instance):

config = {
"API_KEY": API_KEY

}
using the volttron_instance fixture (passed in by volttrontesting fixtures), we

→˓can install an agent
on the platform to test against
agent = volttron_instance.install_agent(

vip_identity=identity,
agent_dir=source,
start=False,
config_file=config)

volttron_instance.start_agent(agent)
gevent.sleep(3)

def stop_agent():
print("stopping weather service")
if volttron_instance.is_running():

volttron_instance.stop_agent(agent)
here we used the passed request object to add something to happen when the test

→˓is finished
request.addfinalizer(stop_agent)
return agent, identity

Here we create a really simple agent which has only the core functionality, which
→˓we can use for Pub/Sub
or JSON/RPC
@pytest.fixture(scope="module")
def query_agent(request, volttron_instance):

Create the simple agent
agent = volttron_instance.build_agent()

def stop_agent():
print("In teardown method of query_agent")
agent.core.stop()

request.addfinalizer(stop_agent)
return agent

pass the 2 fixtures to our test, then we can run the test
def test_weather_success(Weather, query_agent):

query_data = query_agent.vip.rpc.call(identity, 'get_current_weather', locations).
→˓get(timeout=30)

assert query_data.get("weather_results") = "Its sunny today!"

For more integration test examples, it is recommended to take a look at some of the VOLTTRON core agents, such as
historian agents and weather service agents.

58 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Using Docker for Limited-Integration Testing

If you want to run limited-integration tests which do not require the setup of a volttron system, you can use Docker
containers to mimic dependencies of an agent. The volttrontesting/fixtures/docker_wrapper.py module provides a
convenient function to create docker containers for use in limited-integration tests. For example, suppose that you had
an agent with a dependency on a MySQL database. If you want to test the connection between the Agent and the
MySQL dependency, you can create a Docker container to act as a real MySQL database. Below is an example:

from volttrontesting.fixtures.docker_wrapper import create_container
from UserAgent import UserAgentClass

def test_docker_wrapper_example():
ports_config = {'3306/tcp': 3306}
with create_container("mysql:5.7", ports=ports_config) as container:

init_database(container)
agent = UserAgent(ports_config)

results = agent.some_method_that_talks_to_container()

Running your Tests and Debugging

Pytest can be run from the command line to run a test module.

pytest <path to module to be tested>

If using marks, you can add -m <mark> to specify your testing subset, and -s can be used to suppress standard
output. For more information about optional arguments you can type pytest –help into your command line interface to
see the full list of options.

Testing output should look something like this:

(volttron) <user>@<host>:~/volttron$ pytest services/core/SQLHistorian/
== test session starts
→˓===
platform linux -- Python 3.6.9, pytest-5.4.1, py-1.8.1, pluggy-0.13.1 -- /home/<user>/
→˓volttron/env/bin/python
cachedir: .pytest_cache
rootdir: /home/<user>/volttron, inifile: pytest.ini
plugins: timeout-1.3.4
timeout: 240.0s
timeout method: signal
timeout func_only: False
collected 2 items

services/core/SQLHistorian/tests/test_sqlitehistorian.py::test_sqlite_
→˓timeout[volttron_3-volttron_instance0] ERROR [50%]
services/core/SQLHistorian/tests/test_sqlitehistorian.py::test_sqlite_
→˓timeout[volttron_3-volttron_instance1] PASSED [100%]

=== ERRORS
→˓===
________________________________ ERROR at setup of test_sqlite_timeout[volttron_3-
→˓volttron_instance0] ________________________________

request = <SubRequest 'volttron_instance' for <Function test_sqlite_timeout[volttron_
→˓3-volttron_instance0]>>, kwargs = {}

(continues on next page)

2.6. Agent Development 59

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

address = 'tcp://127.0.0.113:5846'

@pytest.fixture(scope="module",
params=[

dict(messagebus='zmq', ssl_auth=False),
pytest.param(dict(messagebus='rmq', ssl_auth=True), marks=rmq_

→˓skipif),
])

def volttron_instance(request, **kwargs):
"""Fixture that returns a single instance of volttron platform for testing

@param request: pytest request object
@return: volttron platform instance
"""
address = kwargs.pop("vip_address", get_rand_vip())
wrapper = build_wrapper(address,

messagebus=request.param['messagebus'],
ssl_auth=request.param['ssl_auth'],

> **kwargs)

address = 'tcp://127.0.0.113:5846'
kwargs = {}
request = <SubRequest 'volttron_instance' for <Function test_sqlite_
→˓timeout[volttron_3-volttron_instance0]>>

volttrontesting/fixtures/volttron_platform_fixtures.py:106:

Running Tests Via PyCharm

To run our Pytests using PyCharm, we’ll need to create a run configuration. To do so, select “edit configurations” from
the “Run” menu (or if using the toolbar UI element you can click on the run configurations dropdown to select “edit
configurations”). Use the plus symbol at the top right of the pop-up menu, scroll to “Python Tests” and expand this
menu and select “pytest”. This will create a run configuration, which will then need to be filled out. We recommend
the following in general:

• Set the “Script Path” radio and fill the form with the path to your module. Pytest will run any tests in that module
using the discovery process described above (and any marks if specified)

• In the interpreter dropdown, select the VOLTTRON virtual environment - this will likely be your project default

• Set the working directory to the VOLTTRON root directory

• Add any environment variables - For debugging, add variable “DEBUG_MODE” = True or “DEBUG” 1

• Add any optional arguments (-s will prevent standard output from being displayed in the console window, -m is
used to specify a mark)

60 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

PyCharm testing instructions

More information on testing in Python

Developing Historian Agents

Developing custom historians is considered an advanced development topic. If this is your first time developing a
custom agent, consider starting with the general Agent Development page first. VOLTTRON provides a convenient
base class for developing new historian agents. The base class automatically performs a number of important functions:

• subscribes to all pertinent topics

• caches published data to disk until it is successfully recorded to a historian

• creates the public facing interface for querying results

• spells out a simple interface for concrete implementation to meet to make a working Historian Agent

• breaks data to publish into reasonably sized chunks before handing it off to the concrete implementation for
publication. The size of the chunk is configurable

• sets up a separate thread for publication. If publication code needs to block for a long period of time (up to 10s
of seconds) this will no disrupt the collection of data from the bus or the functioning of the agent itself

The VOLTTRON repository provides several historians which can be deployed without modification.

2.6. Agent Development 61

https://www.jetbrains.com/help/pycharm/run-debug-configuration-py-test.html
https://realpython.com/python-testing/

VOLTTRON Documentation, Release 8.1.3

BaseHistorian

All Historians must inherit from the BaseHistorian class in volttron.platform.agent.base_historian and implement the
following methods:

publish_to_historian(self, to_publish_list)

This method is called by the BaseHistorian class when it has received data from the message bus to be published.
to_publish_list is a list of records to publish in the form:

[
{

'_id': 1,
'timestamp': timestamp,
'source': 'scrape',
'topic': 'campus/building/unit/point',
'value': 90,
'meta': {'units':'F'}

}
{

...
}

]

• _id - ID of the record used for internal record tracking. All IDs in the list are unique

• timestamp - Python datetime object of the time data was published at timezone UTC

• source - Source of the data: can be scrape, analysis, log, or actuator

• topic - Topic data was published on, topic prefix’s such as “device” are dropped

• value - Value of the data, can be any type.

• meta - Metadata for the value, some sources will omit this entirely.

For each item in the list the concrete implementation should attempt to publish (or discard if non-publishable) every
item in the list. Publication should be batched if possible. For every successfully published record and every record
that is to be discarded because it is non-publishable the agent must call report_handled on those records. Records
that should be published but were not for whatever reason require no action. Future calls to publish_to`_historian
will include these unpublished records. publish_to_historian is always called with the oldest unhandled records. This
allows the historian to no lose data due to lost connections or other problems.

As a convenience report_all_handled can be called if all of the items in published_list were successfully handled.

query_topic_list(self)

Must return a list of all unique topics published.

62 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

query_historian(self, topic, start=None, end=None, skip=0, count=None, order=None)

This function must return the results of a query in the form:

{"values": [(timestamp1: value1), (timestamp2: value2), ...],
"metadata": {"key1": value1, "key2": value2, ...}}

metadata is not required (The caller will normalize this to {} for you if you leave it out)

• topic - the topic the user is querying for

• start - datetime of the start of the query, None for the beginning of time

• end - datetime of the end of of the query, None for the end of time

• skip - skip this number of results (for pagination)

• count - return at maximum this number of results (for pagination)

• order - FIRST_TO_LAST for ascending time stamps, LAST_TO_FIRST for descending time stamps

historian_setup(self)

Implementing this is optional. This function is run on the same thread as the rest of the concrete implementation at
startup. It is meant for connection setup.

Example Historian

An example historian can be found in the examples/CSVHistorian directory in the VOLTTRON repository. This
example historian uses a CSV file as the persistent data store. It is recommended to use this agent as a reference for
developing new historian agents. The example is described in more detail under the Example Agents subsection.

Developing Market Agents

VOLTTRON provides a convenient base class for developing new market agents. The base class automatically sub-
scribes to all pertinent topics, and spells out a simple interface for concrete implementation to make a working Market
Agent.

Markets are implemented by the Market Service Agent which is a core service agent. The Market Service Agent
publishes information on several topics to which the base agent automatically subscribes. The base agent also provides
all the methods you will need to interact with the Market Service Agent to implement your market transactions.

MarketAgent

All Market Agents must inherit from the MarketAgent class in volttron.platform.agent.base_market_agent and call
the following method:

self.join_market(market_name, buyer_seller, reservation_callback, offer_callback,
→˓aggregate_callback, price_callback, error_callback)

This method causes the market agent to join a single market. If the agent wishes to participate in several markets
it may be called once for each market. The first argument is the name of the market to join and this name must be
unique across the entire volttron instance because all markets are implemented by a single market service agent for

2.6. Agent Development 63

VOLTTRON Documentation, Release 8.1.3

each volttron instance. The second argument describes the role that this agent wished to play in this market. The value
is imported as:

from volttron.platform.agent.base_market_agent.buy_sell import BUYER, SELLER

Arguments 3-7 are callback methods that the agent may implement as needed for the agent’s participation in the
market.

The Reservation Callback

reservation_callback(self, timestamp, market_name, buyer_seller)

This method is called when it is time to reserve a slot in the market for the current market cycle. If this callback is not
registered a slot is reserved for every market cycle. If this callback is registered it is called for each market cycle and
returns True if a reservation is wanted and False if a reservation is not wanted.

The name of the market and the roll being played are provided so that a single callback can handle several markets. If
the agent joins three markets with the same reservation callback routine it will be called three times with the appropriate
market name and buyer/seller role for each call. The MeterAgent example illustrates the use of this of this method and
how to determine whether to make an offer when the reservation is refused.

A market will only exist if there are reservations for at least one buyer or one seller. If the market fails to achieve the
minimum participation the error callback will be called. If only buyers or only sellers make reservations any offers
will be rejected with the reason that the market has not formed.

The Offer Callback

offer_callback(self, timestamp, market_name, buyer_seller)

If the agent has made a reservation for the market and a callback has been registered this callback is called. If the agent
wishes to make an offer at this time the market agent computes either a supply or a demand curve as appropriate and
offers the curve to the market service by calling the make_offer method.

The name of the market and the roll being played are provided so that a single callback can handle several markets.

For each market joined either an offer callback, an aggregate callback, or a cleared price callback is required.

The Aggregate Callback

aggregate_callback(self, timestamp, market_name, buyer_seller, aggregate_curve)

When a market has received all its buy offers it calculates an aggregate demand curve. When the market receives all
of its sell offers it calculates an aggregate supply curve. This callback delivers the aggregate curve to the market agent
whenever the appropriate curve becomes available.

If the market agent wants to use this opportunity to make an offer on this or another market it would do that using the
make_offer method.

• If the aggregate demand curve is received, only a supply offer may be submitted for this market

• If the aggregate supply curve is received, only make a demand offer will be accepted by this market.

You may use this information to make an offer on another market; The example AHUAgent does this. The name of
the market and the roll being played are provided so that a single callback can handle several markets.

64 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

For each market joined, either an offer callback, an aggregate callback, or a cleared price callback is required.

The Price Callback

price_callback(self, timestamp, market_name, buyer_seller, price, quantity)

This callback is called when the market clears. If the market agent wants to use this opportunity to make an offer on
this or another market it would do that using the make_offer method.

Once the market has cleared you can not make an offer on that market. Again, you may use this information to make an
offer on another market as in the example AHUAgent. The name of the market and the roll being played are provided
so that a single callback can handle several markets.

For each market joined either an offer callback, an aggregate callback, or a cleared price callback is required.

The Error Callback

error_callback(self, timestamp, market_name, buyer_seller, error_code, error_message,
→˓aux)

This callback is called when an error occurs isn’t in response to an RPC call. The error codes are documented in:

from volttron.platform.agent.base_market_agent.error_codes import NOT_FORMED, SHORT_
→˓OFFERS, BAD_STATE, NO_INTERSECT

• NOT_FORMED - If a market fails to form this will be called at the offer time.

• SHORT_OFFERS - If the market doesn’t receive all its offers this will be called while clearing the market.

• BAD_STATE - This indicates a bad state transition while clearing the market and should never happen, but may
be called while clearing the market.

• NO_INTERSECT - If the market fails to clear this would be called while clearing the market and an auxillary
array will be included. The auxillary array contains comparisons between the supply max, supply min, demand
max and demand min. They allow the market client to make determinations about why the curves did not
intersect that may be useful.

The error callback is optional, but highly recommended.

Example Agents

Some example agents are included with the platform to help explore its features. These agents represent concrete
implementations of important agent sub-types such as Historians or Weather Agents, or demonstrate a development
pattern for accomplishing common tasks.

More complex agents contributed by other researchers can also be found in the examples directory. It is recommended
that developers new to VOLTTRON understand the example agents first before diving into the other agents.

2.6. Agent Development 65

VOLTTRON Documentation, Release 8.1.3

C Agent

The C Agent uses the ctypes module to load a shared object into memory so its functions can be called from Python.

There are two versions of the C Agent:

• A standard agent that can be installed with the agent installation process

• A driver which can can be controlled using the Platform Driver Agent

Building the Shared Object

The shared object library must be built before installing C Agent examples. Running make in the C Agent source
directory will compile the provided C code using the position independent flag, a requirement for creating shared
objects.

Files created by make can be removed by running

make clean

Agent Installation

After building the shared object library the standard agent can be installed with the scripts/install-agent.
py script:

python scripts/install-agent.py -s examples/CAgent

The other is a driver interface for the Platform Driver. To use the C driver, the driver code file must be moved into the
Platform Driver’s interfaces directory:

examples/CAgent/c_agent/driver/cdriver -> services/core/PlatformDriverAgent/
→˓platform_driver/interfaces

The C Driver configuration tells the interface where to find the shared object. An example is available in the C Agent’s
driver directory.

Config Actuation Example

The Config Actuation example attempts to set points on a device when files are added or updated in its configuration
store.

Configuration

The name of a configuration file must match the name of the device to be actuated. The configuration file is a JSON
dictionary of point name and value pairs. Any number of points on the device can be listed in the config.

{
"point0": value,
"point1": value

}

66 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

CSV Historian

The CSV Historian Agent is an example historian agent that writes device data to the CSV file specified in the config-
uration file.

Explanation of CSV Historian

The Utils module of the VOLTTRON platform includes functions for setting up global logging for the platform:

utils.setup_logging()
_log = logging.getLogger(__name__)

The historian function is called by utils.vip_main when the agents is started (see below). utils.
vip_main expects a callable object that returns an instance of an Agent. This method of dealing with a configuration
file and instantiating an Agent is common practice.

def historian(config_path, **kwargs):
"""
This method is called by the main method to parse
the passed config file or configuration dictionary object, validate the
configuration entries, and create an instance of the CSVHistorian class
:param config_path: could be a path to a configuration file or can be a

→˓dictionary object
:param kwargs: additional keyword arguments if any
:return: an instance of :py:class:`CSVHistorian`
"""
if isinstance(config_path, dict):

config_dict = config_path
else:

config_dict = utils.load_config(config_path)

output_path = config_dict.get("output", "historian_output.csv")

return CSVHistorian(output_path=output_path, **kwargs)

All historians must inherit from BaseHistorian. The BaseHistorian class handles the capturing and caching of all
device, logging, analysis, and record data published to the message bus.

class CSVHistorian(BaseHistorian):

The Base Historian creates a separate thread to handle publishing data to the data store. In this thread the Base
Historian calls two methods on the created historian, historian_setup and publish_to_historian.

The Base Historian created the new thread in it’s __init__ method. This means that any instance variables must
assigned in __init__ before calling the Base Historian’s __init__ method.

def __init__(self, output_path="", **kwargs):
self.output_path = output_path
self.csv_dict = None
self.csv_file = None
self.default_dir = "./data"
super(CSVHistorian, self).__init__(**kwargs)

Historian setup is called shortly after the new thread starts. This is where a Historian sets up a connect the first time.
In our example we create the Dictwriter object that we will use to create and add lines to the CSV file.

2.6. Agent Development 67

VOLTTRON Documentation, Release 8.1.3

We keep a reference to the file object so that we may flush its contents to disk after writing the header and after we
have written new data to the file.

The CSV file we create will have 4 columns: timestamp, source, topic, and value.

def historian_setup(self):
if the current file doesn't exist, or the path provided doesn't include a

→˓directory, use the default dir
in <agent dir>/data
if not (os.path.isfile(self.output_path) or os.path.dirname(self.output_

→˓path)):
if not os.path.isdir(self.default_dir):

os.mkdir(self.default_dir)
self.output_path = os.path.join(self.default_dir, self.output_path)

self.csv_file = open(self.output_path, "w")

self.csv_dict = csv.DictWriter(self.csv_file, fieldnames=["timestamp", "source
→˓", "topic", "value"])

self.csv_dict.writeheader()
self.csv_file.flush()

publish_to_historian is called when data is ready to be published. It is passed a list of dictionaries. Each
dictionary contains a record of a single value that was published to the message bus.

The dictionary takes the form:

{
'_id': 1,
'timestamp': timestamp1.replace(tzinfo=pytz.UTC), #Timestamp in UTC
'source': 'scrape', #Source of the data point.
'topic': "pnnl/isb1/hvac1/thermostat", #Topic that published to without prefix.
'value': 73.0, #Value that was published
'meta': {"units": "F", "tz": "UTC", "type": "float"} #Meta data published with

→˓the topic
}

Once the data is written to the historian we call self.report_all_handled() to inform the BaseHistorian that
all data we received was successfully published and can be removed from the cache. Then we can flush the file to
ensure that the data is written to disk.

def publish_to_historian(self, to_publish_list):
for record in to_publish_list:

row = dict()
row["timestamp"] = record["timestamp"]

row["source"] = record["source"]
row["topic"] = record["topic"]
row["value"] = record["value"]

self.csv_dict.writerow(row)

self.report_all_handled()
self.csv_file.flush()

This agent does not support the Historian Query interface.

68 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Agent Testing

The CSV Historian can be tested by running the included launch_my_historian.sh script.

Agent Installation

This Agent may be installed on the platform using the standard method.

Data Publisher

This is a simple agent that plays back data either from the config store or a CSV to the configured topic. It can also
provide basic emulation of the Actuator Agent for testing agents that expect to be able to set points on a device in
response to device publishes.

Installation notes

In order to simulate the actuator you must install the agent with the VIP Identity of platform.actuator. If an an actuator
is already installed on the platform, this will cause VIP identity conflicts. To install the agent, the agent install script
can be used:

python scripts/install-agent.py -s examples/DataPublisher -c <config file>

Configuration

{
basetopic can be devices, analysis, or custom base topic
"basepath": "devices/PNNL/ISB1",

use_timestamp uses the included in the input_data if present.
Currently the column must be named `Timestamp`.
"use_timestamp": true,

Only publish data at most once every max_data_frequency seconds.
Extra data is skipped.
The time windows are normalized from midnight.
ie 900 will publish one value for every 15 minute window starting from
midnight of when the agent was started.
Only used if timestamp in input file is used.
"max_data_frequency": 900,

The meta data published with the device data is generated
by matching point names to the unittype_map.
"unittype_map": {

".*Temperature": "Farenheit",
".*SetPoint": "Farenheit",
"OutdoorDamperSignal": "On/Off",
"SupplyFanStatus": "On/Off",
"CoolingCall": "On/Off",
"SupplyFanSpeed": "RPM",
"Damper*.": "On/Off",
"Heating*.": "On/Off",

(continues on next page)

2.6. Agent Development 69

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"DuctStatic*.": "On/Off"
},
Path to input CSV file.
May also be a list of records or reference to a CSV file in the config store.
Large CSV files should be referenced by file name and not
stored in the config store.
"input_data": "econ_test2.csv",
Publish interval in seconds
"publish_interval": 1,

Tell the playback to maintain the location a the file in the config store.
Playback will be resumed from this point
at agent startup even if this setting is changed to false before restarting.
Saves the current line in line_marker in the DataPublishers's config store
as plain text.
default false
"remember_playback": true,

Start playback from 0 even if the line_marker configuration is set a non 0
→˓value.

default false
"reset_playback": false,

Repeat data from the start if this flag is true.
Useful for data that does not include a timestamp and is played back in real

→˓time.
"replay_data": false

}

CSV File Format

The CSV file must have a single header line. The column names are appended to the basepath setting in the config-
uration file and the resulting topic is normalized to remove extra` / characters. The values are all treated as floating
point values and converted accordingly.

The corresponding device for each point is determined and the values are combined together to create an all topic
publish for each device.

If a Timestamp column is in the input it may be used to set the timestamp in the header of the published data.

Table 1: Publisher Data
Timestamp centrifugal_chiller/OutsideAirTemperature centrifugal_chiller/DischargeAirTemperatureSetPoint fuel_cell/DischargeAirTemperature fuel_cell/CompressorStatus absorption_chiller/SupplyFanSpeed absorption_chiller/SupplyFanStatus boiler/DuctStaticPressureSetPoint boiler/DuctStaticPressure
2012/05/19 05:07:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:08:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:09:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:10:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:11:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:12:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:13:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:14:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:15:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:16:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:17:00 0 56 0 0 75 1 1.4 1.38

continues on next page

70 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Table 1 – continued from previous page
Timestamp centrifugal_chiller/OutsideAirTemperature centrifugal_chiller/DischargeAirTemperatureSetPoint fuel_cell/DischargeAirTemperature fuel_cell/CompressorStatus absorption_chiller/SupplyFanSpeed absorption_chiller/SupplyFanStatus boiler/DuctStaticPressureSetPoint boiler/DuctStaticPressure
2012/05/19 05:18:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:19:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:20:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:21:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:22:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:23:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:24:00 0 56 58.77 0 75 1 1.4 1.38
2012/05/19 05:25:00 48.78 56 58.87 0 75 1 1.4 1.38
2012/05/19 05:26:00 48.88 56 58.95 0 75 1 1.4 1.38
2012/05/19 05:27:00 48.93 56 58.91 0 75 1 1.4 1.38
2012/05/19 05:28:00 48.95 56 58.81 0 75 1 1.4 1.38
2012/05/19 05:29:00 48.92 56 58.73 0 75 1 1.4 1.38
2012/05/19 05:30:00 48.88 56 58.69 0 75 1 1.4 1.38
2012/05/19 05:31:00 48.88 56 58.81 0 75 1 1.4 1.38
2012/05/19 05:32:00 48.99 56 58.91 0 75 1 1.4 1.38
2012/05/19 05:33:00 49.09 56 58.85 0 75 1 1.4 1.38
2012/05/19 05:34:00 49.11 56 58.79 0 75 1 1.4 1.38
2012/05/19 05:35:00 49.07 56 58.71 0 75 1 1.4 1.38
2012/05/19 05:36:00 49.05 56 58.77 0 75 1 1.4 1.38
2012/05/19 05:37:00 49.09 56 58.87 0 75 1 1.4 1.38
2012/05/19 05:38:00 49.13 56 58.85 0 75 1 1.4 1.38
2012/05/19 05:39:00 49.09 56 58.81 0 75 1 1.4 1.38
2012/05/19 05:40:00 49.01 56 58.75 0 75 1 1.4 1.38
2012/05/19 05:41:00 48.92 56 58.71 0 75 1 1.4 1.38
2012/05/19 05:42:00 48.86 56 58.77 0 75 1 1.4 1.38
2012/05/19 05:43:00 48.92 56 58.87 0 75 1 1.4 1.38
2012/05/19 05:44:00 48.95 56 58.79 0 75 1 1.4 1.38
2012/05/19 05:45:00 48.92 56 58.69 0 75 1 1.4 1.38
2012/05/19 05:46:00 48.86 56 58.5 0 75 1 1.4 1.38
2012/05/19 05:47:00 48.78 56 58.34 0 75 1 1.4 1.38
2012/05/19 05:48:00 48.69 56 58.36 0 75 1 1.4 1.38
2012/05/19 05:49:00 48.65 56 58.46 0 75 1 1.4 1.38
2012/05/19 05:50:00 48.65 56 58.56 0 75 1 1.4 1.38
2012/05/19 05:51:00 48.65 56 58.48 0 75 1 1.4 1.38
2012/05/19 05:52:00 48.61 56 58.36 0 75 1 1.4 1.38
2012/05/19 05:53:00 48.59 56 58.21 0 75 1 1.4 1.38
2012/05/19 05:54:00 48.55 56 58.25 0 75 1 1.4 1.38
2012/05/19 05:55:00 48.63 56 58.42 0 75 1 1.4 1.38
2012/05/19 05:56:00 48.76 56 58.56 0 75 1 1.4 1.38
2012/05/19 05:57:00 48.95 56 58.71 0 75 1 1.4 1.38
2012/05/19 05:58:00 49.24 56 58.83 0 75 1 1.4 1.38
2012/05/19 05:59:00 49.54 56 58.93 0 75 1 1.4 1.38
2012/05/19 06:00:00 49.71 56 58.95 0 75 1 1.4 1.38
2012/05/19 06:01:00 49.79 56 59.07 0 75 1 1.4 1.38
2012/05/19 06:02:00 49.94 56 59.17 0 75 1 1.4 1.38
2012/05/19 06:03:00 50.13 56 59.25 0 75 1 1.4 1.38
2012/05/19 06:04:00 50.18 56 59.15 0 75 1 1.4 1.38
2012/05/19 06:05:00 50.15 56 59.04 0 75 1 1.4 1.38

2.6. Agent Development 71

VOLTTRON Documentation, Release 8.1.3

DDS Agent

The DDS example agent demonstrates VOLTTRON’s capacity to be extended with tools and libraries not used in the
core codebase. DDS is a messaging platform that implements a publish-subscribe system for well defined data types.

This agent example is meant to be run the command line, as opposed to installing it like other agents. From the
examples/DDSAgent directory, the command to start it is:

$ AGENT_CONFIG=config python -m ddsagent.agent

The rticonnextdds-connector library needs to be installed for this example to function properly. We’ll retrieve it from
GitHub since it is not available through Pip. Download the source with:

$ wget https://github.com/rticommunity/rticonnextdds-connector/archive/master.zip

and unpack it in examples/DDSAgent/ddsagent with:

$ unzip master.zip

The demo_publish() output can be viewed with the rtishapesdemo available from RTI.

Configuration

Each data type that this agent will have access to needs to have an XML document defining its structure. The XML
will include a participant name, publisher name, and a subscriber name. These are recorded in the configuration with
the location on disk of the XML file.

{
"square": {

"participant_name": "MyParticipantLibrary::Zero",
"xml_config_path": "./ddsagent/rticonnextdds-connector-master/examples/python/

→˓ShapeExample.xml",
"publisher_name": "MyPublisher::MySquareWriter",
"subscriber_name": "MySubscriber::MySquareReader"

}
}

Listener Agent

The ListenerAgent subscribes to all topics and is useful for testing that agents being developed are publishing correctly.
It also provides a template for building other agents as it expresses the requirements of a platform agent.

Explanation of Listener Agent Code

Use utils to setup logging, which we’ll use later.

utils.setup_logging()
_log = logging.getLogger(__name__)

The Listener agent extends (inherits from) the Agent class for its default functionality such as responding to platform
commands:

72 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

class ListenerAgent(Agent):
'''
Listens to everything and publishes a heartbeat according to the
heartbeat period specified in the settings module.
'''

After the class definition, the Listener agent reads the configuration file, extracts the configuration parameters, and
initializes any Listener agent instance variable. This is done through the agent’s __init__ method:

def __init__(self, config_path, **kwargs):
super(ListenerAgent, self).__init__(**kwargs)
self.config = utils.load_config(config_path)
self._agent_id = self.config.get('agentid', DEFAULT_AGENTID)
log_level = self.config.get('log-level', 'INFO')
if log_level == 'ERROR':

self._logfn = _log.error
elif log_level == 'WARN':

self._logfn = _log.warn
elif log_level == 'DEBUG':

self._logfn = _log.debug
else:

self._logfn = _log.info

Next, the Listener agent will run its setup method. This method is tagged to run after the agent is initialized by the
decorator @Core.receiver('onsetup'). This method accesses the configuration parameters, logs a message
to the platform log, and sets the agent ID.

@Core.receiver('onsetup')
def onsetup(self, sender, **kwargs):

Demonstrate accessing a value from the config file
_log.info(self.config.get('message', DEFAULT_MESSAGE))
self._agent_id = self.config.get('agentid')

The Listener agent subscribes to all topics published on the message bus. Publish and sub-
scribe interactions with the message bus are handled by the PubSub module located at ~/volt-
tron/volttron/platform/vip/agent/subsystems/pubsub.py.

The Listener agent uses an empty string to subscribe to all messages published. This is done in a decorator for
simplifying subscriptions.

@PubSub.subscribe('pubsub', '')
def on_match(self, peer, sender, bus, topic, headers, message):

'''Use match_all to receive all messages and print them out.'''
if sender == 'pubsub.compat':

message = compat.unpack_legacy_message(headers, message)
self._logfn(
"Peer: %r, Sender: %r:, Bus: %r, Topic: %r, Headers: %r, "
"Message: %r", peer, sender, bus, topic, headers, message)

2.6. Agent Development 73

http://en.wikipedia.org/wiki/Python_syntax_and_semantics#Decorators

VOLTTRON Documentation, Release 8.1.3

MatLab Agent

The MatLab agent and Matlab Standalone Agent together are example agents that allow for MatLab scripts to be run
in a Windows environment and interact with the VOLTTRON platform running in a Linux environment.

The MatLab agent takes advantage of the config store to dynamically send scripts and commandline arguments across
the message bus to one or more Standalone Agents in Windows. The Standalone Agent then executes the requested
script and arguments, and sends back the results to the MatLab agent.

Overview of Matlab Agents

There are multiple components that are used for the MatLab agent. This diagram is to represent the components that
are connected to the MatLab Agents. In this example, the scripts involved are based on the default settings in the
MatLab Agent.

MatLabAgentV2

MatLabAgentV2 publishes the name of a python script along with any command line arguments that are needed for
the script to the appropriate topic. The agent then listens on another topic, and whenever anything is published on
this topic, it stores the message in the log file chosen when the VOLTTRON instance is started. If there are multiple
standalone agents, the agent can send a a script to each of them, along with their own set of command line arguments.
In this case, each script name and set of command line arguments should be sent to separate subtopics. This is done
so that no matter how many standalone agents are in use, MatLabAgentV2 will record all of their responses.

class MatlabAgentV2(Agent):

def __init__(self,script_names=[], script_args=[], topics_to_matlab=[],
topics_to_volttron=None,**kwargs):

(continues on next page)

74 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

super(MatlabAgentV2, self).__init__(**kwargs)
_log.debug("vip_identity: " + self.core.identity)

self.script_names = script_names
self.script_args = script_args
self.topics_to_matlab = topics_to_matlab
self.topics_to_volttron = topics_to_volttron
self.default_config = {"script_names": script_names,

"script_args": script_args,
"topics_to_matlab": topics_to_matlab,
"topics_to_volttron": topics_to_volttron}

#Set a default configuration to ensure that self.configure is called
→˓immediately to setup

#the agent.
self.vip.config.set_default("config", self.default_config)
#Hook self.configure up to changes to the configuration file "config".
self.vip.config.subscribe(self.configure, actions=["NEW", "UPDATE"], pattern=

→˓"config")

def configure(self, config_name, action, contents):
"""
Called after the Agent has connected to the message bus.
If a configuration exists at startup this will be
called before onstart.
Is called every time the configuration in the store changes.
"""
config = self.default_config.copy()
config.update(contents)

_log.debug("Configuring Agent")

try:
script_names = config["script_names"]
script_args = config["script_args"]
topics_to_matlab = config["topics_to_matlab"]
topics_to_volttron = config["topics_to_volttron"]

except ValueError as e:
_log.error("ERROR PROCESSING CONFIGURATION: {}".format(e))
return

self.script_names = script_names
self.script_args = script_args
self.topics_to_matlab = topics_to_matlab
self.topics_to_volttron = topics_to_volttron
self._create_subscriptions(self.topics_to_volttron)

for script in range(len(self.script_names)):
cmd_args = ""
for x in range(len(self.script_args[script])):

cmd_args += ",{}".format(self.script_args[script][x])
_log.debug("Publishing on: {}".format(self.topics_to_matlab[script]))
self.vip.pubsub.publish('pubsub', topic=self.topics_to_matlab[script],

message="{}{}".format(self.script_names[script],cmd_args))
_log.debug("Sending message: {}{}".format(self.script_names[script],cmd_

→˓args)) (continues on next page)

2.6. Agent Development 75

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

_log.debug("Agent Configured!")

For this example, the agent is publishing to the matlab/to_matlab/1 topic, and is listening to the matlab/to_volttron
topic. It is sending the script name testScript.py with the argument 20. These are the default values found in the agent,
if no configuration is loaded.

script_names = config.get('script_names', ["testScript.py"])
script_args = config.get('script_args', [["20"]])
topics_to_matlab = config.get('topics_to_matlab', ["matlab/to_matlab/1"])
topics_to_volttron = config.get('topics_to_volttron', "matlab/to_volttron/")

StandAloneMatLab.py

The StandAloneMatLab.py script is a standalone agent designed to be able to run in a Windows environment. Its
purpose is to listen to a topic, and when something is published to this topic, it takes the message, and sends it to the
script_runner function in scriptwrapper.py. This function processes the inputs, and then the output is published
to another topic.

class StandAloneMatLab(Agent):
'''The standalone version of the MatLab Agent'''

@PubSub.subscribe('pubsub', _topics['volttron_to_matlab'])
def print_message(self, peer, sender, bus, topic, headers, message):

print('The Message is: ' + str(message))
messageOut = script_runner(message)
self.vip.pubsub.publish('pubsub', _topics['matlab_to_volttron'],

→˓message=messageOut)

settings.py

The topic to listen to and the topic to publish to are defined in settings.py, along with the information needed to connect
the Standalone Agent to the primary VOLTTRON instance. These should be the same topics that the MatLabAgentV2
is publishing and listening to, so that the communication can be successful. To connect the Standalone Agent to the
primary VOLTTRON instance, the IP address and port of the instance are needed, along with the server key.

_topics = {
'volttron_to_matlab': 'matlab/to_matlab/1',
'matlab_to_volttron': 'matlab/to_volttron/1'
}

The parameters dictionary is used to populate the agent's
remote vip address.
_params = {

The root of the address.
Note:
1. volttron instance should be configured to use tcp. use command vcfg
to configure
'vip_address': 'tcp://192.168.56.101',
'port': 22916,

public and secret key for the standalone_matlab agent.

(continues on next page)

76 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

These can be created using the command: volttron-ctl auth keypair
public key should also be added to the volttron instance auth
configuration to enable standalone agent access to volttron instance. Use
command 'vctl auth add' Provide this agent's public key when prompted
for credential.

'agent_public': 'dpu13XKPvGB3XJNVUusCNn2U0kIWcuyDIP5J8mAgBQ0',
'agent_secret': 'Hlya-6BvfUot5USdeDHZ8eksDkWgEEHABs1SELmQhMs',

Public server key from the remote platform. This can be
obtained using the command:
volttron-ctl auth serverkey
'server_key': 'QTIzrRGQ0-b-37AbEYDuMA0l2ETrythM2V1ac0v9CTA'

}

def remote_url():
return "{vip_address}:{port}?serverkey={server_key}" \

"&publickey={agent_public}&" \
"secretkey={agent_secret}".format(**_params)

The primary VOLTTRON instance will then need to add the public key from the Standalone Agent. In this exam-
ple, the topic that the Standalone Agent is listening to is matlab/to_matlab/1, and the topic it is publishing to is
matlab/to_volttron/1.

scriptwrapper.py

Scriptwrapper.py contains the script_runner function. The purpose of this function is to take in a string that contains
a Python script and command line arguments separated by commas. This string is parsed and passed to the system
arguments, which allows the script sent to the function to use the command line arguments. The function then redirects
standard output to a StringIO file object, and then attempts to execute the script. If there are any errors with the script,
the error that is generated is returned to the standalone agent. Otherwise, the file object stores the output from the
script, is converted to a string, and is sent to the standalone agent. In this example, the script that is to be run is
testScript.py.

#Script to take in a string, run the program,
#and output the results of the command as a string.

import time
import sys
from io import StringIO

def script_runner(message):
original = sys.stdout

print(message)
print(sys.argv)

sys.argv = message.split(',')
print(sys.argv)

try:
out = StringIO()
sys.stdout = out
exec(open(sys.argv[0]).read())

(continues on next page)

2.6. Agent Development 77

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

sys.stdout = original
return out.getvalue()

except Exception as ex:
out = str(ex)
sys.stdout = original
return out

Note: The script that is to be run needs to be in the same folder as the agent and the scriptwrapper.py script. The
script_runner function needs to be edited if it is going to call a script at a different location.

testScript.py

This is a very simple test script designed to demonstrate the calling of a MatLab function from within Python. First it
initializes the MatLab engine for Python. It then takes in a single command line argument, and passes it to the MatLab
function testPy.m. If no arguments are sent, it will send 0 to the testPy.m function. It then prints the result of the
testPy.m function. In this case, since standard output is being redirected to a file object, this is how the result is passed
from this function to the Standalone Agent.

import matlab.engine
import sys

eng = matlab.engine.start_matlab()

if len(sys.argv) == 2:
result = eng.testPy(float(sys.argv[1]))

else:
result = eng.testPy(0.0)

print(result)

testPy.m

This MatLab function is a very simple example, designed to show a function that takes an argument, and produces an
array as the output. The input argument is added to each element in the array, and the entire array is then returned.

function out = testPy(z)
x = 1:100
out = x + z
end

78 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Setup on Linux

1. Setup and run VOLTTRON from develop branch using instructions here.

2. Configure volttron instance using the vcfg command. When prompted for the vip address use tcp://<ip
address of the linux machine>. This is necessary to enable volttron communication with external
processes.

Note: If you are running VOLTTRON from within VirtualBox, jit would be good to set one of your adapters as
a Host-only adapter. This can be done within the VM’s settings, under the Network section. Once this is done,
use this IP for the VIP address.

3. Update the configuration for MatLabAgent_v2 at <volttron source dir>/example/MatLabAgent_v2/config.

The configuration file for the MatLab agent has four variables.

1. script_names

2. script_args

3. topics_to_matlab

4. topics_to_volttron

An example config file included with the folder.

{
VOLTTRON config files are JSON with support for python style comments.
"script_names": ["testScript.py"],
"script_args": [["20"]],
"topics_to_matlab": ["matlab/to_matlab/1"],
"topics_to_volttron": "matlab/to_volttron/"

}

To edit the configuration, the format should be as follows:

{
"script_names": ["script1.py", "script2.py", "..."],
"script_args": [["arg1","arg2"], ["arg1"], ["..."]],
"topics_to_matlab": ["matlab/to_matlab/1", "matlab/to_matlab/2", "..."],
"topics_to_volttron": "matlab/to_volttron/"

}

The config requires that each script name lines up with a set of commandline arguments and a topic.
A commandline argument must be included, even if it is not used. The placement of brackets are
important, even when only communicating with one standalone agent.

For example, if only one standalone agent is used, and no command line arguments are in place, the
config file may look like this.

{
"script_names": ["testScript.py"],
"script_args": [["0"]],
"topics_to_matlab": ["matlab/to_matlab/1"],
"topics_to_volttron": "matlab/to_volttron/"

}

4. Install MatLabAgent_v2 and start agent (from volttron root directory)

2.6. Agent Development 79

VOLTTRON Documentation, Release 8.1.3

python ./scripts/install-agent.py -s examples/MatLabAgent_v2 --start

Note: The MatLabAgent_v2 publishes the command to be run to the message bus only on start
or on a configuration update. Once we configure the standalone_matlab agent on the Windows
machine, we will send a configuration update to the running MatLabAgent_v2. The configuration
would contain the topics to which the Standalone Agent is listening to and will be publishing result
to.

See also:

The MatLab agent uses the configuration store to dynamically change inputs. More information on
the config store and how it used can be found here.

• VOLTTRON Configuration Store

• Agent Configuration Store

• Agent Configuration Store Interface

5. Run the below command and make a note of the server key. This is required for configuring the stand alone
agent on Windows. (This is run on the linux machine)

vctl auth serverkey

Setup on Windows

Install pre-requisites

1. Install Python3.6 64-bit from the Python website.

2. Install the MatLab engine from MathWorks.

Warning: The MatLab engine for Python only supports certain version of Python depending on the version
of MatLab used. Please check here to see if the current version of MatLab supports your version of Python.

Note: At this time, you may want to verify that you are able to communicate with your Linux machine
across your network. The simplest method would be to open up the command terminal and use ping <ip
of Linux machine>, and telnet <ip of Linux machine> <port of volttron instance,
default port is 22916>. Please make sure that the port is opened for outside access.

80 Chapter 2. Features

https://www.python.org/downloads/windows/
https://www.mathworks.com/help/matlab/matlab_external/install-the-matlab-engine-for-python.html
https://www.mathworks.com/help/matlab/matlab-engine-for-python.html

VOLTTRON Documentation, Release 8.1.3

Install Standalone MatLab Agent

The standalone MatLab agent is designed to be usable in a Windows environment.

Warning: VOLTTRON is not designed to run in a Windows environment. Outside of cases where it is stated to
be usable in a Windows environment, it should be assumed that it will NOT function as expected.

1. Download VOLTTRON

Download the VOLTTRON develop repository from Github. Download the zip from GitHub.

Once the zipped file has been downloaded, go to your Downloads folder, right-click on the file, and
select Extract All. . .

2.6. Agent Development 81

https://github.com/VOLTTRON/volttron/tree/develop

VOLTTRON Documentation, Release 8.1.3

Choose a location for the extracted folder, and select “Extract”

2. Setup the PYTHONPATH

Open the Windows explorer, and navigate to Edit environment variables for your account.

82 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Select “New”

2.6. Agent Development 83

VOLTTRON Documentation, Release 8.1.3

For “Variable name” enter: PYTHONPATH For “Variable value” either browse to your VOLTTRON
installation, or enter in the path to your VOLTTRON installation.

Select OK twice.

3. Set Python version in MatLab

Open your MatLab application. Run the command:

pyversion

This should print the path to Python2.7. If you have multiple versions of python on your machine
and pyversion points to a different version of Python, use:

pyversion /path/to/python.exe

to set the appropriate version of python for your system.

For example, to use python 3.6 with MatLab:

pyversion C:\Python36\python.exe

4. Set up the environment.

Open up the command prompt

84 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Navigate to your VOLTTRON installation

cd \Your\directory\path\to\volttron-develop

Use pip to install and setup dependencies.

pip install -r examples\StandAloneMatLab\requirements.txt

pip install -e .

Note: If you get the error doing the second step because of an already installed volttron from a
different directory, manually delete the volttron-egg. link file from your <python path>\Lib\site-

2.6. Agent Development 85

VOLTTRON Documentation, Release 8.1.3

packages directory (for example:

del C:\\Python27\\lib\\site-packages\\volttron-egg.link

and re-run the second command

5. Configure the agent

The configuration settings for the standalone agent are in setting.py (located in volttron-
develop\examples\StandAloneMatLab\)

settings.py

• volttron_to_matlab needs to be set to the topic that will send your script and command line
arguments to your stand alone agent. This was defined in the config.

• matlab_to_volttron needs to be set to the topic that will send your script’s output back to your
volttron platform. This was defined in config.

• vip_address needs to be set to the address of your volttron instance

• port needs to be set to the port of your volttron instance

• server_key needs to be set to the public server key of your primary volttron platform. This can
be obtained from the primary volttron platform using vctl auth serverkey (VOLTTRON
must be running to use this command.)

It is possible to have multiple standalone agents running. In this case, copy the StandAloneMatLab
folder, and make the necessary changes to the new settings.py file. Unless it is connecting to a
separate VOLTTRON instance, you should only need to change the volttron_to_matlab setting.

Note: It is recommended that you generate a new “agent_public” and “agent_private” key for your
standalone agent. This can be done using the vctl auth keypair command on your primary
VOLTTRON platform on Linux. If you plan to use multiple standalone agents, they will each need
their own keypair.

6. Add standalone agent key to VOLTTRON platform

• Copy the public key from settings.py in the StandAloneMatLab folder.

• While the primary VOLTTRON platform is running on the linux machine, add the agent public
key using the vctl auth command on the Linux machine. This will make VOLTTRON
platform allow connections from the standalone agent

vctl auth add --credentials <standalone agent public key>

7. Run standalone agent

At this point, the agent is ready to run. To use the agent, navigate to the example folder and use
python to start the agent. The agent will then wait for a message to be published to the selected topic
by the MatLab agent.

cd examples\StandAloneMatLab\

python standalone_matlab.py

The output should be similar to this:

86 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

2019-08-01 10:42:47,592 volttron.platform.vip.agent.core DEBUG: identity:
→˓standalone_matlab
2019-08-01 10:42:47,592 volttron.platform.vip.agent.core DEBUG: agent_
→˓uuid: None
2019-08-01 10:42:47,594 volttron.platform.vip.agent.core DEBUG:
→˓serverkey: None
2019-08-01 10:42:47,596 volttron.platform.vip.agent.core DEBUG: AGENT
→˓RUNNING on ZMQ Core standalone_matlab
2019-08-01 10:42:47,598 volttron.platform.vip.zmq_connection DEBUG: ZMQ
→˓connection standalone_matlab
2019-08-01 10:42:47,634 volttron.platform.vip.agent.core INFO: Connected
→˓to platform: router: ebae9efa-5e8f-49e3-95a0-2020ddff9e8a version: 1.0
→˓identity: standalone_matlab
2019-08-01 10:42:47,634 volttron.platform.vip.agent.core DEBUG: Running
→˓onstart methods.

Note: If you have Python3 as your default Python run the command python -2
standalone_matlab.py

8. On the Linux machine configure the Matlab Agent to publish commands to the topic standalone agent is listening
to. To load a new configuration or to change the current configuration enter

vctl config store <agent vip identity> config <path\to\configfile>

Whenever there is a change in the configuration in the config store, or whenever the agent starts, the
MatLab Agent sends the configured command to the topic configured. As long as the standalone agent
has been started and is listening to the appropriate topic, the output in the log should look similar to this:

2019-08-01 10:43:18,925 (matlab_agentV2agent-0.3 3539) matlab_agentV2.agent
→˓DEBUG: Configuring Agent
2019-08-01 10:43:18,926 (matlab_agentV2agent-0.3 3539) matlab_agentV2.agent
→˓DEBUG: Publishing on: matlab/to_matlab/1
2019-08-01 10:43:18,926 (matlab_agentV2agent-0.3 3539) matlab_agentV2.agent
→˓DEBUG: Sending message: testScript2.py,20
2019-08-01 10:43:18,926 (matlab_agentV2agent-0.3 3539) matlab_agentV2.agent
→˓DEBUG: Agent Configured!
2019-08-01 10:43:18,979 (matlab_agentV2agent-0.3 3539) matlab_agentV2.agent
→˓INFO: Agent: matlab/to_volttron/1
Message:
'20'

Once the matlab agent publishes the message (in the above case, “testScript2.py,20”) on the windows
command prompt running the standalone agent, you should see the message that was received by the
standalone agent.

2019-08-01 10:42:47,671 volttron.platform.vip.agent.subsystems.configstore
→˓DEBUG: Processing callbacks for affected files: {}
The Message is: testScript2.py,20

Note: If MatLabAgent_v2 has been installed and started, and you have not started the standalone_matlab
agent, you will need to either restart the matlab_agentV2, or make a change to the configuration in the
config store to send command to the topic standalone agent is actively listening to.

2.6. Agent Development 87

VOLTTRON Documentation, Release 8.1.3

Node Red Example

Node Red is a visual programming language wherein users connect small units of functionality “nodes” to create
“flows”.

There are two example nodes that allow communication between Node-Red and VOLTTRON. One node reads sub-
scribes to messages on the VOLTTRON message bus and the other publishes to it.

Dependencies

The example nodes depend on python-shell to be installed and available to the Node Red environment.

Installation

Copy all files from volttron/examples/NodeRed to your ~/.node-red/nodes directory. ~/.node-red is the default direc-
tory for Node Red files. If you have set a different directory use that instead.

Set the variables at the beginning of the volttron.js file to be a valid VOLTTRON environment, VOLTTRON home,
and Python PATH.

Valid CURVE keys need to be added to the settings.py file. If they are generated with the vctl auth keypair command
then the public key should be added to VOLTTRON’s authorization file with the following:

$ vctl auth add

The serverkey can be found with:

$ vctl auth serverkey

Usage

Start VOLTTRON and Node Red.

$ node-red

Welcome to Node-RED
===================

11 Jan 15:26:49 - [info] Node-RED version: v0.14.4
11 Jan 15:26:49 - [info] Node.js version: v0.10.25
11 Jan 15:26:49 - [info] Linux 3.16.0-38-generic x64 LE
11 Jan 15:26:49 - [info] Loading palette nodes
11 Jan 15:26:49 - [warn] --
11 Jan 15:26:49 - [warn] [rpi-gpio] Info : Ignoring Raspberry Pi specific node
11 Jan 15:26:49 - [warn] --
11 Jan 15:26:49 - [info] Settings file : /home/volttron/.node-red/settings.js
11 Jan 15:26:49 - [info] User directory : /home/volttron/.node-red
11 Jan 15:26:49 - [info] Flows file : /home/volttron/.node-red/flows_volttron.json
11 Jan 15:26:49 - [info] Server now running at http://127.0.0.1:1880/
11 Jan 15:26:49 - [info] Starting flows
11 Jan 15:26:49 - [info] Started flows

88 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

The output from the Node Red command indicates the address of its web interface. Nodes available for use are in the
left sidebar.

We can now use the VOLTTRON nodes to read from and write to VOLTTRON.

2.6. Agent Development 89

VOLTTRON Documentation, Release 8.1.3

Scheduler Example Agent

The Scheduler Example Agent demonstrates how to use the scheduling feature of the :ref`Actuator Agent <Actuator-
Agent>` as well as how to send a command. This agent publishes a request for a reservation on a (fake) device then
takes an action when it’s scheduled time appears. The ActuatorAgent must be running to exercise this example.

Note: Since there is no actual device, an error is produced when the agent attempts to take its action.

def publish_schedule(self):
'''Periodically publish a schedule request'''
headers = {

'AgentID': agent_id,
'type': 'NEW_SCHEDULE',
'requesterID': agent_id, #The name of the requesting agent.
'taskID': agent_id + "-ExampleTask", #The desired task ID for this task. It

→˓must be unique among all other scheduled tasks.
'priority': 'LOW', #The desired task priority, must be 'HIGH', 'LOW', or 'LOW_

→˓PREEMPT'
}

start = str(datetime.datetime.now())
end = str(datetime.datetime.now() + datetime.timedelta(minutes=1))

msg = [
['campus/building/unit',start,end]

]
self.vip.pubsub.publish(
'pubsub', topics.ACTUATOR_SCHEDULE_REQUEST, headers, msg)

The agent listens to schedule announcements from the actuator and then issues a command:

@PubSub.subscribe('pubsub', topics.ACTUATOR_SCHEDULE_ANNOUNCE(campus='campus',
building='building',unit='unit'))

def actuate(self, peer, sender, bus, topic, headers, message):
print ("response:",topic,headers,message)
if headers[headers_mod.REQUESTER_ID] != agent_id:

return
'''Match the announce for our fake device with our ID
Then take an action. Note, this command will fail since there is no
actual device'''
headers = {

'requesterID': agent_id,
}

self.vip.pubsub.publish(
'pubsub', topics.ACTUATOR_SET(campus='campus',

building='building',unit='unit',
point='point'),
headers, 0.0)

90 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Simple Web Agent Walk-through

A simple web enabled agent that will hook up with a VOLTTRON message bus and allow interaction between it
via HTTP. This example agent shows a simple file serving agent, a JSON-RPC based call, and a websocket based
connection mechanism.

Starting VOLTTRON Platform

Note: Starting the VOLTTRON platform requires an Activated Environment. Run the following command from the
root directory:

. env/bin/activate

In order to start the simple web agent, we need to bind the VOLTTRON instance to the a web server. We need to
specify the address and the port for the web server. For example, if we want to bind the localhost:8080 as the web
server we start the VOLTTRON platform as follows:

./start-volttron --bind-web-address http://127.0.0.1:8080

Once the platform is started, we are ready to run the Simple Web Agent.

Running Simple Web Agent

Note: The following assumes the shell is located at the VOLTTRON_ROOT .

Copy the following into your shell (save it to a file for executing it again later):

python scripts/install-agent.py \
--agent-source examples/SimpleWebAgent \
--tag simpleWebAgent \
--vip-identity webagent \
--force \
--start

This will create a web server on http://localhost:8080. The index.html file under sim-
pleweb/webroot/simpleweb/ can be any HTML page which binds to the VOLTTRON message bus .This provides
a simple example of providing a web endpoint in VOLTTRON.

Path based registration examples

• Files will need to be in webroot/simpleweb in order for them to be browsed from http://
localhost:8080/simpleweb/index.html

• Filename is required as we don’t currently auto-redirect to any default pages as shown in self.vip.web.
register_path("/simpleweb", os.path.join(WEBROOT))

The following two examples show the way to call either a JSON-RPC (default) endpoint and one that returns a different
content-type. With the JSON-RPC example from volttron central we only allow post requests, however this is not
required.

2.6. Agent Development 91

VOLTTRON Documentation, Release 8.1.3

• Endpoint will be available at http://localhost:8080/simple/text self.vip.web.register_endpoint("/
simple/text", self.text)

• Endpoint will be available at http://localhost:8080/simple/jsonrpc self.vip.web.
register_endpoint("/simpleweb/jsonrpc", self.rpcendpoint)

• text/html content type specified so the browser can act appropriately like [("Content-Type",
"text/html")]

• The default response is application/json so our endpoint returns appropriately with a JSON based
response.

Agent Specifications

Documents included below are intended to provide a specification to classes of agents which include a base class in
the VOLTTRON repository and have a well defined set of functions and services.

Aggregate Historian

Description

An aggregate historian computes aggregates of data stored in a given volttron historian’s data store. It runs periodically
to compute aggregate data and store it in new tables/collections in the historian’s data store. Each regular historian (
BaseHistorian) needs a corresponding aggregate historian to compute and store aggregates of the data collected by
the regular historian.

92 Chapter 2. Features

../apidocs/volttron/volttron.platform.agent.html#module-volttron.platform.agent.base_historian

VOLTTRON Documentation, Release 8.1.3

Software Interfaces

Data Collection - Data store that the aggregate historian uses as input source needs to be up. Access to it should be
provided using an account that has create, read, and write privileges. For example, a MongoAggregateHistorian needs
to be able to connect to the mongodb used by MongoHistorian using an account that has read and write access to the
db used by the MongoHistorian.

Data retrieval Aggregate Historian Agent does not provide api for retrieving the aggregate data collected. Use Histo-
rian agent’s query interface. Historian’s query api will be modified as below

1. topic_name can now be a list of topic names or a single topic

2. Two near optional parameters have been added to the query api - agg_type (aggregation type), agg_period
(aggregation time period). Both these parameters are mandatory for query aggregate data.

3. New api to get the list of aggregate topics available for querying

User Interfaces

Aggregation agent requires user to configure the following details as part of the agent configuration file

1. Connection details for historian’s data store (same as historian agent configuration)

2. List of aggregation groups where each group contains:

1. Aggregation period - integer followed by m/h/d/w/M (minutes, hours, days, weeks or months)

2. Boolean parameter to indicate if aggregation periods should align to calendar times

3. Optional collection start time in utc. If not provided, aggregation collection will start from current
time

4. List of aggregation points with topic name, type of aggregation (sum, avg, etc.), and minimum number
of records that should be available for the aggregate to be computed

5. Topic name can be specified either as a list of specific topic names (topic_names=[topic1, topic2]) or
a regular expression pattern (topic_name_pattern=”Building1/device_*/Zone*temperature”)

6. When aggregation is done for a single topic then name of topic will be used for the computed aggre-
gation as well. You could optionally provide a unique aggregation_topic_name

7. When topic_name_pattern or multiple topics are specified a unique aggregate topic name should be
specified for the collected aggregate. Users can query for the collected aggregate data using this
aggregate topic name.

8. User should be able to configure multiple aggregations done with the same time period/time interval
and these should be time synchronized.

Functional Capabilities

1. Should run periodically to compute aggregate data.

2. Same instance of the agent should be able to collect data at more than one time interval

3. For each configured time period/interval agent should be able to collect different type of aggregation for different
topics/points

4. Support aggregation over multiple topics/points

5. Agent should be able to handle and normalize different time units such as minutes, hours, days, weeks and
months

2.6. Agent Development 93

VOLTTRON Documentation, Release 8.1.3

6. Agent should be able to compute aggregate both based on wall clock based time intervals and calendar based
time interval. For example, agent should be able to calculate daily average based on 12.00AM to 11.59PM of a
calendar day or between current time and the same time the previous day.

7. Data should be stored in such a way that users can easily retrieve multiple aggregate topics data within a given
time interval

Data Structure

Collected aggregate data should be stored in the historian data store into new collection or tables and should be
accessible by historian agent’s query interface. Users should easily be able to query aggregate data of multiple points
for which data is time synchronized.

Use Cases

Collect monthly average of multiple topic using data from MongoDBHistorian

1. Create a configuration file with connection details from Mongo Historian configuration file and add additional
aggregation specific configuration

{
configuration from mongo historian - START
"connection": {

"type": "mongodb",
"params": {

"host": "localhost",
"port": 27017,
"database": "mongo_test",
"user": "test",
"passwd": "test"

}
},
configuration from mongo historian - START
"aggregations":[

list of aggregation groups each with unique aggregation_period and
list of points that needs to be collected
{
"aggregation_period": "1M",
"use_calendar_time_periods": true,
"utc_collection_start_time":"2016-03-01T01:15:01.000000",
"points": [

{
"topic_names": ["Building/device/point1", "Building/device/point2"],
"aggregation_topic_name":"building/device/point1_2/month_sum",
"aggregation_type": "avg",
"min_count": 2

}
]
}

]
}

In the above example configuration, here is what each field under “aggregations” represent

• aggregation_period: can be minutes(m), hours(h), weeks(w), or months(M)

94 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

• use_calendar_time_periods: true or false - Should aggregation period align to calendar time periods. Default False. Example,

– if “aggregation_period”:”1h” and “use_calendar_time_periods”: false, example periods: 10.15-11.15,
11.15-12.15, 12.15-13.15 etc.

– if “aggregation_period”:”1h” and “use_calendar_time_periods”: true, example periods: 10.00-11.00,
11.00-12.00, 12.00-13.00 etc.

– if “aggregation_period”:”1M” and “use_calendar_time_periods”: true, aggregation would be com-
puted from the first day of the month to last day of the month

– if “aggregation_period”:”1M” and “use_calendar_time_periods”: false, aggregation would be com-
puted with a 30 day interval based on aggregation collection start time

• utc_collection_start_time: The time from which aggregation computation should start. If not provided this
would default to current time.

• points: List of points, its aggregation type and min_count topic_names: List of topic_names across which
aggregation should be computed. aggregation_topic_name: Unique name given for this aggregate. Op-
tional if aggregation is for a single topic. aggregation_type: Type of aggregation to be done. Please see
Constraints and Limitations

min_count: Optional. Minimum number of records that should exist within the configured time period
for a aggregation to be computed.

2. install and starts the aggregate historian using the above configuration

3. Query aggregate data: Query using historian’s query api by passing two additional parameters - agg_type and
agg_period

result1 = query_agent.vip.rpc.call('platform.historian',
'query',
topic='building/device/point1_2/month_sum',
agg_type='avg',
agg_period='1M',
count=20,
order="FIRST_TO_LAST").get(10)

Collect weekly average(sunday to saturday) of single topic using data from MongoDBHistorian

1. Create a configuration file with connection details from Mongo Historian configuration file and add additional aggregation specific configuration. The configuration file should be similar to the first use case except

• aggregation_period: “1w”,

• topic_names: [“Building/device/point1”], #topic for which you want to compute aggregation

• aggregation_topic_name need not be provided

2. install and starts the aggregate historian using the above configuration

3. Query aggregate data: Query using historian’s query api by passing two additional parameters - agg_type and
agg_period. topic_name will be the same as the point name for which aggregation is collected

result1 = query_agent.vip.rpc.call('platform.historian',
'query',
topic='Building/device/point1',
agg_type='avg',
agg_period='1w',

(continues on next page)

2.6. Agent Development 95

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

count=20,
order="FIRST_TO_LAST").get(10)

Collect hourly average for multiple topics based on topic_name pattern

1. Create a configuration file with connection details from Mongo Historian configuration file and add additional aggregation specific configuration. The configuration file should be similar to the first use case except

• aggregation_period: “1h”,

• Insetead of topic_names provide topic_name_pattern. For example,
“topic_name_pattern”:”Building1/device_a*/point1”

• aggregation_topic_name provide a unique aggregation topic name

2. install and starts the aggregate historian using the above configuration

3. Query aggregate data: Query using historian’s query api by passing two additional parameters - agg_type and
agg_period. topic_name will be the same as the point name for which aggregation is collected

result1 = query_agent.vip.rpc.call('platform.historian',
'query',
topic="unique aggregation_topic_name provided in

→˓configuration",
agg_type='avg',
agg_period='1h',
count=20,
order="FIRST_TO_LAST").get(10)

Collect 7 day average of two topics and time synchronize them for easy comparison

1. Create a configuration file with connection details from Mongo Historian configuration file and add additional
aggregation specific configuration. The configuration file should be similar to the below example

{
configuration from mongo historian - START
"connection": {

"type": "mongodb",
"params": {

"host": "localhost",
"port": 27017,
"database": "mongo_test",
"user": "test",
"passwd": "test"

}
},
configuration from mongo historian - START
"aggregations":[

list of aggregation groups each with unique aggregation_period and
list of points that needs to be collected
{
"aggregation_period": "1w",
"use_calendar_time_periods": false, #compute for last 7 days, then the next

→˓and so on..

(continues on next page)

96 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"points": [
{
"topic_names": ["Building/device/point1"],
"aggregation_type": "avg",
"min_count": 2

},
{
"topic_names": ["Building/device/point2"],
"aggregation_type": "avg",
"min_count": 2

}
]
}

]
}

2. install and starts the aggregate historian using the above configuration

3. Query aggregate data: Query using historian’s query api by passing two additional parameters - agg_type and
agg_period. provide the list of topic names for which aggregate was configured above. Since both the points were
configured within a single “aggregations” array element, their aggregations will be time synchronized

result1 = query_agent.vip.rpc.call('platform.historian',
'query',
topic=['Building/device/point1''Building/device/

→˓point2'],
agg_type='avg',
agg_period='1w',
count=20,
order="FIRST_TO_LAST").get(10)

Results will be of the format

{'values': [
['Building/device/point1', '2016-09-06T23:31:27.679910+00:00', 2],
['Building/device/point1', '2016-09-15T23:31:27.679910+00:00', 3],
['Building/device/point2', '2016-09-06T23:31:27.679910+00:00', 2],
['Building/device/point2', '2016-09-15T23:31:27.679910+00:00', 3]],

'metadata': {}}

Qurey list of aggregate data collected

result = query_agent.vip.rpc.call('platform.historian',
'get_aggregate_topics').get(10)

The result will be of the format:

[(aggregate topic name, aggregation type, aggregation time period, configured list of
→˓topics or topic name pattern), ...]

This shows the list of aggregation currently being computed periodically

2.6. Agent Development 97

VOLTTRON Documentation, Release 8.1.3

Qurey list of supported aggregation types

result = query_agent.vip.rpc.call(
AGG_AGENT_VIP,
'get_supported_aggregations').get(timeout=10)

Constraints and Limitations

1. Initial implementation of this agent will not support any data filtering for raw data before computing data aggre-
gation

2. Initial implementation should support all aggregation types directly supported by underlying data store. End
user input is needed to figure out what additional aggregation methods are to be supported

MySQL

Name Description
AVG() Return the average value of the argument
BIT_AND() Return bitwise AND
BIT_OR() Return bitwise OR
BIT_XOR() Return bitwise XOR
COUNT() Return a count of the number of rows returned
GROUP_CONCAT() Return a concatenated string
MAX() Return the maximum value
MIN() Return the minimum value
STD() Return the population standard deviation
STDDEV() Return the population standard deviation
STDDEV_POP() Return the population standard deviation
STDDEV_SAMP() Return the sample standard deviation
SUM() Return the sum
VAR_POP() Return the population standard variance
VAR_SAMP() Return the sample variance
VARIANCE() Return the population standard variance

SQLite

Name Description
AVG() Return the average value of the argument
COUNT() Return a count of the number of rows returned
GROUP_CONCAT()Return a concatenated string
MAX() Return the maximum value
MIN() Return the minimum value
SUM() Return sum of all non-NULL values in the group. If there are no non-NULL

input rows then returns NULL .
TOTAL() Return sum of all non-NULL values in the group.If there are no non-NULL

input rows returns 0.0

MongoDB

98 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Name Description
SUM Returns a sum of numerical values. Ignores non-numeric values
AVG Returns a average of numerical values. Ignores non-numeric values
MAX Returns the highest expression value for each group.
MIN Returns the lowest expression value for each group.
FIRST Returns a value from the first document for each group. Order is only defined if

the documents are in a defined order.
LAST Returns a value from the last document for each group. Order is only defined if the

documents are in a defined order.
PUSH Returns an array of expression values for each group
AD-
DTOSET

Returns an array of unique expression values for each group. Order of the array
elements is undefined.

STDDE-
VPOP

Returns the population standard deviation of the input values

STDDE-
VSAMP

Returns the sample standard deviation of the input values

Tagging Service

Description

Tagging service provides VOLTTRON users the ability to add semantic tags to different topics so that topic can be
queried by tags instead of specific topic name or topic name pattern.

Taxonomy

VOLLTTRON will use tags from Project Haystack. Tags defined in haystack will be imported into VOLTTRON and
grouped by categories to tag topics and topic name prefix.

Dependency

Once data in VOLTTRON has been tagged, users will be able to query topics based on tags and use the resultant topics
to query the historian

Features

1. User should be able to tag individual components of a topic such as campus, building, device, point etc.

2. Using the tagging service users should only be able to add tags already defined in the volttron tagging schema.
New tags should be explicitly added to the tagging schema before it can be used to tag topics or topic prefix

3. Users should be able batch process and tag multiple topic names or topic prefix using a template. At the end of
this, users should be notified about the list of topics that did not confirm to the template. This will help users to
individually add or edit tags for those specific topics

4. When users query for topics based on a tag, the results would correspond to the current metadata values. It is up
to the calling agent/application to periodically query for latest updates if needed.

5. Users should be able query based on tags on a specific topic or its topic prefix/parents

6. Allow for count and skip parameters in queries to restrict count and allow pagination

2.6. Agent Development 99

http://project-haystack.org/tag

VOLTTRON Documentation, Release 8.1.3

API

1. Get the list of tag categories available

rpc call to tagging service method ‘get_categories’ with optional parameters:

1. include_description - set to True to return available description for each category. Default = False

2. skip - number of categories to skip. this parameter along with count can be used for paginating results

3. count - limit the total number of tag categories returned to given count

4. order - ASCENDING or DESCENDING. By default, it will be sorted in ascending order

2. Get the list of tags for a specific category

rpc call to tagging service method ‘get_tags_by_category’ with parameter:

1. category - <category name>

and optional parameters:

2. include_kind - indicate if result should include the kind/data type for tags returned. Defaults to
False

3. include_description - indicate if result should include available description for tags returned.
Defaults to False

4. skip - number of tags to skip. this parameter along with count can be used for paginating results

5. count - limit the total number of tags returned to given count

6. order - ASCENDING or DESCENDING. By default, it will be sorted in ascending order

3. Get the list of tags for a topic_name or topic_name_prefix

rpc call to tagging service method get_tags_by_topic

with parameter

1. topic_prefix - topic name or topic name prefix

and optional parameters:

2. include_kind - indicate if result should include the kind/data type for tags returned. Defaults to False

3. include_description - indicate if result should include available description for tags returned. Defaults to
False

4. skip - number of tags to skip. this parameter along with count can be used for paginating results

5. count - limit the total number of tags returned to given count

6. order - ASCENDING or DESCENDING. By default, it will be sorted in ascending order

100 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

4. Find topic names by tags

rpc call to tagging service method ‘get_topics_by_tags’ with the one or more of the following parameters

1. and_condition - dictionary of tag and its corresponding values that should be matched using equality
operator or a list of tags that should exists/be true. Tag conditions are combined with AND condition.
Only topics that match all the tags in the list would be returned

2. or_condition - dictionary of tag and its corresponding values that should be matched using equality
operator or a list tags that should exist/be true. Tag conditions are combined with OR condition. Top-
ics that match any of the tags in the list would be returned. If both and_condition and or_condition
are provided then they are combined using AND operator.

3. condition - conditional statement to be used for matching tags. If this parameter is provided the
above two parameters are ignored. The value for this parameter should be an expression that contains
one or more query conditions combined together with an “AND” or “OR”. Query conditions can be
grouped together using parenthesis. Each condition in the expression should conform to one of the
following format:

1. <tag name/ parent.tag_name> <binary_operator> <value>

2. <tag name/ parent.tag_name>

3. <tag name/ parent.tag_name> LIKE <regular expression within single quotes

4. the word NOT can be prefixed before any of the above three to negate the condition.

5. expressions can be grouped with parenthesis.

For example

condition="tag1 = 1 and not (tag2 < '' and tag2 > '') and tag3
→˓and NOT tag4 LIKE '^a.*b$'"
condition="NOT (tag5='US' OR tag5='UK') AND NOT tag3 AND NOT
→˓(tag4 LIKE 'a.*')"
condition="campusRef.geoPostalCode='20500' and equip and boiler"

6. skip - number of topics to skip. this parameter along with count can be used for paginating results

7. count - limit the total number of tag topics returned to given count

8. order - ASCENDING or DESCENDING. By default, it will be sorted in ascending order

5. Query data based on tags

Use above api to get topics by tags and then use the result to query historian’s query api.

6. Add tags to specific topic name or topic name prefix

rpc call to to tagging service method ‘add_topic_tags’ with parameters:

1. topic_prefix - topic name or topic name prefix

2. tags - {<valid tag>:value, <valid_tag>: value,. . . }

3. update_version - True/False. Default to False. If set to True and if any of the tags update an existing tag value
the older value would be preserved as part of tag version history. NOTE: This is a placeholder. Current version
does not support versioning.

2.6. Agent Development 101

VOLTTRON Documentation, Release 8.1.3

7. Add tags to multiple topics

rpc call to to tagging service method ‘add_tags’ with parameters:

1. tags - dictionary object containing the topic and the tag details. format:

<topic_name or prefix or topic_name pattern>: {<valid tag>:<value>, ... }, ... }

2. update_version - True/False. Default to False. If set to True and if any of the tags update an existing tag value
the older value would be preserved as part of tag version history

Use case examples

1. Loading news tags for an existing VOLTTRON instance

Current topic names:

/campus1/building1/deviceA1/point1
/campus1/building1/deviceA1/point2
/campus1/building1/deviceA1/point3
/campus1/building1/deviceA2/point1
/campus1/building1/deviceA2/point2
/campus1/building1/deviceA2/point3
/campus1/building1/deviceB1/point1
/campus1/building1/deviceB1/point2
/campus1/building1/deviceB2/point1
/campus1/building1/deviceB1/point2

Step 1:

Create a python dictionary object contains topic name pattern and its corresponding tag/value pair. Use topic pattern
names to fill out tags that can be applied to more than one topic or topic prefix. Use specific topic name and topic
prefix for tags that apply only to a single entity. For example:

{
tags specific to building1
'/campus1/building1':

{
'site': true,
'dis': ": 'some building description',
'yearBuilt': 2015,
'area': '24000sqft'
},

tags that apply to all device of a specific type
'/campus1/building1/deviceA*':

{
'dis': "building1 chilled water system - CHW",
'equip': true,
'campusRef':'campus1',
'siteRef': 'campus1/building1',

(continues on next page)

102 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

'chilled': true,
'water' : true,
'secondaryLoop': true
}

tags that apply to point1 of all device of a specific type
'/campus1/building1/deviceA*/point1':

{
'dis': "building1 chilled water system - point1",
'point': true,
'kind': 'Bool',
'campusRef':'campus1',
'siteRef': 'campus1/building1'
}

tags that apply to point2 of all device of a specific type
'/campus1/building1/deviceA*/point2':

{
'dis': "building1 chilled water system - point2",
'point': true,
'kind': 'Number',
'campusRef':'campus1',
'siteRef': 'campus1/building1'
}

tags that apply to point3 of all device of a specific type
'/campus1/building1/deviceA*/point3':

{
'dis': "building1 chilled water system - point3",
'point': true,
'kind': 'Number',
'campusRef':'campus1',
'siteRef': 'campus1/building1'
}

tags that apply to all device of a specific type
'/campus1/building1/deviceB*':

{
'dis': "building1 device of type B",
'equip': true,
'chilled': true,
'water' : true,
'secondaryLoop': true,
'campusRef':'campus1',
'siteRef': 'campus1/building1'
}

tags that apply to point1 of all device of a specific type
'/campus1/building1/deviceB*/point1':

{
'dis': "building1 device B - point1",
'point': true,
'kind': 'Bool',
'campusRef':'campus1',
'siteRef': 'campus1/building1',
'command':true
}

tags that apply to point1 of all device of a specific type
'/campus1/building1/deviceB*/point2':

{
'dis': "building1 device B - point2",
'point': true,

(continues on next page)

2.6. Agent Development 103

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

'kind': 'Number',
'campusRef':'campus1',
'siteRef': 'campus1/building1'
}

}

Step 2: Create tags using template above

Make an RPC call to the add_tags method and pass the python dictionary object

Step 3: Create tags specific to a point or device

Any tags that were not included in step one and needs to be added later can be added using the rpc call to tagging
service either the method ‘add_topic_tags’ ‘add_tags’

For example:

agent.vip.rpc.call(
'platform.tagging',
'add_topic_tags',
topic_prefix='/campus1/building1/deviceA1',
tags={'tag1':'value'})

agent.vip.rpc.call(
'platform.tagging',
'add_topic_tags',
tags={

'/campus1/building1/deviceA2':
{'tag1':'value'},

'/campus1/building1/deviceA2/point1':
{'equipRef':'campus1/building1/deviceA2'}

}
)

2. Querying based on a topic’s tag and it parent’s tags

Query - Find all points that has the tag ‘command’ and belong to a device/unit that has a tag ‘chilled’

agent.vip.rpc.call(
'platform.tagging',
'get_topics_by_tags',
condition='temperature and equip.chilled)

In the above code block ‘command’ and ‘chilled’ are the tag names that would be searched, but since the tag ‘chilled’
is prefixed with ‘equip.’ the tag in a parent topic

The above query would match the topic ‘/campus1/building1/deviceB1/point1’ if tags in the system are as follows

‘/campus1/building1/deviceB1/point1’ tags:

104 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

{
'dis': "building1 device B - point1",
'point': true,
'kind': 'Bool',
'campusRef':'campus1',
'siteRef': 'campus1/building1',
'equipRef': 'campus1/building1/deviceB1',
'command':true
}

‘/campus1/building1/deviceB1’ tags

{
'dis': "building1 device of type B",
'equip': true,
'chilled': true,
'water' : true,
'secondaryLoop': true,
'campusRef':'campus1',
'siteRef': 'campus1/building1'
}

Possible future improvements

1. Versioning - When a value of a tag is changed, users should be prompted to verify if this change denotes a new
version or a value correction. If this value denotes a new version, then older value of the tag should preserved
in a history/audit store

2. Validation of tag values based on data type

3. Support for units validation and conversions

4. Processing and saving geologic coordinates that can enable users to do geo-spatial queries in databases that
support it.

Weather Service

Description

The weather service agent provides API to access current weather data, historical data and weather forecast data. There
are several weather data providers, some paid and some free. Weather data providers differs from one and other

1. In the kind of features provided - current data, historical data, forecast data

2. The data points returned

3. The naming schema used to represent the data returned

4. Units of data returned

5. Frequency of data updates

The weather service agent has a design similar to historians. There is a single base weather service that defines the api
signatures and the ontology of the weather data points. There is one concrete weather service agents for each weather
provider. Users can install one or more provider specific agent to access weather data.

2.6. Agent Development 105

VOLTTRON Documentation, Release 8.1.3

The initial implementation is for NOAA and would support current and forecast data requests. NOAA does not support
accessing historical weather data through their api. This agent implements request data caching.

The second implementation is for darksky.net.

Features

Base weather agent features:

1. Caching

The weather service provides basic caching capability so that repeated request for same data can be re-
turned from cache instead of network round trip to the weather data provider. This is also useful to limit
the number of request made to the provider as most weather data provider have restrictions on number
of requests for developer/free api keys. The size of the cache can be restricted by setting an optional
configuration parameter ‘max_size_gb’

2. Name mapping

Data points returned by concrete weather agents is mapped to standard names based on CF standard names
table Name mapping is done using a CSV file. See Configuration section for an example configuration

3. Unit conversion

If data returned from the provider is of the format {“data_point_name”:value}, base weather agent can do
unit conversions on the value. Both name mapping and unit conversions can be specified as a csv file and
packaged with the concrete implementing agent. This feature is not mandatory. See Configuration section
for an example configuration

Core weather data retrieval features :

1. Retrieve current weather data.

2. Retrieve hourly weather forecast data.

3. Retrieve historical weather data.

4. Periodic polling of current weather data for one or more locations. Users can configure one or more locations
in a config file and weather agent will periodically poll for current weather data for the configured locations and
publish the results to message bus.

The set of points returned from the above queries depends on the specific weather data provider, however the point
names returned are from the standard schema.

Note:

1. Since individual weather data provider can support slightly different sets of features, users are able to query for
the list of available features. For example a provider could provide daily weather forecast in addition to the
hourly forecast data.

106 Chapter 2. Features

http://www.noaa.gov
https://darksky.net/dev
http://cfconventions.org/Data/cf-standard-names/57/build/cf-standard-name-table.html
http://cfconventions.org/Data/cf-standard-names/57/build/cf-standard-name-table.html

VOLTTRON Documentation, Release 8.1.3

API

1. Get available features

rpc call to weather service method ’get_api_features’

Parameters - None

Returns - dictionary of api features that can be called for this weather agent.

2. Get current weather data

rpc call to weather service method ’get_current_weather’

Parameters:

1. locations - dictionary containing location details. The format of location accepted differs between different
weather providers and even different APIs supported by the same provider For example the location input could
be either {“zipcode”:value} or {“region”:value, “country”: value}.

Returns: List of dictionary objects containing current weather data. The actual data points returned depends on the
weather service provider.

3. Get hourly forecast data

rpc call to weather service method ’get_hourly_forecast’

Parameters:

1. locations - dictionary containing location details. The format of location accepted differs between different
weather providers and even different APIs supported by the same provider For example the location input could
be either {“zipcode”:value} or {“region”:value, “country”: value}.

optional parameters:

2. hours - The number of hours for which forecast data are returned. By default, it is 24 hours.

Returns: List of dictionary objects containing forecast data. If weather data provider returns less than requested
number of hours result returned would contain a warning message in addition to the result returned by the
provider

4. Get historical weather data

rpc call to weather service method ’get_hourly_historical’

Parameters:

1. locations - dictionary containing location details. For example the location input could be either {“zip-
code”:value} or {“region”:value, “country”: value}.

2. start_date - start date of requested data

3. end_date - end date of requested data

Returns: List of dictionary objects containing historical data.

2.6. Agent Development 107

VOLTTRON Documentation, Release 8.1.3

Note: Based on the weather data provider this api could do multiple calls to the data provider to get the requested
data. For example, darksky.net allows history data query by a single date and not a date range.

5. Periodic polling of current weather data

This can be achieved by configuring the locations for which data is requested in the agent’s configuration file along with
polling interval. Results for each location configured, is published to its corresponding result topic. is no result topic
prefix is configured, then results for all locations are posted to the topic weather/poll/current/all. poll_topic_suffixes
when provided should be a list of string with the same length as the number of poll_locations. When topic prefix is
specified, each location’s result is published to weather/poll/current/<poll_topic_suffix for that location> topic_prefix.

Configuration

Example configuration:

{
poll_locations: [

{"zip": "22212"},
{"zip": "99353"}

],
poll_topic_suffixes: ["result_22212", "result_99353"],
poll_interval: 20 #seconds,

#optional cache arguments
max_cache_size: ...

}

Example configuration for mapping point names returned by weather provider to a standard name and units:

Service_Point_Name,Standard_Point_Name,Service_Units,Standard_Units
temperature,air_temperature,fahrenheit,celsius

Caching

Weather agent will cache data until the configured size limit is reached (if provided).

1. Current and forecast data:

If current/forecast weather data exists in cache and if the request time is within the update time period of the api
(specified by a concrete implementation) then by default cached data would be returned otherwise a new request
is made for it. If hours is provided and the amount of cached data records is less than hours, this will also result
in a new request.

2. Historical data cache:

Weather api will query the cache for available data for the given time period and fill and missing time period
with data from the remote provider.

3. Clearing of cache:

108 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Users can configure the maximum size limit for cache. For each api call, before data is inserted in cache, weather
agent will check for this size limit and purge records in this order. - Current data older than update time period
- Forecast data older than update time period - History data starting with the oldest cached data

Assumptions

1. User has api key for accessing weather api for a specific weather data provider, if a key is required.

2. Different weather agent might have different requirement for how input locations are specified. For example
NOAA expects a station id for querying current weather and requires either a lat/long or gridpoints to query for
forecast. weatherbit.io accepts zip code.

3. Not all features might be implemented by a specific weather agent. For example NOAA doesn’t make history
data available using their weather api.

4. Concrete agents could expose additional api features

5. Optionally, data returned will be based on standard names provided by the CF standard names table (see Ontol-
ogy). Any points with a name not mapped to a standard name would be returned as is.

2.7 Driver Development

In order for VOLTTRON agents to gather data from a device or to set device values, agents send requests to the Master
Driver Agent to read or set points. The Platform Driver Agent then sends these requests on to the appropriate driver
for interfacing with that device based on the topic specified in the request and the configuration of the Platform Driver.
Drivers provide an interface between the device and the platform driver by implementing portions of the devices’
protocols needed to serve the functions of setting and reading points.

As a demonstration of developing a driver a driver can be made to read and set points in a CSV file. This driver will
only differ from a real device driver in terms of the specifics of the protocol.

2.7.1 Create a Driver and Register class

When a new driver configuration is added to the Platform Driver, the Platform Driver will look for a file or directory
in its interfaces directory (services/core/PlatformDriverAgent/platform_driver/interfaces) that shares the name of the
value specified by “driver_type” in the configuration file. For the CSV Driver, create a file named csvdriver.py in that
directory.

platform_driver
agent.py
driver.py
__init__.py
interfaces

__init__.py
bacnet.py

| | csvdriver.py
modbus.py

socket_lock.py
platform-driver.agent
setup.py

Following is an example using the directory type structure:

2.7. Driver Development 109

VOLTTRON Documentation, Release 8.1.3

platform_driver
agent.py
driver.py
__init__.py
interfaces

__init__.py
bacnet.py

| | csvdriver.py
modbus.py
modbus_tk.py

| __init__.py
| tests
| requirements.txt
| README.rst

Note: Using this format, the directory must be the name specified by “driver_type” in the configuration file and the
Interface class must be in the __init__.py file in that directory.

This format is ideal for including additional code files as well as requirements files, tests and documentation.

Interface Basics

A complete interface consists of two parts: the interface class and one or more register classes.

Interface Class Skeleton

When the Platform Driver processes a driver configuration file it creates an instance of the interface class found in the
interface file (such as the one we’ve just created). The interface class is responsible for managing the communication
between the Volttron Platform, and the device. Each device has many registers which hold the values Volttron agents
are interested in so generally the interface manages reading and writing to and from a device’s registers. At a minimum,
the interface class should be configurable, be able to read and write registers, as well as read all registers with a single
request. First create the csv interface class boilerplate.

class Interface(BasicRevert, BaseInterface):
def __init__(self, **kwargs):

super(Interface, self).__init__(**kwargs)

def configure(self, config_dict, registry_config_str):
pass

def get_point(self, point_name):
pass

def _set_point(self, point_name, value):
pass

def _scrape_all(self):
pass

This class should inherit from the BaseInterface and at a minimum implement the configure, get_point, set_point, and
scrape_all methods.

110 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Note: In some sense, drivers are sub-agents running under the same process as the Platform Driver. They should be
instantiated following the agent pattern, so a function to handle configuration and create the Driver object has been
included.

Register Class Skeleton

The interface needs some information specifying the communication for each register on the device. For each different
type of register a register class should be defined which will help identify individual registers and determine how to
communicate with them. Our CSV driver will be fairly basic, with one kind of “register”, which will be a column in
a CSV file. Other drivers may require many kinds of registers; for instance, the Modbus protocol driver has registers
which store data in byte sized chunks and registers which store individual bits, therefore the Modbus driver has bit and
byte registers.

For the CSV driver, create the register class boilerplate:

class CsvRegister(BaseRegister):
def __init__(self, csv_path, read_only, pointName, units, reg_type,

default_value=None, description=''):
super(CsvRegister, self).__init__("byte", read_only, pointName, units,

→˓description=description)

This class should inherit from the BaseRegister. The class should keep register metadata, and depending upon the
requirements of the protocol/device, may perform the communication.

The BACNet and Modbus drivers may be used as examples of more specific implementations. For the purpose of this
demonstration writing and reading points will be done in the register, however, this may not always be the case (as in
the case of the BACNet driver).

Filling out the Interface class

The CSV interface will be writing to and reading from a CSV file, so the device configuration should include a path
specifying a CSV file to use as the “device”. The CSV “device: path value is set at the beginning of the agent loop
which runs the configure method when the Platform Driver starts. Since this Driver is for demonstration, we’ll create
the CSV with some default values if the configured path doesn’t exist. The CSV device will consist of 2 columns:
“Point Name” specifying the name of the register, and “Point Value”, the current value of the register.

_log = logging.getLogger(__name__)

CSV_FIELDNAMES = ["Point Name", "Point Value"]
CSV_DEFAULT = [

{
"Point Name": "test1",
"Point Value": 0

},
{

"Point Name": "test2",
"Point Value": 1

},
{

"Point Name": "test3",
"Point Value": "testpoint"

}
]

(continues on next page)

2.7. Driver Development 111

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

type_mapping = {"string": str,
"int": int,
"integer": int,
"float": float,
"bool": bool,
"boolean": bool}

class Interface(BasicRevert, BaseInterface):
def __init__(self, **kwargs):

super(Interface, self).__init__(**kwargs)
self.csv_path = None

def configure(self, config_dict, registry_config_str):
self.csv_path = config_dict.get("csv_path", "csv_device.csv")
if not os.path.isfile(self.csv_path):

_log.info("Creating csv 'device'")
with open(self.csv_path, "w+") as csv_device:

writer = DictWriter(csv_device, fieldnames=CSV_FIELDNAMES)
writer.writeheader()
writer.writerows(CSV_DEFAULT)

self.parse_config(registry_config_str)

At the end of the configuration method, the Driver parses the registry configuration. The registry configuration is a csv
which is used to tell the Driver which register the user wishes to communicate with and includes a few meta-data values
about each register, such as whether the register can be written to, if the register value uses a specific measurement
unit, etc. After each register entry is parsed from the registry config a register is added to the driver’s list of active
registers.

def parse_config(self, config_dict):
if config_dict is None:

return

for index, regDef in enumerate(config_dict):
Skip lines that have no point name yet
if not regDef.get('Point Name'):

continue

read_only = regDef.get('Writable', "").lower() != 'true'
point_name = regDef.get('Volttron Point Name')
if not point_name:

point_name = regDef.get("Point Name")
if not point_name:

raise ValueError("Registry config entry {} did not have a point name or
→˓volttron point name".format(

index))
description = regDef.get('Notes', '')
units = regDef.get('Units', None)
default_value = regDef.get("Default Value", "").strip()
if not default_value:

default_value = None
type_name = regDef.get("Type", 'string')
reg_type = type_mapping.get(type_name, str)

register = CsvRegister(
self.csv_path,
read_only,

(continues on next page)

112 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

point_name,
units,
reg_type,
default_value=default_value,
description=description)

if default_value is not None:
self.set_default(point_name, register.value)

self.insert_register(register)

Since the driver’s registers will be doing the work of parsing the registers the interface only needs to select the correct
register to read from or write to and instruct the register to perform the corresponding unit of work.

def get_point(self, point_name):
register = self.get_register_by_name(point_name)
return register.get_state()

def _set_point(self, point_name, value):
register = self.get_register_by_name(point_name)
if register.read_only:

raise IOError("Trying to write to a point configured read only: " + point_
→˓name)

register.set_state(value)
return register.get_state()

def _scrape_all(self):
result = {}
read_registers = self.get_registers_by_type("byte", True)
write_registers = self.get_registers_by_type("byte", False)
for register in read_registers + write_registers:

result[register.point_name] = register.get_state()
return result

Writing the Register class

The CSV driver’s register class is responsible for parsing the CSV, reading the corresponding rows to return the
register’s current value and writing updated values into the CSV for the register. On a device which communicates
via a protocol such as Modbus the same units of work would be done, but using pymodbus to perform the reads and
writes. Here, Python’s CSV library will be used as our “protocol implementation”.

The Register class determines which file to read based on values passed from the Interface class.

class CsvRegister(BaseRegister):
def __init__(self, csv_path, read_only, pointName, units, reg_type,

default_value=None, description=''):
super(CsvRegister, self).__init__("byte", read_only, pointName, units,

description=description)
self.csv_path = csv_path

To find its value the register will read the CSV file, iterate over each row until a row with the point name the same
as the register name at which point it extracts the point value, and returns it. The register should be written to handle
problems which may occur, such as no correspondingly named row being present in the CSV file.

2.7. Driver Development 113

VOLTTRON Documentation, Release 8.1.3

def get_state(self):
if os.path.isfile(self.csv_path):

with open(self.csv_path, "r") as csv_device:
reader = DictReader(csv_device)
for point in reader:

if point.get("Point Name") == self.point_name:
point_value = point.get("Point Value")
if not point_value:

raise RuntimeError("Point {} not set on CSV Device".
→˓format(self.point_name))

else:
return point_value

raise RuntimeError("Point {} not found on CSV Device".format(self.point_name))
else:

raise RuntimeError("CSV device at {} does not exist".format(self.csv_path))

Likewise to overwrite an existing value, the register will iterate over each row until the point name matches the register
name, saving the output as it goes. When it finds the correct row it instead saves the output updated with the new value
then continues on. Finally it writes the output back to the csv.

def set_state(self, value):
_log.info("Setting state for {} on CSV Device".format(self.point_name))
field_names = []
points = []
found = False
with open(self.csv_path, "r") as csv_device:

reader = DictReader(csv_device)
field_names = reader.fieldnames
for point in reader:

if point["Point Name"] == self.point_name:
found = True
point_copy = point
point_copy["Point Value"] = value
points.append(point_copy)

else:
points.append(point)

if not found:
raise RuntimeError("Point {} not found on CSV Device".format(self.point_name))

else:
with open(self.csv_path, "w") as csv_device:

writer = DictWriter(csv_device, fieldnames=field_names)
writer.writeheader()
writer.writerows([dict(row) for row in points])

return self.get_state()

At this point we should be able to scrape the CSV device using the Platform Driver and set points using the actuator.

114 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Creating Driver Configurations

The configuration files for the CSV driver are very simple, but in general, the device configuration should specify the
parameters which the interface requires to communicate with the device and the registry configuration contains rows
which correspond to registers and specifies their usage.

Here’s the driver configuration for the CSV driver:

{
"driver_config": {"csv_path": "csv_driver.csv"},
"driver_type": "csvdriver",
"registry_config":"config://csv_registers.csv",
"interval": 30,
"timezone": "UTC"

}

Note: The “driver_type” value must match the name of the driver’s python file as this is what the Platform Driver
will look for when searching for the correct interface.

And here’s the registry configuration:

Volttron Point Name Point Name Writable
test1 test1 true
test2 test2 true
test3 test3 true

The BACNet and Modbus driver docs and example configurations can be used to compare these configurations to more
complex configurations.

2.7.2 Testing your driver

To test the driver’s scrape all functionality, one can install a ListenerAgent and Platform Driver with the driver’s
configurations, and run them. To do so for the CSV driver using the configurations above: activate the Volttron
environment start the platform, tail the platform’s log file, then try the following:

python scripts/install-agent.py -s examples/ListenerAgent
python scripts/install-agent.py -s services/core/PlatformDriverAgent -c services/core/
→˓PlatformDriverAgent/platform-driver.agent
vctl config store platform.driver devices/<campus>/<building>/csv_driver <path to
→˓driver configuration>
vctl config store platform.driver <registry config path from driver configuration>
→˓<path to registry configuration>

Note: vctl config list platform.driver will list device and registry configurations stored for the platform driver and vctl
config delete platform.driver <config in configs list> can be used to remove a configuration entry - these commands
are very useful for debugging

After the Platform Driver starts the driver’s output should appear in the logs at regular intervals based on the Master
Driver’s configuration.

Here is some sample CSV driver output:

2.7. Driver Development 115

VOLTTRON Documentation, Release 8.1.3

2019-11-15 10:32:00,010 (listeneragent-3.3 22996) listener.agent INFO: Peer: pubsub,
→˓Sender: platform.driver:, Bus:
, Topic: devices/pnnl/isb1/csv_driver/all, Headers: {'Date': '2019-11-15T18:32:00.
→˓001360+00:00', 'TimeStamp':
'2019-11-15T18:32:00.001360+00:00', 'SynchronizedTimeStamp': '2019-11-15T18:32:00.
→˓000000+00:00',
'min_compatible_version': '3.0', 'max_compatible_version': ''}, Message:
[{'test1': '0', 'test2': '1', 'test3': 'testpoint'},
{'test1': {'type': 'integer', 'tz': 'UTC', 'units': None},
'test2': {'type': 'integer', 'tz': 'UTC', 'units': None},
'test3': {'type': 'integer', 'tz': 'UTC', 'units': None}}]

This output is an indication of the basic scrape all functionality working in the Interface class - in our implementa-
tion this is also an indication of the basic functionality of the Interface class “get_point” method and Register class
“get_state” methods working (although edge cases should still be tested!).

To test the Interface’s “set_point” method and Register’s “set_state” method we’ll need to use the Actuator agent. The
following agent code can be used to alternate a point’s value on a schedule using the actuator, as well as perform an
action based on a pubsub subscription to a single point:

def CsvDriverAgent(config_path, **kwargs):
"""Parses the Agent configuration and returns an instance of
the agent created using that configuration.

:param config_path: Path to a configuration file.

:type config_path: str
:returns: Csvdriveragent
:rtype: Csvdriveragent
"""
_log.debug("Config path: {}".format(config_path))
try:

config = utils.load_config(config_path)
except Exception:

config = {}

if not config:
_log.info("Using Agent defaults for starting configuration.")

_log.debug("config_dict before init: {}".format(config))
utils.update_kwargs_with_config(kwargs, config)
return Csvdriveragent(**kwargs)

class Csvdriveragent(Agent):
"""
Document agent constructor here.
"""

def __init__(self, csv_topic="", **kwargs):
super(Csvdriveragent, self).__init__(**kwargs)
_log.debug("vip_identity: " + self.core.identity)

self.agent_id = "csv_actuation_agent"
self.csv_topic = csv_topic

self.value = 0
self.default_config = {

(continues on next page)

116 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"csv_topic": self.csv_topic
}

Set a default configuration to ensure that self.configure is called
→˓immediately to setup

the agent.
self.vip.config.set_default("config", self.default_config)

Hook self.configure up to changes to the configuration file "config".
self.vip.config.subscribe(self.configure, actions=["NEW", "UPDATE"], pattern=

→˓"config")

def configure(self, config_name, action, contents):
"""
Called after the Agent has connected to the message bus. If a configuration

→˓exists at startup
this will be called before onstart.

Is called every time the configuration in the store changes.
"""
config = self.default_config.copy()
config.update(contents)

_log.debug("Configuring Agent")
_log.debug(config)

self.csv_topic = config.get("csv_topic", "")

Unsubscribe from everything.
self.vip.pubsub.unsubscribe("pubsub", None, None)

self.vip.pubsub.subscribe(peer='pubsub',
prefix="devices/" + self.csv_topic + "/all",
callback=self._handle_publish)

def _handle_publish(self, peer, sender, bus, topic, headers, message):
_log.info("Device {} Publish: {}".format(self.csv_topic, message))

@Core.receiver("onstart")
def onstart(self, sender, **kwargs):

"""
This is method is called once the Agent has successfully connected to the

→˓platform.
This is a good place to setup subscriptions if they are not dynamic or
do any other startup activities that require a connection to the message bus.
Called after any configurations methods that are called at startup.

Usually not needed if using the configuration store.
"""
self.core.periodic(30, self.actuate_point)

def actuate_point(self):
_now = get_aware_utc_now()
str_now = format_timestamp(_now)
_end = _now + td(seconds=10)
str_end = format_timestamp(_end)
schedule_request = [[self.csv_topic, str_now, str_end]]

(continues on next page)

2.7. Driver Development 117

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

result = self.vip.rpc.call(
'platform.actuator', 'request_new_schedule', self.agent_id, 'my_test',

→˓'HIGH', schedule_request).get(
timeout=4)

point_topic = self.csv_topic + "/" + "test1"
result = self.vip.rpc.call(

'platform.actuator', 'set_point', self.agent_id, point_topic, self.value).
→˓get(

timeout=4)
self.value = 0 if self.value is 1 else 1

@Core.receiver("onstop")
def onstop(self, sender, **kwargs):

"""
This method is called when the Agent is about to shutdown, but before it

→˓disconnects from
the message bus.
"""
pass

def main():
"""Main method called to start the agent."""
utils.vip_main(CsvDriverAgent,

version=__version__)

if __name__ == '__main__':
Entry point for script
try:

sys.exit(main())
except KeyboardInterrupt:

pass

While this code runs, since the Actuator is instructing the Interface to set points on the device, the pubsub all publish
can be used to check that the values are changing as expected.

2.8 Contributing Code

As an open source project VOLTTRON requires input from the community to keep development focused on new and
useful features. To that end we are revising our commit process to hopefully allow more contributors to be a part of
the community. The following document outlines the process for source code and documentation to be submitted.
There are GUI tools that may make this process easier, however this document will focus on what is required from the
command line.

The only requirements for contributing are Git (Linux version control software) and your favorite web browser.

Note: The following guide assumes the user has already created a fork of the core VOLTTRON repository. Please
review the docs if you have not yet created a fork.

The only technical requirements for contributing are Git (version control software) and your favorite web browser.

As a part of VOLTTRON joining the Eclipse community, Eclipse requires that all contributors sign the Eclipse Con-
tributor agreement before making a pull request.

118 Chapter 2. Features

https://www.eclipse.org/legal/ECA.php
https://www.eclipse.org/legal/ECA.php

VOLTTRON Documentation, Release 8.1.3

2.8.1 Reviewing Changes

Okay, we’ve written a cool new foo.py script to service bar in our deployment. Let’s make sure our code is up-to-snuff.

Code

First, go through the code.

Note: We on the VOLTTRON team would recommend an internal code review - it can be really hard to catch small
mistakes, typos, etc. for code you just finished writing.

• Does the code follow best-practices for Python, object-oriented programming, unit and integration testing, etc.?

• Does the code contain any typos and does it follow Pep8 guidelines?

• Does the code follow the guidelines laid out in the VOLTTRON documentation?

Docs

Next, Check out the documentation.

• Is it complete?

– Has an introduction describing purpose

– Describes configuration including all parameters

– Includes installation instructions

– Describes behavior at runtime

– Describes all available endpoints (JSON-RPC, pub/sub messages, Web-API endpoints, etc.)

• Does it follow the VOLTTRON documentation guidelines?

Tests

You’ve included tests, right? Unit and integration tests show users that foo.py is better than their wildest dreams - all
of the features work, and include components they hadn’t even considered themselves!

• Are the unit tests thorough?

– Success and failure cases

– Tests for each independent component of the code

• Do the integration tests capture behavior with a running VOLTTRON platform?

– Success and Failure cases

– Tests for each endpoint

– Tests for interacting with other agents if necessary

– Are status, health, etc. updating as expected when things go wrong or the code recovers?

• Can the tests be read to describe the behavior of the code?

2.8. Contributing Code 119

https://www.python.org/dev/peps/pep-0008/

VOLTTRON Documentation, Release 8.1.3

Structure

For agents and drivers, the VOLTTRON team has some really simple structure recommendations. These make your
project structure nice and tidy, and integrate nicely with the core repository.

For agents:

TestAgent/
setup.py
config
README.rst
tester

| agent.py
| __init__.py

tests
test_agent.py

For drivers, the interface should be a file named after the driver in the Platform Driver’s interfaces directory:

platform_driver
agent.py
driver.py
__init__.py
interfaces

__init__.py
bacnet.py

| | csvdriver.py
new_driver.py

Or in the __init__.py file in a directory named after the driver in the Platform Driver’s interfaces directory:

platform_driver
agent.py
driver.py
__init__.py
interfaces

__init__.py
bacnet.py
new_driver

| __init__.py

This option is ideal for adding additional code files, and including documentation and tests.

2.8.2 Creating a Pull Request to the main VOLTTRON repository

After reviewing changes to our fork of the VOLTTRON repository, we want our changes to be added
into the main VOLTTRON repository. After all, our foo.py can cure a lot of the world’s problems
and of course it is always good to have a copyright with the correct year. Open your browser to
https://github.com/VOLTTRON/volttron/compare/develop. . . YOUR_USERNAME:develop.

On that page the base fork should always be VOLTTRON/volttron with the base develop, the head fork should be
<YOUR USERNAME>/volttron and the compare should be the branch in your repository to pull from. Once you have
verified that you have got the right changes made then, click on create pull request, enter a title and description that
represent your changes and submit the pull request.

The VOLTTRON repository has a description template to use to format your PR:

120 Chapter 2. Features

https://github.com/VOLTTRON/volttron/compare/develop...YOUR_USERNAME:develop

VOLTTRON Documentation, Release 8.1.3

Description

Please include a summary of the change and which issue is fixed. Please also include
→˓relevant motivation and context. List any dependencies that are required for this
→˓change.

Fixes # (issue)

Type of change

Please delete options that are not relevant.

- [] Bug fix (non-breaking change which fixes an issue)
- [] New feature (non-breaking change which adds functionality)
- [] Breaking change (fix or feature that would cause existing functionality to not
→˓work as expected)
- [] This change requires a documentation update

How Has This Been Tested?

Please describe the tests that you ran to verify your changes. Provide instructions
→˓so we can reproduce. Please also list any relevant details for your test
→˓configuration

- [] Test A
- [] Test B

Test Configuration:

* Firmware version:

* Hardware:

* Toolchain:

* SDK:

Checklist:

- [] My code follows the style guidelines of this project
- [] I have performed a self-review of my own code
- [] I have commented my code, particularly in hard-to-understand areas
- [] I have made corresponding changes to the documentation
- [] My changes generate no new warnings
- [] I have added tests that prove my fix is effective or that my feature works
- [] New and existing unit tests pass locally with my changes
- [] Any dependent changes have been merged and published in downstream modules

Note: The VOLTTRON repository includes a stub for completing your pull request. Please follow the stub to facilitate
the reviewing and merging processes.

2.8. Contributing Code 121

VOLTTRON Documentation, Release 8.1.3

2.8.3 What happens next?

Once you create a pull request, one or more VOLTTRON team members will review your changes and either accept
them as is ask for modifications in order to have your commits accepted. Typical response time is approximately two
weeks; please be patient, your pull request will be reviewed. You will be automatically emailed through the GitHub
notification system when this occurs (assuming you haven’t changed your GitHub preferences).

Merging changes from the main VOLTTRON repository

As time goes on the VOLTTRON code base will continually be modified so the next time you want to work
on a change to your files the odds are your local and remote repository will be out of date. In order to
get your remote VOLTTRON repository up to date with the main VOLTTRON repository you could simply
do a pull request to your remote repository from the main repository. To do so, navigate your browser to
https://github.com/YOUR_USERNAME/volttron/compare/develop. . . VOLTTRON:develop.

Click the ‘Create Pull Request’ button. On the following page click the ‘Create Pull Request’ button. On the next page
click ‘Merge Pull Request’ button.

Once your remote is updated you can now pull from your remote repository into your local repository through the
following command:

git pull

The other way to get the changes into your remote repository is to first update your local repository with the changes
from the main VOLTTRON repository and then pushing those changes up to your remote repository. To do that you
need to first create a second remote entry to go along with the origin. A remote is simply a pointer to the url of a
different repository than the current one. Type the following command to create a new remote called ‘upstream’:

git remote add upstream https://github.com/VOLTTRON/volttron

To update your local repository from the main VOLTTRON repository then execute the following command where
upstream is the remote and develop is the branch to pull from:

git pull upstream develop

Finally to get the changes into your remote repository you can execute:

git push origin

Other commands to know

At this point in time you should have enough information to be able to update both your local and remote repository
and create pull requests in order to get your changes into the main VOLTTRON repository. The following commands
are other commands to give you more information that the preceding tutorial went through

122 Chapter 2. Features

https://github.com/YOUR_USERNAME/volttron/compare/develop...VOLTTRON:develop

VOLTTRON Documentation, Release 8.1.3

Viewing what the remotes are in our local repository

git remote -v

Stashing changed files so that you can do a merge/pull from a remote

git stash save 'A comment to be listed'

Applying the last stashed files to the current repository

git stash pop

Finding help about any git command

git help
git help branch
git help stash
git help push
git help merge

Creating a branch from the branch and checking it out

git checkout -b newbranchname

Checking out a branch (if not local already will look to the remote to checkout)

git checkout branchname

Removing a local branch (cannot be current branch)

git branch -D branchname

Determine the current and show all local branches

git branch

2.8. Contributing Code 123

VOLTTRON Documentation, Release 8.1.3

Using Travis Continuous Integration Tools

The main VOLTTRON repository is hooked into an automated build tool called travis-ci. Your remote repository
can be automatically built with the same tool by hooking your account into travis-ci’s environment. To do this go to
https://travis-ci.org and create an account. You can using your GitHub login directly to this service. Then you will
need to enable the syncing of your repository through the travis-ci service. Finally you need to push a new change to
the repository. If the build fails you will receive an email notifying you of that fact and allowing you to modify the
source code and then push new changes out.

2.9 Contributing Documentation

The Community is encouraged to contribute documentation back to the project as they work through use cases the
developers may not have considered or documented. By contributing documentation back, the community can learn
from each other and build up a more extensive knowledge base.

VOLTTRON™ documentation utilizes ReadTheDocs: http://volttron.readthedocs.io/en/develop/ and is built using the
Sphinx Python library with static content in Restructured Text.

2.9.1 Building the Documentation

Static documentation can be found in the docs/source directory. Edit or create new .rst files to add new content using
the Restructured Text format. To see the results of your changes the documentation can be built locally through the
command line using the following instructions:

If you’ve already bootstrapped VOLTTRON™, do the following while activated. If not, this will also pull down the
necessary VOLTTRON™ libraries.

python bootstrap.py --documentation
cd docs
make html

Then, open your browser to the created local files:

file:///home/<USER>/git/volttron/docs/build/html/index.html

When complete, changes can be contributed back using the same process as code contributions by creating a pull
request. When the changes are accepted and merged, they will be reflected in the ReadTheDocs site.

2.9.2 Documentation Styleguide

Naming Conventions

• File names and directories should be all lower-case and use only dashes/minus signs (-) as word separators

index.rst
first-document.rst
more-documents

second-document.rst

• Reference Labels should be Capitalized and dash/minus separated:

.. _Reference-Label:

124 Chapter 2. Features

https://travis-ci.org
http://volttron.readthedocs.io/en/develop/
http://www.sphinx-doc.org/en/stable/
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html

VOLTTRON Documentation, Release 8.1.3

• Headings and Sub-headings should be written like book titles:

==============
The Page Title
==============

Headings

Each page should have a main title:

==================================
This is the Main Title of the Page
==================================

It can be useful to include reference labels throughout the document to use to refer back to that section of documenta-
tion. Include reference labels above titles and important headings:

.. _Main-Title:

==================================
This is the main title of the page
==================================

Heading Levels

• Page titles and documentation parts should use over-line and underline hashes:

=====
Title
=====

• Chapter headings should be over-lined and underlined with asterisks

Chapter

• For sections, subsections, sub-subsections, etc. underline the heading with the following:

– =, for sections

– -, for subsections

– ^, for sub-subsections

– “, for paragraphs

In addition to following guidelines for styling, please separate headers from previous content by two newlines.

=====
Title
=====

Content

(continues on next page)

2.9. Contributing Documentation 125

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

Subheading
==========

Example Code Blocks

Use bash for commands or user actions:

ls -al

Use this for the results of a command:

total 5277200
drwxr-xr-x 22 volttron volttron 4096 Oct 20 09:44 .
drwxr-xr-x 23 volttron volttron 4096 Oct 19 18:39 ..
-rwxr-xr-x 1 volttron volttron 164 Sep 29 17:08 agent-setup.sh
drwxr-xr-x 3 volttron volttron 4096 Sep 29 17:13 applications

Use this when Python source code is displayed

@RPC.export
def status_agents(self):

return self._aip.status_agents()

Directives

Danger: Something very bad!

Tip: This is something good to know

Some other directives

“attention”, “caution”, “danger”, “error”, “hint”, “important”, “note”, “tip”, “warning”, “admonition”

Links

Linking to external sites is simple:

Link to `Google <www.google.com>`_

126 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

References

You can reference other sections of documentation using the ref directive:

This will reference the :ref:`platform installation <Platform-Installation>`

Other resources

• http://pygments.org/docs/lexers/

• http://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html

• http://www.sphinx-doc.org/en/stable/markup/code.html

2.10 Jupyter Notebooks

Jupyter is an open-source web application that lets you create and share “notebook” documents. A notebook displays
formatted text along with live code that can be executed from the browser, displaying the execution output and pre-
serving it in the document. Notebooks that execute Python code used to be called iPython Notebooks. The iPython
Notebook project has now merged into Project Jupyter.

2.10.1 Using Jupyter to Manage a Set of VOLTTRON Servers

The following Jupyter notebooks for VOLTTRON have been provided as examples:

• Collector notebooks. Each Collector notebook sets up a particular type of device driver and forwards device
data to another VOLTTRON instance, the Aggregator.

– SimulationCollector notebook. This notebook sets up a group of Simulation device drivers and forwards
device data to another VOLTTRON instance, the Aggregator.

– BacnetCollector notebook. This notebook sets up a Bacnet (or Bacnet gateway) device driver and for-
wards device data to another VOLTTRON instance, the Aggregator.

– ChargePointCollector notebook. This notebook sets up a ChargePoint device driver and forwards device
data to another VOLTTRON instance, the Aggregator.

– SEP2Collector notebook. This notebook sets up a SEP2.0 (IEEE 2030.5) device driver and forwards
device data to another VOLTTRON instance, the Aggregator. The Smart Energy Profile 2.0 (“SEP2”)
protocol implements IEEE 2030.5, and is capable of connecting a wide array of smart energy devices to
the Smart Grid. The standard is designed to run over TCP/IP and is physical layer agnostic.

• Aggregator notebook. This notebook sets up and executes aggregation of forwarded data from other VOLT-
TRON instances, using a historian to record the data.

• Observer notebook. This notebook sets up and executes a DataPuller that captures data from another VOLT-
TRON instance, using a Historian to record the data. It also uses the Message Debugger agent to monitor
messages flowing across the VOLTTRON bus.

Each notebook configures and runs a set of VOLTTRON Agents. When used as a set they implement a multiple-
VOLTTRON-instance architecture that captures remote device data, aggregates it, and reports on it, routing the data
as follows:

2.10. Jupyter Notebooks 127

http://pygments.org/docs/lexers/
http://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html
http://www.sphinx-doc.org/en/stable/markup/code.html

VOLTTRON Documentation, Release 8.1.3

2.10.2 Install VOLTTRON and Jupyter on a Server

The remainder of this guide describes how to set up a host for VOLTTRON and Jupyter. Use this setup process on a
server in order to prepare it to run Jupyter notebook for VOLTTRON.

Set Up the Server and Install VOLTTRON

The following is a complete, but terse, description of the steps for installing and running VOLTTRON on a server. For
more detailed, general instructions, see Installing Volttron.

The VOLTTRON server should run on the same host as the Jupyter server.

• Load third-party software:

$ sudo apt-get update
$ sudo apt-get install build-essential python-dev openssl libssl-dev libevent-dev git
$ sudo apt-get install sqlite3

• Clone the VOLTTRON repository from github:

$ cd ~
$ mkdir repos
$ cd repos
$ git clone https://github.com/VOLTTRON/volttron/

• Check out the develop (or master) branch and bootstrap the development environment:

128 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

$ cd volttron
$ git checkout develop
$ python bootstrap.py

• Activate and initialize the VOLTTRON virtual environment:

Run the following each time you open a new command-line shell on the server:

$ export VOLTTRON_ROOT=~/repos/volttron
$ export VOLTTRON_HOME=~/.volttron
$ cd $VOLTTRON_ROOT
$ source env/bin/activate

Install Extra Libraries

• Add Python libraries to the VOLTTRON virtual environment:

These notebooks use third-party software that’s not included in VOLTTRON’s standard distribution that was loaded
by bootstrap.py. The following additional packages are required:

• Jupyter

• SQLAlchemy (for the Message Debugger)

• Suds (for the ChargePoint driver, if applicable)

• Numpy and MatPlotLib (for plotted output)

Note: A Jupyter installation also installs and/or upgrades many dependent libraries. Doing so could disrupt other
work on the OS, so it’s safest to load Jupyter (and any other library code) in a virtual environment. VOLTTRON
runs in a virtual environment during normal operation, so if you’re using Jupyter in conjunction with VOLTTRON, it
should be installed in your VOLTTRON virtual environment (In other words, be sure to use cd $VOLTTRON_ROOT
and source env/bin/activate to activate the virtual environment before running pip install.)

• Install the third-party software:

$ pip install SQLAlchemy==1.1.4
$ pip install suds-jurko==0.6
$ pip install numpy
$ pip install matplotlib
$ pip install jupyter

Note: If pip install fails due to an untrusted cert, try using this command instead:

$ pip install --trusted-host pypi.python.org <libraryname>

An InsecurePlatformWarning may be displayed, but it typically won’t stop the installation from proceeding.

2.10. Jupyter Notebooks 129

VOLTTRON Documentation, Release 8.1.3

2.10.3 Configure VOLTTRON

Use the vcfg wizard to configure the VOLTTRON instance. By default, the wizard configures a VOLTTRON instance
that communicates with agents only on the local host (ip 127.0.0.1). This set of notebooks manages communications
among multiple VOLTTRON instances on different hosts. To enable this cross-host communication on VOLTTRON’s
web server, replace 127.0.0.1 with the host’s IP address, as follows:

$ vcfg

Accept all defaults, except as follows:

• If a prompt defaults to 127.0.0.1 as an IP address, substitute the host’s IP address (this may happen multiple
times).

• When asked whether this is a volttron central, answer Y.

• When prompted for a username and password, use admin and admin.

2.10.4 Start VOLTTRON

Start the main VOLTTRON process, logging to $VOLTTRON_ROOT/volttron.log:

$ volttron -vv -l volttron.log --msgdebug

This runs VOLTTRON as a foreground process. To run it in the background, use:

$./start-volttron --msgdebug

This also enables the Message Debugger, a non-production VOLTTRON debugging aid that’s used by some notebooks.
To run with the Message Debugger disabled (VOLTTRON’s normal state), omit the --msgdebug flag.

Now that VOLTTRON is running, it’s ready for agent configuration and execution. Each Jupyter notebook contains
detailed instructions and executable code for doing that.

2.10.5 Configure Jupyter

More detailed information about installing, configuring and using Jupyter Notebooks is available on the Project Jupyter
site, http://jupyter.org/.

• Create a Jupyter configuration file:

$ jupyter notebook --generate-config

• Revise the Jupyter configuration:

Open ~/.jupyter/jupyter_notebook_config.py in your favorite text editor. Change the configuration to accept connec-
tions from any IP address (not just from localhost) and use a specific, non-default port number:

• Un-comment c.NotebookApp.ip and set it to: * instead of localhost

• Un-comment c.NotebookApp.port and set it to: 8891 instead of 8888

Save the config file.

• Open ports for TCP connections:

130 Chapter 2. Features

http://jupyter.org/

VOLTTRON Documentation, Release 8.1.3

Make sure that your Jupyter server host’s security rules allow inbound TCP connections on port 8891.

If the VOLTTRON instance needs to receive TCP requests, for example ForwardHistorian or DataPuller messages
from other VOLTTRON instances, make sure that the host’s security rules also allow inbound TCP communications
on VOLTTRON’s port, which is usually 22916.

2.10.6 Launch Jupyter

• Start the Jupyter server:

In a separate command-line shell, set up VOLTTRON’s environment variables and virtual environment, and then
launch the Jupyter server:

$ export VOLTTRON_HOME=(your volttron home directory, e.g. ~/.volttron)
$ export VOLTTRON_ROOT=(where volttron was installed; e.g. ~/repos/volttron)
$ cd $VOLTTRON_ROOT
$ source env/bin/activate
$ cd examples/JupyterNotebooks
$ jupyter notebook --no-browser

• Open a Jupyter client in a web browser:

Look up the host’s IP address (e.g., using ifconfig). Open a web browser and navigate to the URL that was displayed
when you started jupyter, replacing localhost with that IP address. A Jupyter web page should display, listing your
notebooks.

2.11 Python for Matlab Users

Matlab is a popular proprietary programming language and tool suite with built in support for matrix operations and
graphically plotting computation results. The purpose of this document is to introduce Python to those already familiar
Matlab so it will be easier for them to develop tools and agents in VOLTTRON.

2.11.1 A Simple Function

Python and Matlab are similar in many respects, syntactically and semantically. With the addition of the NumPy
library in Python, almost all numerical operations in Matlab can be emulated or directly translated. Here are functions
in each language that perform the same operation:

% Matlab
function [result] = times_two(number)

result = number * 2;
end

Python
def times_two(number):

result = number * 2
return result

Some notes about the previous functions:

1. Values are explicitly returned with the return statement. It is possible to return multiple values, as in Matlab, but
doing this without a good reason can lead to overcomplicated functions.

2.11. Python for Matlab Users 131

VOLTTRON Documentation, Release 8.1.3

2. Semicolons are not used to end statements in python, and white space is significant. After a block is started (if,
for, while, functions, classes) subsequent lines should be indented with four spaces. The block ends when the
programmer stops adding the extra level of indentation.

2.11.2 Translating

The following may be helpful if you already have a Matlab file or function that will be translated into Python. Many
of the syntax differences between Matlab and Python can be rectified with your text editor’s find and replace feature.

Start by copying all of your Matlab code into a new file with a .py extension. It is recommended to start by commenting
everything out and uncommenting the Matlab code in chunks. This way it is possible to write valid Python and verify
it as you translate, instead of waiting till the whole file is “translated”. Editors designed to work with Python should
be able to highlight syntax errors as well.

1. Comments are created with a %. Find and replace these with #.

def test_function():
single line Python comment
"""
Multi-line Python comment
"""
pass # inline Python comment

1. Change elseif blocks to elif blocks.

if thing == 0:
do_thing1()

elif thing ==1:
do_thing2()

else:
do_the_last_thing()

1. Python indexes start at zero instead of one. Array slices and range operations don’t include the upper bound, so
only the lower bound should decrease by one. The following examples are of Python code in the console:

>>> test_array = [0, 1, 2, 3, 4]
>>> test_array[0]
0
>>> test_array[1]
1
>>> test_array[0:2]
[0, 1]
>>>>>> test_array[:2]
[0, 1]
>>> test_array[2:]
[2, 3, 4]
>>>

1. Semicolons in Matlab are used to suppress output at the end of lines and for organizing array literals. After
arranging the arrays into nested lists, all semicolons can be removed.

2. The end keyword in Matlab is used both to access the last element in an array and to close blocks. The array use
case can be replaced with -1 and the others can be removed entirely.

>>> test_array = [0, 1, 2, 3, 4]
>>> test_array[-1]

(continues on next page)

132 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

4
>>>

A More Concrete Example

In the Building Economic Dispatch project, a sibling project to VOLTTRON, a number of components written in
Matlab would create a matrix out of some collection of columns and perform least squares regression using the matrix
division operator. This is straightforward and very similar in both languages assuming that all of the columns are
defined and are the same length.

% Matlab
XX = [U, xbp, xbp2, xbp3, xbp4, xbp5];
AA = XX \ ybp;

Python
import numpy as np

XX = np.column_stack((U, xbp, xbp2, xbp3, xbp4, xbp5))
AA, resid, rank, s = np.linalg.lstsq(XX, ybp)

This pattern also included the creation of the U column, a column of ones used as the bias term in the linear equation
. In order to make the Python version more readable and more robust, the pattern was removed from each component
and replaced with a single function call to least_squares_regression.

This function does some validation on the input parameters, automatically creates the bias column, and returns the
least squares solution to the system. Now if we want to change how the solution is calculated we only have to change
the one function, instead of each instance where the pattern was written originally.

def least_squares_regression(inputs=None, output=None):
if inputs is None:

raise ValueError("At least one input column is required")
if output is None:

raise ValueError("Output column is required")

if type(inputs) != tuple:
inputs = (inputs,)

ones = np.ones(len(inputs[0]))
x_columns = np.column_stack((ones,) + inputs)

solution, resid, rank, s = np.linalg.lstsq(x_columns, output)
return solution

2.11.3 Lessons Learned (sometimes the hard way)

Variable Names

Use descriptive function and variable names whenever possible. The most important things to consider here are reader
comprehension and searching. Consider a variable called hdr. Is it header without any vowels, or is it short for
high-dynamic-range? Spelling out full words in variable names can save someone else a lot of guesswork.

Searching comes in when we’re looking for instances of a string or variable. Single letter variable names are impossible
to search for. Variables names describing the value being stored in a concise but descriptive manner are preferred.

2.11. Python for Matlab Users 133

https://github.com/VOLTTRON/econ-dispatch

VOLTTRON Documentation, Release 8.1.3

Matlab load/save

Matlab has built-in functions to automatically save and load variables from your programs to disk. Using these
functions can lead to poor program design and should be avoided if possible. It would be best to refactor as you
translate if they are being used. Few operations are so expensive that that cannot be redone every time the program is
run. For part of the program that saves variables, consider making a function that simply returns them instead.

If your Matlab program is loading csv files then use the Pandas library when working in python. Pandas works well
with NumPy and is the go-to library when using csv files that contain numeric data.

2.11.4 More Resources

NumPy for Matlab Users Has a nice list of common operations in Matlab and NumPy.

NumPy Homepage

Pandas Homepage

2.12 Bootstrap Process

The bootstrap.py Python script in the root directory of the VOLTTRON repository may be used to create VOLTTRON’s
Python virtual environment and install or update service agent dependencies.

The first running of bootstrap.py will be against the systems python3 executable. During this initial step a virtual
environment is created using the venv module. Additionally, all requirements for running a base volttron instance
are installed. A user can specify additional arguments to the bootstrap.py script allowing a way to quickly install
dependencies for service agents (e.g. bootstrap.py –mysql).

boostrap with additional dependency requirements for web enabled agents.
user@machine$ python3 bootstrap.py --web

After activating an environment (source env/bin/activate) one can use the bootstrap.py script to install more service
agent dependencies by executing the same boostrap.py command.

Note: In the following example one can tell the environment is activated based upon the (volttron) prefix to the
command prompt

Adding additional database requirement for crate
(volttron) user@machine$ python3 bootstrap.py --crate

If a fresh install is necessary one can use the –force argument to rebuild the virtual environment from scratch.

Rebuild the environment from the system's python3
user@machine$ python3 bootstrap.py --force

Note: Multiple options can be specified on the command line python3 bootstrap.py –web –crate installs dependencies
for web enabled agents as well as the Crate database historian.

134 Chapter 2. Features

https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html
http://www.numpy.org/
http://pandas.pydata.org/

VOLTTRON Documentation, Release 8.1.3

2.12.1 Bootstrap Options

The bootstrap.py script takes several options that allow customization of the environment, installing and update pack-
ages, and setting the package locations. The following sections can be reproduced by executing:

Show the help output from bootstrap.py
user@machine$ python3 bootstrap --help

The options for customizing the location of the virtual environment are as follows.

--envdir VIRTUAL_ENV alternate location for virtual environment
--force force installing in non-empty directory
-o, --only-virtenv create virtual environment and exit (skip install)
--prompt PROMPT provide alternate prompt in activated environment

(default: volttron)

Additional options are available for customizing where an environment will retrieve packages and/or upgrade existing
packages installed.

update options:
--offline install from cache without downloading
-u, --upgrade upgrade installed packages
-w, --wheel build wheels in the pip wheelhouse

To help boostrap an environment in the shortest number of steps we have grouped dependency packages under named
collections. For example, the –web argument will install six different packages from a single call to boostrap.py –web.
The following collections are available to use.

...

Extra packaging options:
--all All dependency groups.
--crate Crate database adapter
--databases All of the databases (crate, mysql, postgres, etc).
--dnp3 Dependencies for the dnp3 agent.
--documentation All dependency groups to allow generation of documentation

→˓without error.
--drivers All drivers known to the platform driver.
--influxdb Influx database adapter
--market Base market agent dependencies
--mongo Mongo database adapter
--mysql Mysql database adapter
--pandas Pandas numerical analysis tool
--postgres Postgres database adapter
--testing A variety of testing tools for running unit/integration tests.
--web Packages facilitating the building of web enabled agents.
--weather Packages for the base weather agent

rabbitmq options:
--rabbitmq [RABBITMQ]

install rabbitmq server and its dependencies. optional
argument: Install directory that exists and is
writeable. RabbitMQ server will be installed in a
subdirectory.Defaults to /home/osboxes/rabbitmq_server

...

2.12. Bootstrap Process 135

VOLTTRON Documentation, Release 8.1.3

2.13 Platform Configuration

Each instance of the VOLTTRON platform includes a config file which is used to configure the platform instance
on startup. This file is kept in VOLTTRON_HOME and is created using the volttron-cfg (vcfg) command, or will be
created with default values on start up of the platform otherwise.

Following is helpful information about the config file and the vcfg command.

2.13.1 VOLTTRON_HOME

By default, the VOLTTRON project bases its files out of VOLTTRON_HOME which defaults to ~/.volttron. This
directory features directories and files used by the platform for important operation and management tasks as well as
containing packaged agents and their individual runtime environments (including data directories, identity files, etc.)

• $VOLTTRON_HOME/agents - contains the agents installed on the platform

• $VOLTTRON_HOME/auth.json - file containing authentication and authorization rules for agents connecting
to the VOLTTRON instance.

• $VOLTTRON_HOME/certificates - contains the certificates for use with the Licensed VOLTTRON code.

• $VOLTTRON_HOME/configuration_store - agent configuration store files are stored in this directory. Each
agent may have a file here in which JSON representations of their stored configuration files are stored.

• $VOLTTRON_HOME/run - contains files create by the platform during execution. The main ones are the
ZMQ files created for publish and subscribe functionality.

• $VOLTTRON_HOME/ssh - keys used by agent mobility in the Licensed VOLTTRON code

• $VOLTTRON_HOME/config - Default location to place a config file to override any platform settings.

• $VOLTTRON_HOME/packaged - agent packages created with volttron-pkg are created in this directory

• $VOLTTRON_HOME/VOLTTRON_PID - File containing the Unix process ID for the VOLTTRON platform
- used for tracking platform status.

2.13.2 VOLTTRON Config File

The config file in VOLTTRON_HOME is the config file used by the platform. This configuration file specifies the
behavior of the platform at runtime, including which message bus it uses, the name of the platform instance, and the
address bound to by VIP. The VOLTTRON Config wizard (explained below) can be used to configure an instance for
the first time. The user may run the wizard again or edit the config file directly as necessary for operations. The
following is a simple example config for a multi-platform deployment:

[volttron]
message-bus = zmq
vip-address = tcp://127.0.0.1:22916
bind-web-address = <web service bind address>
web-ssl-cert = <VOLTTRON_HOME>/certificates/certs/platform_web-server.crt
web-ssl-key = <VOLTTRON_HOME>/certificates/private/platform_web-server.pem
instance-name = volttron1
volttron-central-address = <VC address>

The example consists of the following entries:

• message-bus - message bus being used for this instance (rmq/zmq)

• vip-address - address bound to by VIP for message bus communication

136 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

• bind-web-address - Optional, needed if platform has to support web feature. Represents address bound
to by the platform web service for handling HTTP(s) requests. Typical address would be https://
<hostname>:8443

• web-ssl-cert - Optional, needed if platform has to support web feature. Represents path to the certificate for the
instance’s web service

• web-ssl-key - Optional, needed if platform has to support web feature. Represents secret key or path to secret
key file used by web service authenticate requests

• instance-name - name of this VOLTTRON platform instance, should be unique for the deployment

• volttron-central-address - Optional, needed if instance is running Volttron Central. Represents web ad-
dress of VOLTTRON Central agent managing this platform instance. Typical address would be https://
<hostname>:8443

2.13.3 VOLTTRON Config

The volttron-cfg or vcfg command allows for an easy configuration of the VOLTTRON environment. The command
includes the ability to set up the platform configuration, an instance of the platform historian, VOLTTRON Central
UI, and VOLTTRON Central Platform agent.

Running vcfg will create a config file in VOLTTRON_HOME which will be populated according to the answers to
prompts. This process should be repeated for each platform instance, and can be re-run to reconfigure a platform
instance.

Note: To create a simple instance of VOLTTRON, leave the default response, or select yes (y) if prompted for a
yes or no response [Y/N]. You must choose a username and password for the VOLTTRON Central admin account if
selected.

A set of example responses are included here (username is user, localhost is volttron-pc):

(volttron) user@volttron-pc:~/volttron$ vcfg

Your VOLTTRON_HOME currently set to: /home/user/.volttron

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmq/zmq)? [zmq]:
What is the vip address? [tcp://127.0.0.1]:
What is the port for the vip address? [22916]:
Is this instance web enabled? [N]: y
What is the protocol for this instance? [https]:
Web address set to: https://volttron-pc
What is the port for this instance? [8443]:
Would you like to generate a new web certificate? [Y]:
WARNING! CA certificate does not exist.
Create new root CA? [Y]:

Please enter the following details for web server certificate:
Country: [US]:
State: WA
Location: Richland
Organization: PNNL
Organization Unit: VOLTTRON

Created CA cert
Creating new web server certificate.

(continues on next page)

2.13. Platform Configuration 137

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

Is this an instance of volttron central? [N]: y
Configuring /home/user/volttron/services/core/VolttronCentral.
Installing volttron central.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]: y
VC admin and password are set up using the admin web interface.
After starting VOLTTRON, please go to https://volttron-pc:8443/admin/login.html to
→˓complete the setup.
Will this instance be controlled by volttron central? [Y]:
Configuring /home/user/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [volttron1]:
Volttron central address set to https://volttron-pc:8443
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]: y
Would you like to install a platform historian? [N]: y
Configuring /home/user/volttron/services/core/SQLHistorian.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]: y
Would you like to install a platform driver? [N]: y
Configuring /home/user/volttron/services/core/PlatformDriverAgent.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Would you like to**install a fake device on the platform driver? [N]: y
Should the agent autostart? [N]: y
Would you like to install a listener agent? [N]: y
Configuring examples/ListenerAgent.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]: y
Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/user/.volttron/config

Once this is finished, run VOLTTRON and test the new configuration.

Optional Arguments

• -v, –verbose - Enables verbose output in standard-output (PIP output, etc.)

• –vhome VHOME - Provide a path to set VOLTTRON_HOME for this instance

• –instance-name INSTANCE_NAME - Provide a name for this instance. Required for running secure agents
mode

• –list-agents - Display a list of configurable agents (Listener, Platform Driver, Platform Historian, VOLTTRON
Central, VOLTTRON Central Platform)

• –agent AGENT [AGENT . . .] - Configure listed agents

• –secure-agent-users - Require that agents run as their own Unix users (this requires running
scripts/secure_user_permissions.sh as sudo)

138 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

RabbitMQ Arguments

vcfg command to configure a single RabbitMQ instance of VOLTTRON.

Usage:

vcfg rabbitmq single [--config Optional path to rabbitmq config file]``

vcfg command to configure a federation instance of RabbitMQ VOLTTRON.

Usage:

vcfg rabbitmq federation [--config Optional path to rabbitmq federation
→˓config file] [--max-retries Optional maximum CSR retry attempt]``

vcfg command to create shovel to send messages from one RabbitMQ instance of VOLTTRON to another.

Usage:

vcfg rabbitmq shovel [--config Optional path to shovel config file] [--max-
→˓retries Optional maximum CSR retry attempt]``

2.14 Planning a Deployment

The 3 major installation types for VOLTTRON are doing development, doing research using VOLTTRON, and col-
lecting and managing physical devices.

Development and Research installation tend to be smaller footprint installations. For development, the data is usually
synthetic or copied from another source. The existing documentation covers development installs in significant detail.

Other deployments will have a better installation experience if they consider certain kinds of questions while they plan
their installation.

2.14.1 Questions

• Do you want to send commands to the machines ?

• Do you want to store the data centrally ?

• How many machines do you expect to collect data from on each “collector” ?

• How often will the machines collect data ?

• Are all the devices visible to the same network ?

• What types of VOLTTRON applications do you want to run ?

2.14. Planning a Deployment 139

VOLTTRON Documentation, Release 8.1.3

Commands

If you wish to send commands to the devices, you will want to install and configure the Volttron Central agent. If you
are only using VOLTTRON to securely collect the data, you can turn off the extra agents to reduce the footprint.

Storing Data

VOLTTRON supports multiple historians. MySQL and MongoDB are the most commonly used. As you plan your
installation, you should consider how quickly you need access to the data and where. If you are looking at the health
and well-being of an entire suite of devices, its likely that you want to do that from a central location. Analytics can
be performed at the edge by VOLTTRON applications or can be performed across the data usually from a central data
repository. The latency that you can tolerate in your data being available will also determine choices in different agents
(ForwardHistorian versus Data Mover)

How Many

The ratio of how many devices-to-collector machine is based on several factors. These include:

• how much memory and network bandwidth the collection machine has. More = More devices

• how fast the local storage is can affect how fast the data cache can be written. Very slow storage devices can fall
behind

The second half of the “how many” question is how many collector platforms are writing to a single VOLTTRON
platform to store data - and whether that storage is local, remote, big enough, etc.

If you are storing more than moderate amount of data, you will probably benefit from installing your database on a
different machine than your concrete historian machine.

Note: This is contra-indicated if you have a slow network connection between you concrete historian and your
database machine.

In synthetic testing up to 6 virtual machines hosting 500 devices each (18 points) were easily supported by a single
centralized platform writing to a Mongo database - using a high speed network. That central platform experienced
very little CPU or memory load when the VOLTTRON Central agent was disabled.

How Often

This question is closely related to the last. A higher sampling frequency will create more data. This will place more
work in the storage phase.

Networks

In many cases, there are constraints on how networks can interact with each other. In many cases, these include
security considerations. On some sites, the primary network will be protected from less secure networks and may
require different installation considerations. For example, if a data collector machine and the database machine are on
the same network with sufficient security, you may choose to have the data collector write directly to the database. If
the collector is on an isolated building network then you will likely need to use the ForwardHistorian to bridge the two
networks.

140 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Other Considerations

Physical location and maintenance of collector machines must be considered in all live deployments. Although the
number of data points may imply a heavy load on a data collection box, the physical constraints may limit the practi-
cality of having more than a single box. The other side of that discussion is deploying many collector boxes may be
simpler initially, but may create a maintenance challenge if you don’t plan ahead on how you apply patches, etc.

Naming conventions should also be considered. The ability to trace data through the system and identify the collector
machine and device can be invaluable in debugging and analysis.

2.14.2 Deployment Options

There are several ways to deploy the VOLTTRON platform in a Linux environment. It is up to the user to determine
which is right for them. The following assumes that the platform has already been bootstrapped and is ready to run.

Simple Command Line

With the VOLTTRON environment activated the platform can be started simply by running VOLTTRON on the com-
mand line.

$volttron -vv

This will start the platform in the current terminal with very verbose logging turned on. This is most appropriate for
testing Agents or testing a deployment for problems before switching to a more long term solution. This will print all
log messages to the console in real time.

This should not be used for long term deployment. As soon as an SSH session is terminated for whatever reason the
processes attached to that session will be killed. This also will not capture log message to a file.

Running VOLTTRON as a Background Process

A simple, more long term solution, is to run volttron in the background and disown it from the current terminal.

Warning: If you plan on running VOLTTRON in the background and detaching it from the terminal with the
disown command be sure to redirect stderr and stdout to /dev/null. Even if logging to a file is used some
libraries which VOLTTRON relies on output directly to stdout and stderr. This will cause problems if those file
descriptors are not redirected to /dev/null.

$volttron -vv -l volttron.log > /dev/null 2>&1&

Alternatively:

``./start-volttron``

Note: If you are not in an activated environment, this script will start the platform running in the background in the
correct environment, however the environment will not be activated for you, you must activate it yourself.

If there are other jobs running in your terminal be sure to disown the correct one.

2.14. Planning a Deployment 141

VOLTTRON Documentation, Release 8.1.3

$jobs
[1]+ Running something else
[2]+ Running ./start-volttron

#Disown VOLTTRON
$disown %2

This will run the VOLTTRON platform in the background and turn it into a daemon. The log output will be directed
to a file called volttron.log in the current directory.

To keep the size of the log under control for more longer term deployments us the rotating log configuration file
examples/rotatinglog.py.

$volttron -vv --log-config examples/rotatinglog.py > /dev/null 2>&1&

This will start a rotate the log file at midnight and limit the total log data to seven days worth.

The main downside to this approach is that the VOLTTRON platform will not automatically resume if the system is
restarted. It will need to be restarted manually after reboot.

Setting up VOLTTRON as a System Service

Systemd

An example service file scripts/admin/volttron.service for systemd cas be used as a starting point for
setting up VOLTTRON as a service. Note that as this will redirect all the output that would be going to stdout - to
the syslog. This can be accessed using journalctl. For systems that run all the time or have a high level of debugging
turned on, we recommend checking the system’s logrotate settings.

[Unit]
Description=VOLTTRON Platform Service
After=network.target

[Service]
Type=simple

#Change this to the user that VOLTTRON will run as.
User=volttron
Group=volttron

#Uncomment and change this to specify a different VOLTTRON_HOME
#Environment="VOLTTRON_HOME=/home/volttron/.volttron"

#Change these to settings to reflect the install location of VOLTTRON
WorkingDirectory=/var/lib/volttron
ExecStart=/var/lib/volttron/env/bin/volttron -vv
ExecStop=/var/lib/volttron/env/bin/volttron-ctl shutdown --platform

[Install]
WantedBy=multi-user.target

After the file has been modified to reflect the setup of the platform you can install it with the following commands.
These need to be run as root or with sudo as appropriate.

142 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

#Copy the service file into place
cp scripts/admin/volttron.service /etc/systemd/system/

#Set the correct permissions if needed
chmod 644 /etc/systemd/system/volttron.service

#Notify systemd that a new service file exists (this is crucial!)
systemctl daemon-reload

#Start the service
systemctl start volttron.service

Init.d

An example init script scripts/admin/volttron can be used as a starting point for setting up VOLTTRON as
a service on init.d based systems.

Minor changes may be needed for the file to work on the target system. Specifically the USER, VLHOME, and
VOLTTRON_HOME variables may need to be changed.

...
#Change this to the user VOLTTRON will run as.
USER=volttron
#Change this to the install location of VOLTTRON
VLHOME=/var/lib/volttron

...

#Uncomment and change this to specify a different VOLTTRON_HOME
#export VOLTTRON_HOME=/home/volttron/.volttron

The script can be installed with the following commands. These need to be run as root or with sudo as appropriate.

#Copy the script into place
cp scripts/admin/volttron /etc/init.d/

#Make the file executable
chmod 755 /etc/init.d/volttron

#Change the owner to root
chown root:root /etc/init.d/volttron

#These will set it to startup automatically at boot
update-rc.d volttron defaults

#Start the service
/etc/init.d/volttron start

2.14. Planning a Deployment 143

VOLTTRON Documentation, Release 8.1.3

2.15 Single Machine

The purpose of this demonstration is to show the process of setting up a simple VOLTTRON instance for use on a
single machine.

Note: The simple deployment example below considers only the ZeroMQ deployment scenario. For RabbitMQ
deployments, read and perform the RabbitMQ installation steps from the platform installation instructions and con-
figuration steps from VOLTTRON Config.

2.15.1 Install and Build VOLTTRON

First, install VOLTTRON:

For a quick reference for Ubuntu machines:

sudo apt-get update
sudo apt-get install build-essential libffi-dev python3-dev python3-venv openssl
→˓libssl-dev libevent-dev git
git clone https://github.com/VOLTTRON/volttron/
cd volttron
python3 bootstrap.py --drivers --databases

Note: For additional detail and more information on installing in other environments, please see the platform install
section. See the bootstrap process docs for more information on its operation and available options.

Activate the Environment

After the build is complete, activate the VOLTTRON environment.

source env/bin/activate

Run VOLTTRON Config

The volttron-cfg or vcfg commands can be used to configure platform communication. For an example single machine
deployment, most values can be left at their default values. The following is a simple case example of running vcfg:

(volttron) user@volttron-pc:~/volttron$ vcfg

Your VOLTTRON_HOME currently set to: /home/james/.volttron

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmq/zmq)? [zmq]:
What is the vip address? [tcp://127.0.0.1]:
What is the port for the vip address? [22916]:
Is this instance web enabled? [N]:
Will this instance be controlled by volttron central? [Y]: N
Would you like to install a platform historian? [N]:
Would you like to install a platform driver? [N]:
Would you like to install a listener agent? [N]:

(continues on next page)

144 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/james/.volttron/config

To learn more, read the volttron-config section of the Platform Features docs.

Note: Steps below highlight manually installing some example agents. To skip manual install, supply y or Y for the
platform historian, platform driver and listener agent installation options.

Start VOLTTRON

The most convenient way to start the platform is with the .start-volttron command (from the volttron root directory).

./start-volttron

The output following the platform starting successfully will appear like this:

2020-10-27 11:34:33,593 () volttron.platform.agent.utils DEBUG: value from env None
2020-10-27 11:34:33,593 () volttron.platform.agent.utils DEBUG: value from config
→˓False
2020-10-27 11:34:35,656 () root DEBUG: Creating ZMQ Core config.store
2020-10-27 11:34:35,672 () volttron.platform.store INFO: Initializing configuration
→˓store service.
2020-10-27 11:34:35,717 () root DEBUG: Creating ZMQ Core platform.auth
2020-10-27 11:34:35,728 () volttron.platform.auth INFO: loading auth file /home/james/
→˓.volttron/auth.json
2020-10-27 11:34:35,731 () volttron.platform.auth INFO: auth file /home/james/.
→˓volttron/auth.json loaded
2020-10-27 11:34:35,732 () volttron.platform.agent.utils INFO: Adding file watch for /
→˓home/james/.volttron/auth.json dirname=/home/james/.volttron, filename=auth.json
2020-10-27 11:34:35,734 () volttron.platform.agent.utils INFO: Added file watch for /
→˓home/james/.volttron/auth.json
2020-10-27 11:34:35,734 () volttron.platform.agent.utils INFO: Adding file watch for /
→˓home/james/.volttron/protected_topics.json dirname=/home/james/.volttron,
→˓filename=protected_topics.json
2020-10-27 11:34:35,736 () volttron.platform.agent.utils INFO: Added file watch for /
→˓home/james/.volttron/protected_topics.json
2020-10-27 11:34:35,737 () volttron.platform.vip.pubsubservice INFO: protected-topics
→˓loaded
2020-10-27 11:34:35,739 () volttron.platform.vip.agent.core INFO: Connected to
→˓platform: router: fc054c9f-aa37-4842-a618-6e70d53530f0 version: 1.0 identity:
→˓config.store
2020-10-27 11:34:35,743 () volttron.platform.vip.agent.core INFO: Connected to
→˓platform: router: fc054c9f-aa37-4842-a618-6e70d53530f0 version: 1.0 identity:
→˓platform.auth
2020-10-27 11:34:35,746 () volttron.platform.vip.pubsubservice INFO: protected-topics
→˓loaded
2020-10-27 11:34:35,750 () volttron.platform.vip.agent.subsystems.configstore DEBUG:
→˓Processing callbacks for affected files: {}
2020-10-27 11:34:35,879 () root DEBUG: Creating ZMQ Core control

(continues on next page)

2.15. Single Machine 145

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

2020-10-27 11:34:35,908 () root DEBUG: Creating ZMQ Core keydiscovery
2020-10-27 11:34:35,913 () root DEBUG: Creating ZMQ Core pubsub
2020-10-27 11:34:35,924 () volttron.platform.auth INFO: loading auth file /home/james/
→˓.volttron/auth.json
2020-10-27 11:34:38,010 () volttron.platform.vip.agent.core INFO: Connected to
→˓platform: router: fc054c9f-aa37-4842-a618-6e70d53530f0 version: 1.0 identity:
→˓control
2020-10-27 11:34:38,066 () volttron.platform.vip.agent.core INFO: Connected to
→˓platform: router: fc054c9f-aa37-4842-a618-6e70d53530f0 version: 1.0 identity: pubsub
2020-10-27 11:34:38,069 () volttron.platform.vip.agent.core INFO: Connected to
→˓platform: router: fc054c9f-aa37-4842-a618-6e70d53530f0 version: 1.0 identity:
→˓keydiscovery
2020-10-27 11:34:38,429 () volttron.platform.auth WARNING: Attempt 1 to get peerlist
→˓failed with exception 0.5 seconds
2020-10-27 11:34:38,430 () volttron.platform.auth WARNING: Get list of peers from
→˓subsystem directly
2020-10-27 11:34:38,433 () volttron.platform.auth INFO: auth file /home/james/.
→˓volttron/auth.json loaded
2020-10-27 11:34:38,434 () volttron.platform.auth INFO: loading auth file /home/james/
→˓.volttron/auth.json
2020-10-27 11:34:40,961 () volttron.platform.auth WARNING: Attempt 1 to get peerlist
→˓failed with exception 0.5 seconds
2020-10-27 11:34:40,961 () volttron.platform.auth WARNING: Get list of peers from
→˓subsystem directly
2020-10-27 11:34:40,969 () volttron.platform.auth INFO: auth file /home/james/.
→˓volttron/auth.json loaded

Note: While running the platform with verbose logging enabled, the volttron.log file is useful for confirming suc-
cessful platform operations or debugging. It is commonly recommended to open a new terminal window and run the
following command to view the VOLTTRON logs as they are created:

tail -f volttron.log

2.15.2 Install Agents and Historian

Out of the box, VOLTTRON includes a number of agents which may be useful for single machine deployments:

• historians - Historians automatically record a data from a number of topics published to the bus. For
more information on the historian framework or one of the included concrete implementations, view
the docs

• Listener - This example agent can be useful for debugging drivers or other agents publishing to the
bus. docs

• Platform Driver - The Platform Driver is responsible for managing device communication on a
platform instance.

• weather agents - weather agents can be used to collect weather data from sources like Weather.gov

Note: The services/core, services/ops, and examples directories in the repository contain additional
agents to use to fit individual use cases.

For a simple setup example, a Platform Driver, SQLite Historian, and Listener are installed using the following steps:

146 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

1. Create a configuration file for the Platform Driver and SQLite Historian (it is advised to create a configs directory
in volttron root to keep configs for a deployment). For information on how to create configurations for these
agents, view their docs:

• Platform Driver

• SQLite Historian

• Listener

For a simple example, the configurations can be copied as-is to the configs directory:

cp services/core/PlatformDriverAgent/platform-driver.agent configs
cp services/core/SQLHistorian/config.sqlite configs
cp examples/ListenerAgent/config configs/listener.config

2. Use the install-agent.py script to install the agent on the platform:

python scripts/install-agent.py -s services/core/SQLHistorian -c configs/config.
→˓sqlite --tag listener
python scripts/install-agent.py -s services/core/PlatformDriverAgent -c configs/
→˓platform-driver.agent --tag platform_driver
python scripts/install-agent.py -s examples/ListenerAgent -c configs/listener.config -
→˓-tag platform_historian

.. note::

The `volttron.log` file will contain logging indicating that the agent has
→˓installed successfully.

.. code-block:: console

2020-10-27 11:42:08,882 () volttron.platform.auth INFO: AUTH: After
→˓authenticate user id: control.connection, b'c61dff8e-f362-4906-964f-63c32b99b6d5'

2020-10-27 11:42:08,882 () volttron.platform.auth INFO: authentication success:
→˓userid=b'c61dff8e-f362-4906-964f-63c32b99b6d5' domain='vip', address=
→˓'localhost:1000:1000:3249', mechanism='CURVE', credentials=[
→˓'ZrDvPG4JNLE26GoPUrTP22rV0PV8uGCnrXThrNFk_Ec'], user='control.connection'

2020-10-27 11:42:08,898 () volttron.platform.aip DEBUG: Using name template
→˓"listeneragent-3.3_{n}" to generate VIP ID

2020-10-27 11:42:08,899 () volttron.platform.aip INFO: Agent b3e7053c-28e8-414f-
→˓b685-8522eb230c7a setup to use VIP ID listeneragent-3.3_1

2020-10-27 11:42:08,899 () volttron.platform.agent.utils DEBUG: missing file /
→˓home/james/.volttron/agents/b3e7053c-28e8-414f-b685-8522eb230c7a/listeneragent-3.3/
→˓listeneragent-3.3.dist-info/keystore.json

2020-10-27 11:42:08,899 () volttron.platform.agent.utils INFO: creating file /
→˓home/james/.volttron/agents/b3e7053c-28e8-414f-b685-8522eb230c7a/listeneragent-3.3/
→˓listeneragent-3.3.dist-info/keystore.json

2020-10-27 11:42:08,899 () volttron.platform.keystore DEBUG: calling generate
→˓from keystore

2020-10-27 11:42:08,909 () volttron.platform.auth INFO: loading auth file /home/
→˓james/.volttron/auth.json

2020-10-27 11:42:11,415 () volttron.platform.auth WARNING: Attempt 1 to get
→˓peerlist failed with exception 0.5 seconds

2020-10-27 11:42:11,415 () volttron.platform.auth WARNING: Get list of peers
→˓from subsystem directly

2020-10-27 11:42:11,419 () volttron.platform.auth INFO: auth file /home/james/.
→˓volttron/auth.json loaded

1. Use the vctl status command to ensure that the agents have been successfully installed:

2.15. Single Machine 147

VOLTTRON Documentation, Release 8.1.3

vctl status

(volttron)user@volttron-pc:~/volttron$ vctl status
AGENT IDENTITY TAG STATUS

→˓HEALTH
8 listeneragent-3.2 listeneragent-3.2_1 listener
0 platform_driveragent-3.2 platform.driver platform_driver
3 sqlhistorianagent-3.7.0 platform.historian platform_historian

Note: After installation, the STATUS and HEALTH columns of the vctl status command will be vacant, indicating
that the agent is not running. The –start option can be added to the install-agent.py script arguments to automatically
start agents after they have been installed.

2.15.3 Install a Fake Driver

The following are the simplest steps for installing a fake driver for example use. For more information on installing
concrete drivers such as the BACnet or Modbus drivers, view their respective documentation in the Driver framework
section.

Note: This section will assume the user has created a configs directory in the volttron root directory, activated the
Python virtual environment, and started the platform as noted above.

cp examples/configurations/drivers/fake.config <VOLTTRON root>/configs
cp examples/configurations/drivers/fake.csv <VOLTTRON root>/configs
vctl config store platform.driver devices/campus/building/fake configs/fake.config
vctl config store platform.driver fake.csv devices/fake.csv

Note: For more information on the fake driver, or the configurations used in the above example, view the docs

2.15.4 Testing the Deployment

To test that the configuration was successful, start an instance of VOLTTRON in the background:

./start-volttron

Note: This command must be run from the root VOLTTRON directory.

Having following the examples above, the platform should be ready for demonstrating the example deployment. Start
the Listener, SQLite historian and Platform Driver.

vctl start --tag listener platform_historian platform_driver

The output should look similar to this:

148 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(volttron)user@volttron-pc:~/volttron$ vctl status
AGENT IDENTITY TAG STATUS

→˓HEALTH
8 listeneragent-3.2 listeneragent-3.2_1 listener running [2810] GOOD
0 platform_driveragent-3.2 platform.driver platform_driver running [2813]
→˓GOOD
3 sqlhistorianagent-3.7.0 platform.historian platform_historian running [2811] GOOD

Note: The STATUS column indicates whether the agent is running. The HEALTH column indicates whether the
current state of the agent is within intended parameters (if the Platform Driver is publishing, the platform historian has
not been backlogged, etc.)

You can further verify that the agents are functioning correctly with tail -f volttron.log.

ListenerAgent:

2020-10-27 11:43:33,997 (listeneragent-3.3 3294) __main__ INFO: Peer: pubsub, Sender:
→˓listeneragent-3.3_1:, Bus: , Topic: heartbeat/listeneragent-3.3_1, Headers: {
→˓'TimeStamp': '2020-10-27T18:43:33.988561+00:00', 'min_compatible_version': '3.0',
→˓'max_compatible_version': ''}, Message:
'GOOD'

Platform Driver with Fake Driver:

2020-10-27 11:47:50,037 (listeneragent-3.3 3294) __main__ INFO: Peer: pubsub, Sender:
→˓platform.driver:, Bus: , Topic: devices/campus/building/fake/all, Headers: {'Date':
→˓'2020-10-27T18:47:50.005349+00:00', 'TimeStamp': '2020-10-27T18:47:50.005349+00:00',
→˓ 'SynchronizedTimeStamp': '2020-10-27T18:47:50.000000+00:00', 'min_compatible_
→˓version': '3.0', 'max_compatible_version': ''}, Message:
[{'EKG': -0.8660254037844386,
'EKG_Cos': -0.8660254037844386,
'EKG_Sin': -0.8660254037844386,
'Heartbeat': True,
'OutsideAirTemperature1': 50.0,
'OutsideAirTemperature2': 50.0,
'OutsideAirTemperature3': 50.0,
'PowerState': 0,
'SampleBool1': True,
'SampleBool2': True,
'SampleBool3': True,
'SampleLong1': 50,
...

SQLite Historian:

2020-10-27 11:50:25,021 (platform_driveragent-4.0 3535) platform_driver.driver DEBUG:
→˓finish publishing: devices/campus/building/fake/all
2020-10-27 11:50:25,052 (sqlhistorianagent-3.7.0 3551) volttron.platform.dbutils.
→˓sqlitefuncts DEBUG: Managing store - timestamp limit: None GB size limit: None

2.15. Single Machine 149

VOLTTRON Documentation, Release 8.1.3

2.16 Multi-Platform Connection

There are multiple ways to establish connection between external VOLTTRON platforms. Given that VOLTTRON
now supports ZeroMq and RabbitMQ type of message bus with each using different type authentication mechanism,
the number of different ways that agents can connect to external platforms has significantly increased. Various multi-
platform deployment scenarios will be covered in this section.

1. Agents can directly connect to external platforms to send and receive messages. Forward historian, Data Mover
agents fall under this category. The deployment steps for forward historian is described in Forward Historian
Deployment and data mover historian in DataMover Historian Deployment

2. The platforms maintain the connection with other platforms and agents can send to and receive messages from
external platforms without having to establish connection directly. The deployment steps is described in Multi
Platform Router Deployment

3. RabbitMQ has ready made plugins such as shovel and federation to connect to external brokers. This feature is
leveraged to make connections to external platforms. This is described in Multi Platform RabbitMQ Deployment

4. A web based admin interface to authenticate multiple instances (ZeroMq or RabbitMQ) wanting to connect
to single central instance is now available. The deployment steps is described in Multi Platform Multi-Bus
Deployment

5. VOLTTRON Central is a platform management web application that allows platforms to communicate and to
be managed from a centralized server. The deployment steps is described in VOLTTRON Central Demo

2.16.1 Assumptions

• Data Collector is the deployment box that has the drivers and is collecting data from devices which will be
forwarded to a VOLTTRON Central.

• Volttron Central (VC) is the deployment box that has the historian which will save data from all Data Collectors
to the central database.

• VOLTTRON_HOME is assumed to the default on both boxes (/home/<user>/.volttron).

Note: VOLTTRON_HOME is the directory used by the platform for managing state and configuration of the platform
and agents installed locally on the platform. Auth keys, certificates, the configuration store, etc. are stored in this
directory by the platform.

Forward Historian

The primary use case for the Forward Historian or Forwarder is to send data to another instance of VOLTTRON as if
the data were live. This allows agents running on a more secure and/or more powerful machine to run analysis on data
being collected on a potentially less secure/powerful board.

Given this use case, it is not optimized for batching large amounts of data when “live-ness” is not needed. For this use
case, please see the Data Mover Historian.

The Forward Historian can be found in the services/core directory.

Forward Historian can be used to forward data between two ZMQ instances, two RMQ instances, or between ZMQ and
RMQ instances. For Forward Historian to establish a successful connection to the destination VOLTTRON instance:

1. forward historian should be configured to connect and authenticate the destination instance, and

2. the remote instance should be configured to accept incoming connection from the forward historian

150 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

How we setup the above two depends on the message bus used in source instance and destination instance

Setup for two ZMQ VOLTTRON instance or a ZMQ and RabbitMQ VOLTTRON instance

When forwarder is used between two ZeroMQ instances it relies on the CurveMQ authentication mechanism used
by ZMQ based VOLTTRON. When the communication is between a ZeroMQ and RabbitMQ instance, the forward
historian uses the proxy ZMQ router agent on the RabbitMQ instance and hence once again uses the CurveMQ au-
thentication

See also:

For more details about VIP authentication in ZMQ based VOLTTRON refer to VIP Authentication

Configuring Forwarder Agent

At a minimum, a forward historian’s configuration should contain enough details to connect to and authenticate the
remote destination. For this it needs

1. the destination’s VIP address (destination-vip)

2. the public key of the destination server (destination-serverkey)

There are two ways to provide these information

Minimum configuration: Option 1

Provide the needed information in the configuration file. For example

{
"destination-vip": "tcp://172.18.0.4:22916"
"destination-serverkey": "D3tIAPOFf7wS3787FgEOLjoPfXUT9rAGpv80ryloZGE"

}

The destination server key can be found by running the following command on the destination volttron instance:

vctl auth serverkey

Note: The example above uses the local IP address, the IP address for your configuration should match the intended
target

An example configuration with above parameters is available at services/core/ForwardHistorian/config.

Minimum configuration: Option 2

If the destination volttron instance is web enabled then the forward historian can find the destination’s vip address and
public key using the destination’s web discovery page. All web enabled volttron instances provide a <instance’s web
address>/discovery/ page that provides the following server information

1. server key

2. vip address

3. instance name

2.16. Multi-Platform Connection 151

VOLTTRON Documentation, Release 8.1.3

4. RabbitMQ server’s AMQP address (Only on RabbitMQ instances)

5. RabbitMQ server’s CA cert (Only on RabbitMQ instances)

To forward data to a web enabled volttron instance, forwarder can configured with the destination’s web address
instead of destination’s vip address and public key. For example

{
"destination-address": "https://centvolttron2:8443"

}

An example configuration with above parameters is available at services/core/ForwardHistorian/config_web_address.

Optional Configurations

The most common use case for a forwarder is to forward data to a remote historian. Therefore, forward historians’ by
default forward the default topics a historian subscribes to - devices, analysis, log, and record. However, a forward
historian can be configured to forward any custom topic or disable forwarding devices, analysis, log and/or record
topic data. For example

{
"destination-address": "https://centvolttron2:8443",
"custom_topic_list": ["heartbeat"],
"capture_log_data": false

}

See Configuration Options for all available forward historian configuration

Since forward historian extends BaseHistorian all BaseHistorian’s configuration can be added to forwarder. Please see
BaseHistorian Configurations for the list of available BaseHistorian configurations

Installation

Once we have our configuration file ready we can install the forwarder agent using the command

vctl install --agent-config <path to config file> services/core/ForwardHistorian

But before we start the agent we should configure the destination volttron instance to accept the connection from the
forwarder.

Configuring destination volttron instance

When a forwarder tries to connect to a destination volttron instance, the destination instance will check the ip address
of the source and public key of connecting agent against its list of accepted peers. So before forwarder can connect to
the destination instance, we should add these two details to the destination’s auth.json file.

To do this we can use the command

vctl auth add --address <address of source instance where forwarder is installed> --
→˓credentials <publickey of installed forwarder agent>

Only the address and credential keys are mandatory. You can add additional fields such as comments or user id for
reference. In the above command address is the ip address of the source instance in which the forwarder is installed.
Credentials is the public key of the installed forwarder agent. You can get the forwarder agent’s public key by running
the following command on the source instance

152 Chapter 2. Features

../../../volttron-api/services/ForwardHistorian/README.html#configuration-options
../../../agent-framework/historian-agents/historian-framework.html#configuration

VOLTTRON Documentation, Release 8.1.3

vctl auth publickey <agent uuid or name>

See also:

For more details about VIP authentication in ZMQ based VOLTTRON refer to VIP Authentication

Setup for two RabbitMQ VOLTTRON instances

RabbitMQ based VOLTTRON instances use x509 certificate based authentication. A forward historian that forwards
data from one RMQ instance to another RMQ instance would need a x509 certificate that is signed by the destination
volttron instance’s root certificate for authentication. To obtain a signed certificate, on start, the forward historian
creates a certificate signing request (CSR) and sends it to destination’s instance for approval. An admin on the destina-
tion end, needs to login into the admin web interface and approve the request. On approval a certificate signed by the
destination CA is returned to the forward historian and the forward historian can use this certificate for communication.

See also:

For more details about CSR approval process see Agent communication to Remote RabbitMQ instance For an example
CSR approval process see VOLTTRON Central Multi-Platform Multi-Bus Demo

Forwarder Configuration

Since destination instance would have web enabled to approve the incoming CSR requests, forward historian can
be configured with just the destination instance web address similar to ref:Minimum configuration: Option 2<con-
fig_option_2>

{
"destination-address": "https://centvolttron2:8443"

}

On start, the forwarder makes Certificate signing request and retries periodically till the certificate is approved.

Testing Forward Historian

Once forward historian is configured and installed and the destination is configured to accept incoming connection
from the forwarder (either by adding to destination’s auth.json as in the case of ZMQ or after CSR is approved in
case of RMQ) forwarder can forward any message published to the configured set of topics and re-publish on the
destination’s messagebus.

Testing with custom topic

1. Configure Forward historian to forward the topic heartbeat by adding the following to the forward historian’s
configuration

"custom_topic_list": ["heartbeat"],

2. If forwarder is not already running start the forwarder agent. If it is already running the configuration change
should get picked up automatically in a few seconds.

3. If there are no other agent in the source volttron instance, install a listener agent that periodically publishes to
the topic ‘heartbeat’

2.16. Multi-Platform Connection 153

VOLTTRON Documentation, Release 8.1.3

vctl install examples/ListenerAgent

Note: As of VOLTTRON 8.0, all agents by default publish a heartbeat message periodically unless the agent
explicitly opted out of it. So if you already have other installed agents that publish heartbeat message you don’t
have to add the listener agent

4. On the destination instance install a listener agent and tail the volttron log file. You should be able to see the
listener or any other source agent’s heartbeat message on the destination volttron’s log file

Testing with default topics

Forward historian by default forwards the default topics a historian subscribes to - devices, analysis, log, and record.
On the source instance, we can install a platform driver and configure it with a fake device to publish data to the
devices topic. Once the platform driver is started and data gets published to the devices topic, forwarder can re-publish
these to the destination message bus

1. Configure and install forward historian as explained in the sections above

2. Configure destination to accept incoming connection as explained in the above sections

3. Shutdown source volttron instance

vctl shutdown --platform

4. On source install platform driver using the below vcfg command. When prompted, choose to configure a fake
device for the platform driver

vcfg --agent platform_driver

Below is an example command with prompts

(volttron) [volttron@centvolttron1 myvolttron]$ vcfg --agent platform_driver

Your VOLTTRON_HOME currently set to: /home/volttron/vhomes/rmq_instance1

Is this the volttron you are attempting to setup? [Y]:
Configuring /home/volttron/git/myvolttron/services/core/PlatformDriverAgent.
['volttron', '-vv', '-l', '/home/volttron/vhomes/rmq_instance1/volttron.cfg.log']
Would you like to install a fake device on the platform driver? [N]: y
Should the agent autostart? [N]: n

5. Start source volttron instance

./start-volttron

6. Start platform driver and forwarder on source volttron instance

7. On the destination volttron instance install a listener agent and tail the volttron log. You should see the devices
data periodically getting logged in the destination volttron instance.

154 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

DataMover Historian

This guide describes how a DataMover historian can be used to transfer data from one VOLTTRON instance to another.
The DataMover historian is different from Forward historian in the way it sends the data to the remote instance. It
first batches the data and makes a RPC call to a remote historian instead of publishing data on the remote message bus
instance. The remote historian then stores the data into it’s database.

The walk-through below demonstrates how to setup DataMover historian to send data from one VOLTTRON instance
to another.

VOLTTRON instance 1 sends data to platform historian on VOLTTRON instance 2

As an example two VOLTTRON instances will be created and to send data from one VOLTTRON instance running a
fake driver (subscribing to publishes from a fake device) and sending the values to a remote historian running on the
second VOLTTRON instance.

VOLTTRON instance 1

• vctl shutdown -platform (if the platform is already working)

• volttron-cfg (this helps in configuring the volttron instance http://volttron.readthedocs.io/en/releases-4.1/
core_services/control/VOLTTRON-Config.html

– Specify the VIP address of the instance: tcp://127.0.0.1:22916

– Install Platform Driver Agent with a fake driver for the instance.

– Install a listener agent so see the topics that are coming from the diver agent

• Then run the volttron instance by using the following command: ./start-volttron

VOLTTRON instance 2

• vctl shutdown -platform (if the platform is already working)

• volttron-cfg (this helps in configuring the volttron instance) http://volttron.readthedocs.io/en/releases-4.1/
core_services/control/VOLTTRON-Config.html

– Specify the VIP address of the instance : tcp://127.0.0.2:22916

– Install a platform historian. volttron-cfg installs a default SQL historian.

• Start the VOLTTRON instance by using following command: ./start-volttron

DataMover Configuration

An example config file is available in services/core/DataMover/config. We need to update the destination-
vip, destination-serverkey, and destination-historian-identity entries as per our setup.

Note: Here the topics from the driver on VOLTTRON instance 1 will be sent to instance 2.

• destination-vip: The VIP address of the volttron instance to which we need to send data. Example : tcp://
127.0.0.2:22916

2.16. Multi-Platform Connection 155

http://volttron.readthedocs.io/en/releases-4.1/core_services/control/VOLTTRON-Config.html
http://volttron.readthedocs.io/en/releases-4.1/core_services/control/VOLTTRON-Config.html
http://volttron.readthedocs.io/en/releases-4.1/core_services/control/VOLTTRON-Config.html
http://volttron.readthedocs.io/en/releases-4.1/core_services/control/VOLTTRON-Config.html

VOLTTRON Documentation, Release 8.1.3

• destination-serverkey: The server key of remote VOLTTRON instance - Get the server key of VOLTTRON
instance 2 and set destination-serverkey property with the server key

vctl auth serverkey

• destination-historian-identity: Identity of remote platform historian. Default is “platform.historian”

Running DataMover Historian

• Install the DataMover historian on the VOLTTRON instance 1

python scripts/install-agent.py -s services/core/DataMover -c services/core/DataMover/
→˓config -i datamover --start

• Add the public key of the DataMover historian on VOLTTRON instance 2 to enable authentication of the Data-
Mover on VOLTTRON instance 2.

– Get the public key of the DataMover. Run the below command on instance 1 terminal.

vctl auth publickey --name datamoveragent-0.1

– Add the credentials of the DataMover historian in VOLTTRON instance 2

vctl auth add --credentials <public key of data mover>

Check data in SQLite database

To check if data is transferred and stored in the database of remote platform historian, we need to check the entries
in the database. The default location of SQL database (if not explicitly specified in the config file) will be in the data
directory inside the platform historian’s installed directory within it’s $VOLTTRON_HOME.

• Get the uuid of the platform historian. This can be found by running the vctl status on the terminal of
instance 2. The first column of the data mover historian entry in the status table gives the first alphabet/number
of the uuid.

• Go the data directory of platform historian’s install directory. For example,
/home/ubuntu/.platform2/agents/6292302c-32cf-4744-bd13-27e78e96184f/sqlhistorianagent-3.7.0/data

• Run the SQL command to see the data

sqlite3 platform.historian.sqlite
select * from data;

• You will see similar entries

2020-10-27T15:07:55.006549+00:00|14|true
2020-10-27T15:07:55.006549+00:00|15|10.0
2020-10-27T15:07:55.006549+00:00|16|20
2020-10-27T15:07:55.006549+00:00|17|true
2020-10-27T15:07:55.006549+00:00|18|10.0
2020-10-27T15:07:55.006549+00:00|19|20
2020-10-27T15:07:55.006549+00:00|20|true
2020-10-27T15:07:55.006549+00:00|21|0
2020-10-27T15:07:55.006549+00:00|22|0

156 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Multi-Platform Between Routers

Multi-Platform between routers alleviates the need for an agent in one platform to connect to another platform directly
in order for it to send/receive messages from the other platform. Instead with this new type of connection, connections
to external platforms will be maintained by the platforms itself and agents do not have the burden to manage the
connections directly. This guide will show how to connect three VOLTTRON instances with a fake driver running on
VOLTTRON instance 1 publishing to topic with prefix=”devices” and listener agents running on other 2 VOLTTRON
instances subscribed to topic “devices”.

• Getting Started

• Multi-Platform Configuration

• Configuration and Authentication in Setup Mode

• Setup Configuration and Authentication Manually

• Start Platform driver on VOLTTRON instance 1

• Start Listener agents on VOLTTRON instance 2 and 3

• Stopping All the Platforms

Getting Started

Modify the subscribe annotate method parameters in the listener agent (examples/ListenerAgent/listener/agent.py in
the VOLTTRON root directory) to include all_platforms=True parameter to receive messages from external
platforms.

@PubSub.subscribe('pubsub', '')

to

@PubSub.subscribe('pubsub', 'devices', all_platforms=True)

or add below line in the onstart method

self.vip.pubsub.subscribe('pubsub', 'devices', self.on_match, all_platforms=True)

Note: If using the onstart method remove the @PubSub.subscribe(‘pubsub’, ‘’) from the top of the method.

After installing VOLTTRON, open three shells with the current directory the root of the VOLTTRON repository. Then
activate the VOLTTRON environment and export the VOLTTRON_HOME variable. The home variable needs to be
different for each instance.

$ source env/bin/activate
$ export VOLTTRON_HOME=~/.volttron1

Run vcfg in all the three shells. This command will ask how the instance should be set up. Many of the options have
defaults and that will be sufficient. Enter a different VIP address for each platform. Configure fake platform driver in
the first shell and listener agent in second and third shell.

2.16. Multi-Platform Connection 157

VOLTTRON Documentation, Release 8.1.3

Multi-Platform Configuration

For each instance, specify the instance name in platform config file under it’s VOLTTRON_HOME directory. If the
platform supports web server, add the bind-web-address as well.

Here is an example,

Path of the config: $VOLTTRON_HOME/config

[volttron]
vip-address = tcp://127.0.0.1:22916
instance-name = "platform1"
bind-web-address = http://127.0.0.1:8080

Instance name and bind web address entries added into each VOLTTRON platform’s config file is shown below.

Next, each instance needs to know the VIP address, platform name and server keys of the remote platforms that it is
connecting to. In addition, each platform has to authenticate or accept the connecting instances’ public keys. We can
do this step either by running VOLTTRON in setup mode or configure the information manually.

158 Chapter 2. Features

../../_images/multiplatform-terminator-setup.png
../../_images/multiplatform-config.png

VOLTTRON Documentation, Release 8.1.3

Configuration and Authentication in Setup Mode

Note: It is necessary for each platform to have a web server if running in setup mode

Add list of web addresses of remote platforms in $VOLTTRON_HOME/external_address.json

Start VOLTTRON instances in setup mode in the three terminal windows. The “-l” option in the following command
tells VOLTTRON to log to a file. The file name should be different for each instance.

$ volttron -vv -l volttron.log --setup-mode > volttron.log 2>&1 &

A new auth entry is added for each new platform connection. This can be checked with below command in each
terminal window.

$ vctl auth list

After all the connections are authenticated, we can start the instances in normal mode.

$./stop-volttron
$./start-volttron

2.16. Multi-Platform Connection 159

../../_images/multiplatform-external-address.png
../../_images/multiplatform-setupmode-auth-screen.png

VOLTTRON Documentation, Release 8.1.3

Setup Configuration and Authentication Manually

If you do not need web servers in your setup, then you will need to build the platform discovery config file manually.
The config file should contain an entry containing VIP address, instance name and serverkey of each remote platform
connection.

Name of the file: external_platform_discovery.json

Directory path: Each platform’s VOLTTRON_HOME directory.

For example, since VOLTTRON instance 1 is connecting to VOLTTRON instance 2 and 3, contents of
external_platform_discovery.json will be

{
"platform2": {"vip-address":"tcp://127.0.0.2:22916",

"instance-name":"platform2",
"serverkey":"YFyIgXy2H7gIKC1x6uPMdDOB_i9lzfAPB1IgbxfXLGc"},

"platform3": {"vip-address":"tcp://127.0.0.3:22916",
"instance-name":"platform3",
"serverkey":"hzU2bnlacAhZSaI0rI8a6XK_bqLSpA0JRK4jq8ttZxw"}

}

We can obtain the serverkey of each platform using below command in each terminal window:

$ vctl auth serverkey

Contents of external_platform_discovery.json of VOLTTRON instance 1, 2, 3 is shown below.

After this, you will need to add the server keys of the connecting platforms using the vctl utility. Type vctl auth
add command on the command prompt and simply hit Enter to select defaults on all fields except credentials. Here,
we can either add serverkey of connecting platform or type /.*/ to allow ALL connections.

Warning: /.*/ allows ALL agent and platform connections without authentication.

$ vctl auth add
domain []:
address []:
user_id []:
capabilities (delimit multiple entries with comma) []:
roles (delimit multiple entries with comma) []:
groups (delimit multiple entries with comma) []:

(continues on next page)

160 Chapter 2. Features

../../_images/multiplatform-discovery-config.png

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

mechanism [CURVE]:
credentials []: /.*/
comments []:
enabled [True]:
added entry domain=None, address=None, mechanism='CURVE', credentials=u'/.*/', user_
→˓id=None

For more information on authentication see authentication.

Once the initial configuration are setup, you can start all the VOLTTRON instances in normal mode.

$./start-volttron

Next step is to start agents in each platform to observe the multi-platform PubSub communication behavior.

Start Platform driver on VOLTTRON instance 1

If platform driver is not configured to auto start when the instance starts up, we can start it explicitly with this command.

$ vctl start --tag platform_driver

Start Listener agents on VOLTTRON instance 2 and 3

If the listener agent is not configured to auto start when the instance starts up, we can start it explicitly with this
command.

$ vctl start --tag listener

We should start seeing messages with prefix=”devices” in the logs of VOLTTRON instances 2 and 3.

2.16. Multi-Platform Connection 161

../../_images/multiplatform-pubsub.png

VOLTTRON Documentation, Release 8.1.3

Stopping All the Platforms

We can stop all the VOLTTRON instances by executing below command in each terminal window.

$ vctl shutdown --platform

Platform External Address Configuration

In the configuration file located in $VOLTTRON_HOME/config add vip-address=tcp://ip:port for each
address you want to listen on:

Example
vip-address=tcp://127.0.0.102:8182
vip-address=tcp://127.0.0.103:8083
vip-address=tcp://127.0.0.103:8183

Note: The config file is generated after running the vcfg command. The VIP-address is for the local platform, NOT
the remote platform.

Multi-platform RabbitMQ Deployment

With ZeroMQ based VOLTTRON, multi-platform communication was accomplished in three different ways described
below. Similar behavior can be accomplished with RabbitMQ-VOLTTRON as well.

1. Direct connection to remote instance - Write an agent that would connect to a remote instance directly.

2. Special agents - Use special agents such as forward historian/data puller agents that would forward/receive
messages to/from remote instances. In RabbitMQ-VOLTTRON, we make use of the Shovel Plugin to achieve
this behavior.

3. Multi-Platform RPC and PubSub - Configure VIP address of all remote instances that an instance has to connect
to its $VOLTTRON_HOME/external_discovery.json and let the router module in each instance manage the con-
nection and take care of the message routing for us. In RabbitMQ-VOLTTRON, we make use of the Federation
Plugin to achieve this behavior.

Terminology

For all the three different ways of setting up multiplatform links, we first need to identify the upstream server and
downstream server. The upstream server is the node that is publishing some message of interest; we shall refer to this
node as the publisher node. The downstream server is the node that will receive messages from the upstream server;
we shall refer to this node as the subscriber node. Note that upstream server & publisher node and downstream server
& subscriber node will be used interchangeably for the rest of this guide.

162 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Multi-Platform Communication With RabbitMQ SSL

RabbitMQ-VOLTTRON uses SSL based authentication for connection to the platform. This feature is extended to
connection between multiple VOLTTRON platforms. The below figure shows the 2 remote VOLTTRON platforms
can establish authentication connection to the other.

Suppose there are two virtual machines (VOLTTRON1 and VOLTTRON2) running single instances of RabbitMQ;
VOLTTRON1 and VOLTTRON2 want to talk to each other via the federation or shovel plugins. For shovel/federation
to have authenticated connection to the remote instance, it needs to have it’s public certificate signed by the remote
instance’s CA. So as part of the shovel or federation creation steps, a certificate signing request is made to the remote
instance. The admin of the remote instance should be ready to accept/reject such a request through VOLTTRON’s
admin web interface. To facilitate this process, the VOLTTRON platform exposes a web-based server API for request-
ing, listing, approving, and denying certificate requests. For more detailed description, refer to Agent communication
to Remote RabbitMQ instance. After the CSR request is accepted, an authenticated shovel/federation connection can
be established.

Using the Federation Plugin

Note: Please make sure that a single instance of RabbitMQ VOLTTRON is setup before attempting to create a
federation link platform installation steps for RMQ

Connecting multiple VOLTTRON instances can be done using the federation plugin. To create a RabbitMQ federation,
we have to configure the downstream volttron instance to create federated exchange. A federated exchange links to
other exchanges. In this case, the downstream federated exchange links to the upstream exchange. Conceptually,
messages published to the upstream exchanges are copied to the federated exchange, as though they were published
directly to the federated exchange.

Path: $VOLTTRON_HOME/rabbitmq_federation_config.yml

Mandatory parameters for federation setup
federation-upstream:

(continues on next page)

2.16. Multi-Platform Connection 163

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

volttron4: # hostname of upstream server
port: '5671'
virtual-host: volttron4
certificates:

csr: true
private_key: "path to private key" # For example, /home/volttron/vhome/test_

→˓fed/certificates/private/volttron1.federation.pem
public_cert: "path to public cert" # For example, /home/volttron/vhome/test_

→˓fed/certificates/federation/volttron2.volttron1.federation.crt
remote_ca: "path to CA cert" # For example, /home/volttron/vhome/test_fed/

→˓certificates/federation/volttron2_ca.crt
federation-user: volttron4.federation #<local instance name>.federation

volttron5: # hostname of upstream server
port: '5671'
virtual-host: volttron5
certificates:

csr: true
private_key: "path to private key"
public_cert: "path to public cert"
remote_ca: "path to CA cert"

federation-user: volttron5.federation #<local instance name>.federation

To setup federation on the VOLTTRON instance, run the following command on the downstream server:

vcfg rabbitmq federation [--config optional path to rabbitmq_federation_config.yml] [-
→˓-max-retries optional maximum CSR retry attempt]

This establishes federation links to upstream servers. Here the default maximum retry attempt is set to 15. Once a
federation link to the upstream server is established on the downstream server, the messages published on the upstream
server become available to the downstream server as if it were published locally.

Multi-Platform RPC With Federation

For multi-platform RPC communication, federation links need to be established on both the VOLTTRON nodes. Once
the federation links are established, RPC communication becomes fairly simple.

164 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Consider Agent A on VOLTTRON instance “volttron1” on host “host_A” wants to make RPC call to Agent B on
VOLTTRON instance “volttron2” on host “host_B”.

1. Agent A makes RPC call.

kwargs = {"external_platform": self.destination_instance_name}
agent_a.vip.rpc.call("agent_b", set_point, "point_name", 2.5, **kwargs)

2. The message is transferred over federation link to VOLTTRON instance “volttron2” as both the exchanges are
made federated.

3. The RPC subsystem of Agent B calls the actual RPC method and gets the result. It encapsulates the message
result into a VIP message object and sends it back to Agent A on VOLTTRON instance “volttron1”.

4. The RPC subsystem on Agent A receives the message result and gives it to the Agent A application.

Multi-Platform PubSub With Federation

For multi-platform PubSub communication, it is sufficient to have a single federation link from the downstream server
to the upstream server. In case of bi-directional data flow, two links have to established in both the directions.

2.16. Multi-Platform Connection 165

VOLTTRON Documentation, Release 8.1.3

Consider Agent B on VOLTTRON instance “volttron2” on host “host_B” which wants to subscribe to messages from
VOLTTRON instance “volttron2” on host “host_B”. First, a federation link needs to be established from “volttron2”
to “volttron1”.

1. Agent B makes a subscribe call:

agent_b.vip.subscribe.call("pubsub", prefix="devices", all_platforms=True)

2. The PubSub subsystem converts the prefix to __pubsub__.*.devices.#. Here, * indicates that agent is
subscribing to the devices topic from all VOLTTRON platforms.

3. A new queue is created and bound to VOLTTRON exchange with the above binding key. Since the VOLTTRON
exchange is a federated exchange, any subscribed message on the upstream server becomes available on the
federated exchange and Agent B will be able to receive it.

4. Agent A publishes message to topic devices/pnnl/isb1/hvac1

5. The PubSub subsystem publishes this message on its VOLTTRON exchange.

6. The message is received by the Pubsub subsystem of Agent A via the federation link.

Installation Steps

1. Setup two VOLTTRON instances using the instructions at platform installation steps for RMQ. Please note that
each instance should have a unique instance name and should be running on a machine/VM that has a unique
host name.

2. Identify upstream servers (publisher nodes) and downstream servers (collector nodes). To create a RabbitMQ
federation, we have to configure upstream servers on the downstream server and make the VOLTTRON exchange
“federated”.

a. On the downstream server (collector node)

166 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

vcfg rabbitmq federation [--config optional path to rabbitmq_federation_config.yml
containing the details of the upstream hostname, port and vhost.] [--max-retries
→˓optional maximum CSR retry attempt]

Example configuration for federation is available in examples/configurations/rabbitmq/rabbitmq_federation_config.yml

If no config file is provided, the script will prompt for hostname (or IP address), port, and vhost of each upstream
node you would like to add and certificates for connecting to upstream server. For bi-directional data flow, we
will have to run the same script on both the nodes.

b. If no config file is provided and certificates for connecting to upstream server have to be generated afresh, then
the upstream server should be web enabled and admin should be ready to accept/reject incoming requests. Please
refer to Multiple Platform Multiple Bus connection on how to enable web feature and accept/reject incoming
authentication requests. Below image shows steps to follow to create a federation link from downstream instance
“volttron1” to upstream instance “volttron2”.

On downstream server (collector node),

On upstream server (publisher node), Login to “https://volttron2:8443/index.html” in a web browser. You will
see incoming CSR request from “volttron1” instance.

Accept the incoming CSR request from “volttron1” instance.

2.16. Multi-Platform Connection 167

https://volttron2:8443/index.html

VOLTTRON Documentation, Release 8.1.3

You can also find and accept the pending CSR via the command line, using the vctl auth remote sub-commands.

First list the pending certs and credentials.

vctl auth remote list

USER_ID ADDRESS STATUS
volttron2.volttron1.federation 172.20.0.2 PENDING

Approve the pending CSR using the approve command.

vctl auth remote approve volttron2.volttron1.federation

Run the list command again to verify that the CSR has been approved.

USER_ID ADDRESS STATUS
volttron2.volttron1.federation 172.20.0.2 APPROVED

5. Test the federation setup.

a. On the downstream server run a listener agent which subscribes to messages from all platforms

vctl install examples/ListenerAgent --agent-config examples/ListenerAgent/
→˓config --start

b. Install platform driver, configure fake device on upstream server and start volttron and platform driver.

./stop-volttron
vcfg --agent platform_driver
./start-volttron
vctl start --tag platform_driver

c. Verify that the listener agent in downstream VOLTTRON instance is able to receive the messages. The down-
stream volttron instance’s volttron.log should display device data scrapped by platform driver agent in upstream
volttron instance.

6. Open ports and https service if needed. On Redhat based systems, ports used by RabbitMQ (defaults to 5671,
15671 for SSL, 5672 and 15672 otherwise) might not be open by default. Please contact system administrator
to get ports opened on the downstream server.

Following are commands used on centos 7.

sudo firewall-cmd --zone=public --add-port=15671/tcp --permanent
sudo firewall-cmd --zone=public --add-port=5671/tcp --permanent
sudo firewall-cmd --reload

7. How to remove federation link

a. Using the management web interface

168 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Log into management web interface using downstream server’s admin username. Navigate to admin tab
and then to federation management page. The status of the upstream link will be displayed on the page.
Click on the upstream link name and delete it.

b. Using “vctl” command on the upstream server.

vctl rabbitmq list-federation-links
NAME STATUS
upstream-volttron2-volttron running

Copy the upstream link name and run the below command to remove it.

vctl rabbitmq remove-federation-links upstream-volttron2-volttron
Do you wish to delete certificates as well? [Y/n] y
Removing certificate paths from VOLTTRON_HOME and from the config
→˓file

Note: These commands removes the federation parameter from RabbitMQ, deletes the certificates from VOLT-
TRON_HOME and certificate entries from rabbitmq_federation_config.yml on the publisher node. The remote admin
must delete the remote certificates through admin web interface. If you need to rerun the federation command again
for the same setup, then a fresh CSR request is made to the remote instance. The remote admin has to approve the new
request as before.

Using the Shovel Plugin

Note: Please make sure that a single instance of RabbitMQ VOLTTRON is setup before attempting to create a shovel
link platform installation steps for RMQ.

Shovels act as well-written client applications which move messages from a source to a destination broker. The below
configuration shows how to setup a shovel to forward PubSub messages or perform multi-platform RPC communica-
tion from a local (i.e. publisher node) to a remote instance (i.e. subscriber node). The configuration expects hostname,
port and virtual host values of the remote instance. It also needs certificates, namely private certs, public certificate
signed by remote instance, and remote CA certificate.

Path: $VOLTTRON_HOME/rabbitmq_shovel_config.yml

Mandatory parameters for shovel setup
shovel:

volttron2: # remote hostname
https-port: 8443
port: 5671
shovel-user: volttron1.shovelvolttron2 #<instance_name>.<unique name>
virtual-host: volttron
certificates:

private_cert: "path to private cert" # For example, /home/volttron/vhome/
→˓test_shovel/certificates/private/volttron1.shovelvolttron2.pem

public_cert: "path to public cert" # For example, /home/volttron/vhome/
→˓test_shovel/certificates/shovels/volttron2.volttron1.shovelvolttron2.crt

remote_ca: "path to CA cert" # For example, /home/volttron/vhome/test_
→˓shovel/certificates/shovels/volttron2_ca.crt

Configuration to forward pubsub topics
pubsub:

(continues on next page)

2.16. Multi-Platform Connection 169

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

Identity of agent that is publishing the topic
platform.driver:

Topic pattern to be forwarded
- devices

Configuration to make remote RPC calls
rpc:
Remote instance name
volttron2:

List of pair of agent identities (local caller, remote callee)
- [scheduler, platform.actuator]

To forward PubSub messages, the topic and agent identity of the publisher agent is needed. To perform RPC, the
instance name of the remote instance and agent identities of the local agent and remote agent are needed.

To configure the VOLTTRON instance to setup shovel, run the following command on the local instance.

vcfg rabbitmq shovel [--config optional path to rabbitmq_shovel_config.yml] [--max-
→˓retries optional maximum CSR retry attempt]

This sets up a shovel that forwards messages (either PubSub or RPC) from a local exchange to a remote exchange.

Multi-Platform PubSub With Shovel

After the shovel link is established for Pubsub, the below figure shows how the communication happens.

Note: For bi-directional pubsub communication, shovel links need to be created on both the nodes. The “blue” arrows
show the shovel binding key. The pubsub topic configuration in $VOLTTRON_HOME/rabbitmq_shovel_config.yml
gets internally converted to the shovel binding key: “__pubsub__.<local instance name>.<actual topic>”.

170 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Now consider a case where shovels are setup in both the directions for forwarding “devices” topic.

1. Agent B makes a subscribe call to receive messages with topic “devices” from all connected platforms.

agent_b.vip.subscribe.call("pubsub", prefix="devices", all_platforms=True)

2. The PubSub subsystem converts the prefix to __pubsub__.*.devices.# The * indicates that the agent is
subscribing to the “devices” topic from all the VOLTTRON platforms.

3. A new queue is created and bound to VOLTTRON exchange with above binding key.

4. Agent A publishes message to topic devices/pnnl/isb1/hvac1

5. PubSub subsystem publishes this message on its VOLTTRON exchange.

6. Because of the shovel link from VOLTTRON instance “volttron1” to “volttron2”, the message is forwarded
from VOLTTRON exchange “volttron1” to “volttron2” and is picked up by Agent B on “volttron2”.

Multi-Platform RPC With Shovel

After the shovel link is established for multi-platform RPC, the below figure shows how the RPC communication
happens.

Note: It is mandatory to have shovel links in both directions because RPC is a request-response
type of communication. We will need to set the agent identities for caller and callee in the $VOLT-
TRON_HOME/rabbitmq_shovel_config.yml. The “blue” arrows show the resulting the shovel binding key.

Consider Agent A on VOLTTRON instance “volttron1” on host “host_A” wants to make RPC call on Agent B on
VOLTTRON instance “volttron2” on host “host_B”.

1. Agent A makes RPC call:

2.16. Multi-Platform Connection 171

VOLTTRON Documentation, Release 8.1.3

kwargs = {"external_platform": self.destination_instance_name}
agent_a.vip.rpc.call("agent_b", set_point, "point_name", 2.5, **kwargs)

2. The message is transferred over shovel link to VOLTTRON instance “volttron2”.

3. The RPC subsystem of Agent B calls the actual RPC method and gets the result. It encapsulates the message
result into a VIP message object and sends it back to Agent A on VOLTTRON instance “volttron1”.

4. The RPC subsystem on Agent A receives the message result and gives it to Agent A’s application.

Installation Steps for Pubsub Communication

For multi-platform communication over shovel, we need the connecting instances to trust each other. As part of the
shovel creation process, a certificate signing request is made to the remote instance. The admin of the remote instance
has to accept or reject such a request through VOLTTRON admin web interface. If accepted, a bundle containing a
certificate signed by the remote CA is sent as a response back to the local instance. Subsequently, shovel connection is
established with these certificates. If the user already has certificates signed by the remote CA, then that will be used
for connection. Otherwise, the user can run the command vcfg rabbitmq shovel and it will prompt the user to
make a CSR request as part of shovel setup.

1. Setup two VOLTTRON instances using the steps described in installation section. Please note that each instance
should have a unique instance name.

2. Identify the instance that is going to act as the “publisher” instance. Suppose “volttron1” instance is the “pub-
lisher” instance and “volttron2” instance is the “subscriber” instance. Then we need to create a shovel on
“volttron1” to forward messages matching certain topics to remote instance “volttron2”.

a. On the publisher node,

vcfg rabbitmq shovel [--config optional path to rabbitmq_shovel_
→˓config.yml] [--max-retries optional maximum CSR retry attempt]

rabbitmq_shovel_config.yml should contain the details of the remote hostname, port, vhost, cer-
tificates for connecting to remote instance and list of topics to forward. Example configuration
for shovel is available in examples/configurations/rabbitmq/rabbitmq_shovel_config.yml

For this example, let’s set the topic to “devices”

If no config file is provided, the script will prompt for hostname (or IP address), port, vhost,
certificates for connecting to remote instance and list of topics for each remote instance you
would like to add. For bi-directional data flow, we will have to run the same script on both the
nodes.

b. If no config file is provided and certificates for connecting to remote instance have to be generated
afresh, then the remote instance should be web enabled and admin should be ready to accept/reject
incoming requests. Please refer to Multiple Platform Multiple Bus connection on how to enable web
feature and accept/reject incoming authentication requests. Below image shows steps to follow to
create a shovel to connect from “volttron1” to “volttron2” to publish “devices” topic from “volttron1”
to “volttron2”.

On publisher node,

172 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

On subscriber node, login to “https://volttron2:8443/index.html” in a web browser. You will see an
incoming CSR request from “volttron1” instance.

Accept the incoming CSR request from “volttron1” instance.

As before, you can find and accept the pending CSR via the command line, using the vctl auth remote
sub-commands.

First list the pending certs and credentials.

vctl auth remote list

USER_ID ADDRESS STATUS
volttron2.volttron1.shovelvolttron2 172.20.0.2 PENDING

Approve the pending CSR using the approve command.

2.16. Multi-Platform Connection 173

https://volttron2:8443/index.html

VOLTTRON Documentation, Release 8.1.3

vctl auth remote approve volttron2.volttron1.shovelvolttron2

Run the list command again to verify that the CSR has been approved.

USER_ID ADDRESS STATUS
volttron2.volttron1.shovelvolttron2 172.20.0.2 APPROVED

4. Test the shovel setup.

a. Start VOLTTRON on publisher and subscriber nodes.

b. On the publisher node, install and start a platform driver agent that publishes messages related to a fake
device.

./stop-volttron
vcfg --agent platform_driver
./start-volttron
vctl start --tag platform_driver

c. On the subscriber node, run a listener agent which subscribes to messages from all platforms.

• Open the file examples/ListenerAgent/listener/agent.py. Search for @PubSub.
subscribe('pubsub', '') and replace that line with @PubSub.subscribe('pubsub',
'devices', all_platforms=True)

• Install the listener

vctl install examples/ListenerAgent --agent-config examples/
→˓ListenerAgent/config --start

d. Verify listener agent in downstream VOLTTRON instance can receive the messages. The downstream
volttron instance’s volttron.log should display device data scrapped by the platform driver agent in the
upstream volttron instance.

5. How to remove the shovel setup.

a. On the subscriber node, remove the shovel on using the management web interface

174 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Log into management web interface using publisher instance’s admin username. Navigate to admin tab
and then to shovel management page. The status of the shovel will be displayed on the page. Click on the
shovel name and delete the shovel.

b. On the publisher node, run the following “vctl” commands:

vctl rabbitmq list-shovel-links
NAME STATUS SRC_URI DEST_
→˓URI SRC_EXCHANGE_KEY

shovel-volttron2-devices running amqps://volttron1:5671/volttron
→˓amqps://volttron2:5671/volttron __pubsub__.volttron1.devices.#

Copy the shovel name and run following command to remove it.

vctl rabbitmq remove-shovel-links shovel-volttron2-devices
Do you wish to delete certificates as well? [Y/n] y
Removing certificate paths from VOLTTRON_HOME and from the config file

Note: These commands removes the shovel parameter from RabbitMQ, deletes the certificates from VOLT-
TRON_HOME and certificate entries from rabbitmq_shovel_config.yml on the publisher node. The remote admin
must delete the remote certificates through admin web interface. If you need to rerun the federation command again
for the same setup, then a fresh CSR request is made to the remote instance. The remote admin has to approve the new
request as before.

Multi-Platform Multi-Bus

This guide describes the setup process for a multi-platform connection that has a combination of ZeroMQ and Rab-
bitMQ instances. For this example, we want to use the Forwarder to pass device data from two VOLTTRON instance
to a single “central” instance for storage. It will also have a Volttron Central agent running on the “central” instance
and Volttron Central Platform agents on all 3 instances and connected to “central” instance to provide operational
status of it’s instance to the “central” instance. For this document “node” will be used interchangeably with VOLT-
TRON instance. The authentication of remote connections can be performed either using admin web interface or using
command line interface. We will demonstrate both the approaches.

2.16. Multi-Platform Connection 175

VOLTTRON Documentation, Release 8.1.3

Node Setup

For this example we will have two types of nodes; a data collector and a central node. Each of the data collectors will
have different message buses (VOLTTRON supports both RabbitMQ and ZeroMQ). The nodes will be configured as
in the following table.

Table 2: Node Configuration
Central Node-ZMQ Node-RMQ

Node Type Central Data Collector Data Collector
Platform Driver yes yes
Forwarder yes yes
SQL Historian yes
Volttron Central yes
Volttron Central Platform yes yes yes
Exposes RMQ Port yes
Exposes ZMQ Port yes
Exposes HTTPS Port yes

The goal of this is to be able to see the data from Node-ZMQ and Node-RMQ in the Central SQL Historian and on the
trending charts of Volttron Central.

Virtual Machine Setup

The first step in creating a VOLTTRON instance is to make sure the machine is ready for VOLTTRON. Each machine
should have its hostname setup. For this walk-through, the hostnames “central”, “node-zmq” and “node-rmq” will be
used.

For Central and Node-RMQ follow the instructions platform installation steps for RMQ. For Node-ZMQ use Platform
Installation steps for ZeroMQ.

Instance Setup

The following conventions/assumptions are made for the rest of this document:

• Commands should be run from the VOLTTRON root

• Default values are used for VOLTTRON_HOME($HOME/.volttron), VIP port (22916), HTTPS port (8443),
RabbitMQ ports (5671 for AMQPs and 15671 for RabbitMQ management interface). If using different VOLT-
TRON_HOME or ports, please replace accordingly.

• Replace central, node-zmq and node-rmq with your own hostnames.

• user will represent your current user.

The following will use vcfg (volttron-cfg) to configure the individual platforms.

176 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Central Instance Setup

Note: This instance must have been bootstrapped using --rabbitmq see RabbitMq installation instructions.

Next step would be to configure the instance to have a web interface to accept/deny incoming certificate signing
requests from other instances. Additionally, we will need to install a Volttron Central agent, Volttron Central Platform
agent, SQL historian agent and a Listener agent. The following shows an example command output for this setup.

(volttron)user@central:~/volttron$ vcfg

Your VOLTTRON_HOME currently set to: /home/user/.volttron

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmq/zmq)? [zmq]: rmq
Name of this volttron instance: [volttron1]: central
RabbitMQ server home: [/home/user/rabbitmq_server/rabbitmq_server-3.7.7]:
Fully qualified domain name of the system: [central]:
Would you like to create a new self signed root CAcertificate for this instance: [Y]:

Please enter the following details for root CA certificate
Country: [US]:
State: WA
Location: Richland
Organization: PNNL
Organization Unit: volttron

Do you want to use default values for RabbitMQ home, ports, and virtual host: [Y]:
2020-04-13 13:29:36,347 rmq_setup.py INFO: Starting RabbitMQ server
2020-04-13 13:29:46,528 rmq_setup.py INFO: Rmq server at /home/user/rabbitmq_server/
→˓rabbitmq_server-3.7.7 is running at
2020-04-13 13:29:46,554 volttron.utils.rmq_mgmt DEBUG: Creating new VIRTUAL HOST:
→˓volttron
2020-04-13 13:29:46,582 volttron.utils.rmq_mgmt DEBUG: Create READ, WRITE and
→˓CONFIGURE permissions for the user: central-admin
Create new exchange: volttron, {'durable': True, 'type': 'topic', 'arguments': {
→˓'alternate-exchange': 'undeliverable'}}
Create new exchange: undeliverable, {'durable': True, 'type': 'fanout'}
2020-04-13 13:29:46,600 rmq_setup.py INFO:
Checking for CA certificate

2020-04-13 13:29:46,601 rmq_setup.py INFO:
Creating root ca for volttron instance: /home/user/.volttron/certificates/certs/
→˓central-root-ca.crt
2020-04-13 13:29:46,601 rmq_setup.py INFO: Creating root ca with the following info: {
→˓'C': 'US', 'ST': 'WA', 'L': 'Richland', 'O': 'PNNL', 'OU': 'VOLTTRON', 'CN':
→˓'central-root-ca'}
Created CA cert
2020-04-13 13:29:49,668 rmq_setup.py INFO: **Stopped rmq server
2020-04-13 13:30:00,556 rmq_setup.py INFO: Rmq server at /home/user/rabbitmq_server/
→˓rabbitmq_server-3.7.7 is running at
2020-04-13 13:30:00,557 rmq_setup.py INFO:

#######################

Setup complete for volttron home /home/user/.volttron with instance name=central
Notes:

(continues on next page)

2.16. Multi-Platform Connection 177

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

- On production environments, restrict write access to /home/user/.volttron/
→˓certificates/certs/central-root-ca.crt to only admin user. For example: sudo chown
→˓root /home/user/.volttron/certificates/certs/central-root-ca.crt and /home/user/.
→˓volttron/certificates/certs/central-trusted-cas.crt
- A new admin user was created with user name: central-admin and password=default_
→˓passwd.

You could change this user's password by logging into https://central:15671/
→˓Please update /home/user/.volttron/rabbitmq_config.yml if you change password

#######################

The rmq message bus has a backward compatibility
layer with current zmq instances. What is the
zmq bus's vip address? [tcp://127.0.0.1]: tcp://192.168.56.101
What is the port for the vip address? [22916]:
Is this instance web enabled? [N]: y
Web address set to: https://central
What is the port for this instance? [8443]:
Is this an instance of volttron central? [N]: y
Configuring /home/user/volttron/services/core/VolttronCentral.
Installing volttron central.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]: y
VC admin and password are set up using the admin web interface.
After starting VOLTTRON, please go to https://central:8443/admin/login.html to
→˓complete the setup.
Will this instance be controlled by volttron central? [Y]:
Configuring /home/user/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [central]:
Volttron central address set to https://central:8443
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]:
Would you like to install a platform historian? [N]: y
Configuring /home/user/volttron/services/core/SQLHistorian.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]: y
Would you like to install a platform driver? [N]:
Would you like to install a listener agent? [N]: y
Configuring examples/ListenerAgent.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]: y
Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/user/.volttron/config

Start VOLTTRON instance and check if the agents are installed.

./start-volttron
vctl status

178 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Using the web interface:

Open browser and go to the platform web admin authentication page https://central:8443/index.html to accept/reject
incoming certificate signing request (CSR) from other platforms.

Note: Replace “central” with the proper hostname of VC instance in the admin page URL. If opening the admin page
from a different system, then please make that the hostname is resolvable in that machine.

Click on “Login To Administration Area”.

Set the platform web admin username and password. This can be later used to login into the web admin authentication
page. This username and password will also be used to log in to Volttron Central.

2.16. Multi-Platform Connection 179

VOLTTRON Documentation, Release 8.1.3

Login into the platform web admin page.

After logging in, you will see no CSR requests initially.

180 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Go back to the terminal and start Volttron Central Platform agent on the “central” instance. The agent will send a CSR
request to the web interface.

vctl start --tag vcp

Now go to the platform web admin page to check if there is a new pending CSR request. You will see a “PENDING”
request from “central.central.platform.agent”

Approve the CSR request to allow authenticated SSL based connection to the “central” instance.

Go back to the terminal and check the status of Volttron Central Platform agent. It should be set to “GOOD”.

2.16. Multi-Platform Connection 181

VOLTTRON Documentation, Release 8.1.3

Using command line:

Alternatively, you can also check the status of pending CSRs via the command line.

After starting the Volttron Central Platform agent, use the auth remote sub-command’s list to display the current
pending certs.

vctl auth remote list

You will see the pending CSR appear in the list.

USER_ID ADDRESS STATUS
central.central.platform.agent 192.168.56.101 PENDING

Approve the pending CSR using the approve command.

vctl auth remote approve central.central.platform.agent

Run the list command again to verify that the CSR has been approved.

USER_ID ADDRESS STATUS
central.central.platform.agent 192.168.56.101 APPROVED

Node-ZMQ Instance Setup

On the “node-zmq” VM, setup a ZeroMQ based VOLTTRON instance. Using “vcfg” command, install Volttron
Central Platform agent, a platform driver agent with a fake driver.

Note: This instance will use old ZeroMQ based authentication mechanism using CURVE keys.

(volttron)user@node-zmq:~/volttron$ vcfg

Your VOLTTRON_HOME currently set to: /home/user/.volttron

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmq/zmq)? [zmq]:
What is the vip address? [tcp://127.0.0.1]:
What is the port for the vip address? [22916]:
Is this instance web enabled? [N]:
Will this instance be controlled by volttron central? [Y]:
Configuring /home/user/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [volttron1]: collector1
What is the hostname for volttron central? [http://node-zmq]: https://central
What is the port for volttron central? [8080]: 8443
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]:
Would you like to install a platform historian? [N]:
Would you like to install a platform driver? [N]: y
Configuring /home/user/volttron/services/core/PlatformDriverAgent.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Would you like to install a fake device on the platform driver? [N]: y
Should the agent autostart? [N]: y
Would you like to install a listener agent? [N]:
Finished configuration!

(continues on next page)

182 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/user/.volttron/config

Please note the Volttron Central web-address should point to that of the “central” instance.

Start VOLTTRON instance and check if the agents are installed.

./start-volttron
vctl status

Start Volttron Central Platform on this platform manually.

vctl start --tag vcp

Check the VOLTTRON log in the “central” instance, you will see “authentication failure” entry from the incoming
connection. You will need to add the public key of VCP agent on the “central” instance.

At this point, you can either accept the connection through the admin page or the command line.

Using the admin page:

Navigate back to the platform web admin authentication page. You should see a pending request under the ZMQ Keys
Pending Authorization header.

Accept the credential in the same method as a CSR.

2.16. Multi-Platform Connection 183

VOLTTRON Documentation, Release 8.1.3

Using the command line:

As with the pending CSR, list the current pending certs and credentials.

vctl auth remote list

You will see the pending ZMQ credential has been added to the list.

USER_ID ADDRESS STATUS
central.central.platform.agent 192.168.56.101 APPROVED
68ef33c4-97bc-4e1b-b5f6-2a6049993b65 127.0.0.1 PENDING

Approve the pending ZMQ credential using the approve command.

vctl auth remote approve 68ef33c4-97bc-4e1b-b5f6-2a6049993b65

Run the list command again to verify that the credential has been approved.

USER_ID ADDRESS STATUS
central.central.platform.agent 192.168.56.101 APPROVED
68ef33c4-97bc-4e1b-b5f6-2a6049993b65 127.0.0.1 APPROVED

Complete similar steps to start a forwarder agent that connects to “central” instance. Modify the configuration in ser-
vices/core/ForwardHistorian/rmq_config.yml to have a destination VIP address pointing to VIP address of the “cen-
tral” instance and server key of the “central” instance.

destination-vip: tcp://<ip>:22916
destination-serverkey: <serverkey>

Note: Replace <ip> with public facing IP-address of “central” instance and <serverkey> with serverkey of “central”
instance. Use the command vctl auth serverkey on the “central” instance to get the server key of the instance

Install and start forwarder agent.

python scripts/install-agent.py -s services/core/ForwardHistorian -c services/core/
→˓ForwardHistorian/rmq_config.yml --start

184 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Using the admin page:

To accept the credential, navigate back to the platform web admin authentication page. You should see another pending
request under the ZMQ Keys Pending Authorization header.

Accept this credential in the same method as before.

Using the command line:

To accept the credential via the command line,

vctl auth remote list

You will see the pending ZMQ credential has been added to the list.

USER_ID ADDRESS STATUS
central.central.platform.agent 192.168.56.101 APPROVED
68ef33c4-97bc-4e1b-b5f6-2a6049993b65 127.0.0.1 APPROVED
fb30249d-b267-4bdd-b29a-d9112e6a6082 127.0.0.1 PENDING

Approve the pending ZMQ credential using the approve command.

vctl auth remote approve fb30249d-b267-4bdd-b29a-d9112e6a6082

Run the list command again to verify that the credential has been approved.

USER_ID ADDRESS STATUS
central.central.platform.agent 192.168.56.101 APPROVED
68ef33c4-97bc-4e1b-b5f6-2a6049993b65 127.0.0.1 APPROVED
fb30249d-b267-4bdd-b29a-d9112e6a6082 127.0.0.1 APPROVED

In either case, you should start seeing messages from “collector1” instance on the “central” instance’s VOLTTRON
log now.

2.16. Multi-Platform Connection 185

VOLTTRON Documentation, Release 8.1.3

Node-RMQ Instance Setup

Note: This instance must have been bootstrapped using –rabbitmq see RabbitMq installation instructions.

Using “vcfg” command, install Volttron Central Platform agent, a platform driver agent with fake driver. The instance
name is set to “collector2”.

(volttron)user@node-rmq:~/volttron$ vcfg

Your VOLTTRON_HOME currently set to: /home/user/.volttron

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmq/zmq)? [zmq]: rmq
Name of this volttron instance: [volttron1]: collector2
RabbitMQ server home: [/home/user/rabbitmq_server/rabbitmq_server-3.7.7]:
Fully qualified domain name of the system: [node-rmq]:
Would you like to create a new self signed root CA certificate for this instance: [Y]:

Please enter the following details for root CA certificate
Country: [US]:
State: WA
Location: Richland
Organization: PNNL
Organization Unit: volttron

Do you want to use default values for RabbitMQ home, ports, and virtual host: [Y]:
2020-04-13 13:29:36,347 rmq_setup.py INFO: Starting RabbitMQ server
2020-04-13 13:29:46,528 rmq_setup.py INFO: Rmq server at /home/user/rabbitmq_server/
→˓rabbitmq_server-3.7.7 is running at
2020-04-13 13:29:46,554 volttron.utils.rmq_mgmt DEBUG: Creating new VIRTUAL HOST:
→˓volttron
2020-04-13 13:29:46,582 volttron.utils.rmq_mgmt DEBUG: Create READ, WRITE and
→˓CONFIGURE permissions for the user: collector2-admin
Create new exchange: volttron, {'durable': True, 'type': 'topic', 'arguments': {
→˓'alternate-exchange': 'undeliverable'}}
Create new exchange: undeliverable, {'durable': True, 'type': 'fanout'}
2020-04-13 13:29:46,600 rmq_setup.py INFO:
Checking for CA certificate

2020-04-13 13:29:46,601 rmq_setup.py INFO:
Creating root ca for volttron instance: /home/user/.volttron/certificates/certs/
→˓collector2-root-ca.crt
2020-04-13 13:29:46,601 rmq_setup.py INFO: Creating root ca with the following info: {
→˓'C': 'US', 'ST': 'WA', 'L': 'Richland', 'O': 'PNNL', 'OU': 'VOLTTRON', 'CN':
→˓'collector2-root-ca'}

(continues on next page)

186 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

Created CA cert
2020-04-13 13:29:49,668 rmq_setup.py INFO: **Stopped rmq server
2020-04-13 13:30:00,556 rmq_setup.py INFO: Rmq server at /home/user/rabbitmq_server/
→˓rabbitmq_server-3.7.7 is running at
2020-04-13 13:30:00,557 rmq_setup.py INFO:

#######################

Setup complete for volttron home /home/user/.volttron with instance name=collector2
Notes:
- On production environments, restrict write access to /home/user/.volttron/
→˓certificates/certs/collector2-root-ca.crt to only admin user. For example: sudo
→˓chown root /home/user/.volttron/certificates/certs/collector2-root-ca.crt and /home/
→˓user/.volttron/certificates/certs/collector2-trusted-cas.crt
- A new admin user was created with user name: collector2-admin and password=default_
→˓passwd.

You could change this user's password by logging into https://node-rmq:15671/
→˓Please update /home/user/.volttron/rabbitmq_config.yml if you change password

#######################

The rmq message bus has a backward compatibility
layer with current zmq instances. What is the
zmq bus's vip address? [tcp://127.0.0.1]:
What is the port for the vip address? [22916]:
Is this instance web enabled? [N]:
Will this instance be controlled by volttron central? [Y]:
Configuring /home/user/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [collector2]:
What is the hostname for volttron central? [http://node-rmq]: https://central
What is the port for volttron central? [8443]:
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]:
Would you like to install a platform historian? [N]:
Would you like to install a platform driver? [N]: y
Configuring /home/user/volttron/services/core/PlatformDriverAgent.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Would you like to install a fake device on the platform driver? [N]: y
Should the agent autostart? [N]: y
Would you like to install a listener agent? [N]:
Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/user/.volttron/config

Note: The Volttron Central web-address should point to that of the “central” instance.

Start VOLTTRON instance and check if the agents are installed.

./start-volttron
vctl status

Start Volttron Central Platform on this platform manually.

2.16. Multi-Platform Connection 187

VOLTTRON Documentation, Release 8.1.3

vctl start --tag vcp

Accept the pending CSR request.

Using the admin page:

Go the master admin authentication page and check if there is a new pending CSR request from VCP agent of “col-
lector2” instance.

Approve the CSR request to allow authenticated SSL based connection to the “central” instance.

Using the command line:

As before, this can be done via the command line as follows:

vctl auth remote list

USER_ID ADDRESS STATUS
central.central.platform.agent 192.168.56.101 APPROVED
central.collector2.forwarderagent-5.1_1 192.168.56.101 PENDING
68ef33c4-97bc-4e1b-b5f6-2a6049993b65 127.0.0.1 APPROVED
fb30249d-b267-4bdd-b29a-d9112e6a6082 127.0.0.1 APPROVED

Approve the pending CSR using the approve command.

vctl auth remote approve central.collector2.forwarderagent-5.1_1

Run the list command again to verify that the CSR has been approved.

USER_ID ADDRESS STATUS
central.central.platform.agent 192.168.56.101 APPROVED
central.collector2.forwarderagent-5.1_1 192.168.56.101 APPROVED

(continues on next page)

188 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

68ef33c4-97bc-4e1b-b5f6-2a6049993b65 127.0.0.1 APPROVED
fb30249d-b267-4bdd-b29a-d9112e6a6082 127.0.0.1 APPROVED

Now go back to the terminal and check the status of Volttron Central Platform agent. It should be set to “GOOD”.

Let’s now install a forwarder agent on this instance to forward local messages matching “devices” topic to external
“central” instance. Modify the configuration in services/core/ForwardHistorian/rmq_config.yml to have a destination
address pointing to web address of the “central” instance.

destination-address: https://central:8443

Start forwarder agent.

python scripts/install-agent.py -s services/core/ForwardHistorian -c services/core/
→˓ForwardHistorian/rmq_config.yml --start

Using the admin page:

Go the master admin authentication page and check if there is a new pending CSR request from forwarder agent of
“collector2” instance.

Approve the CSR request to allow authenticated SSL based connection to the “central” instance.

2.16. Multi-Platform Connection 189

VOLTTRON Documentation, Release 8.1.3

Using the command line:

If using command line for this process:

vctl auth remote list

USER_ID ADDRESS STATUS
central.central.platform.agent 192.168.56.101 APPROVED
central.collector2.platform.agent 192.168.56.103 APPROVED
central.collector2.forwarderagent-5.1_1 192.168.56.103 PENDING
68ef33c4-97bc-4e1b-b5f6-2a6049993b65 127.0.0.1 APPROVED
fb30249d-b267-4bdd-b29a-d9112e6a6082 127.0.0.1 APPROVED

Approve the pending CSR using the approve command.

vctl auth remote approve central.collector2.forwarderagent-5.1_1

Run the list command again to verify that the CSR has been approved.

USER_ID ADDRESS STATUS
central.central.platform.agent 192.168.56.101 APPROVED
central.collector2.platform.agent 192.168.56.103 APPROVED
central.collector2.forwarderagent-5.1_1 192.168.56.103 APPROVED
68ef33c4-97bc-4e1b-b5f6-2a6049993b65 127.0.0.1 APPROVED
fb30249d-b267-4bdd-b29a-d9112e6a6082 127.0.0.1 APPROVED

Now go back to the terminal and check the status of forwarder agent. It should be set to “GOOD”.

Check the VOLTTRON log of “central” instance. You should see messages with “devices” topic coming from “col-
lector2” instance.

190 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

To confirm that VolttronCentral is monitoring the status of all the 3 platforms, open a browser and type this URL
https://central:8443/vc/index.html. Login using credentials (username and password) earlier set during the VC config-
uration step (using vcfg command in “central” instance). Click on “platforms” tab in the far right corner. You should
see all three platforms listed in that page. Click on each of the platforms and check the status of the agents.

VOLTTRON Central Deployment

VOLTTRON Central is a platform management web application that allows platforms to communicate and to be
managed from a centralized server. This agent alleviates the need to ssh into independent nodes in order to manage
them. The demo will start up three different instances of VOLTTRON with three historians and different agents on
each host. The following entries will help to navigate around the VOLTTRON Central interface.

Contents

• VOLTTRON Central Deployment

– Getting Started

– Remote Platform Configuration

– Starting the Demo

– VOLTTRON Admin

– Stopping the Demo

– Log In

– Log Out

* Platforms Tree

– Loading the Tree

– Health Status

– Filter the Tree

2.16. Multi-Platform Connection 191

VOLTTRON Documentation, Release 8.1.3

* Platforms Screen

* Platform View

* Add Charts

– Dashboard Charts

– Remove Charts

* VOLTTRON Central

Getting Started

After installing VOLTTRON, open three shells with the current directory the root of the VOLTTRON repository. Then
activate the VOLTTRON environment and export the VOLTTRON_HOME variable. The home variable needs to be
different for each instance.

If you are using Terminator you can right click and select “Split Vertically”. This helps us keep from losing terminal
windows or duplicating work.

$ source env/bin/activate
$ export VOLTTRON_HOME=~/.volttron1

One of our instances will have a VOLTTRON Central agent. We will install a platform agent and a historian on all
three platforms. Please note, for this demo all the instances run on the ZeroMQ message bus. For multi-platform,
multi-bus deployment setup please follow the steps described in Multi Platform Multi-Bus Deployment.

Run vcfg in the first shell. This command will ask how the instance should be set up. Many of the options have defaults
that will be sufficient. When asked if this instance is a VOLTTRON Central enter y. Read through the options and
use the enter key to accept default options. There are no default credentials for VOLTTRON Central. You can have
it install the agents at this time. Below is an example configuration. In this case, username is user and localhost is
volttron-pc.

192 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(volttron)user@volttron-pc:~/volttron$ vcfg

Your VOLTTRON_HOME currently set to: /home/user/.volttron1

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmq/zmq)? [zmq]:
What is the vip address? [tcp://127.0.0.1]:
What is the port for the vip address? [22916]:
Is this instance web enabled? [N]: y
What is the protocol for this instance? [https]:
Web address set to: https://volttron-pc
What is the port for this instance? [8443]:
Would you like to generate a new web certificate? [Y]:
WARNING! CA certificate does not exist.
Create new root CA? [Y]:

Please enter the following details for web server certificate:
Country: [US]:
State: WA
Location: Richland
Organization: PNNL
Organization Unit: VOLTTRON

Created CA cert
Creating new web server certificate.
Is this an instance of volttron central? [N]: y
Configuring /home/user/volttron/services/core/VolttronCentral.
Installing volttron central.
Should the agent autostart? [N]: y
VC admin and password are set up using the admin web interface.
After starting VOLTTRON, please go to https://volttron-pc:8443/admin/login.
→˓html to complete the setup.
Will this instance be controlled by volttron central? [Y]: y
Configuring /home/user/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [volttron1]:
Volttron central address set to https://volttron-pc:8443
Should the agent autostart? [N]: y
Would you like to install a platform historian? [N]: y
Configuring /home/user/volttron/services/core/SQLHistorian.
Should the agent autostart? [N]: y
Would you like to install a platform driver? [N]: y
Configuring /home/user/volttron/services/core/PlatformDriverAgent.
Would you like to install a fake device on the platform driver? [N]: y
Should the agent autostart? [N]: y
Would you like to install a listener agent? [N]: y
Configuring examples/ListenerAgent.
Should the agent autostart? [N]: y
Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/user/.volttron1/config

(volttron)user@volttron-pc:~/volttron$

VOLTTRON Central needs to accept the connecting instances’ public keys. For this example we’ll allow any CURVE
credentials to be accepted. After starting, the command vctl auth add will prompt the user for information about how
the credentials should be used. We can simply hit Enter to select defaults on all fields except credentials, where we

2.16. Multi-Platform Connection 193

VOLTTRON Documentation, Release 8.1.3

will type /.*/

$ vctl auth add --credentials "/.*/"
added entry domain=None, address=None, mechanism='CURVE', credentials=u'/.*/', user_
→˓id='63b126a7-2941-4ebe-8588-711d1e6c70d1'

For more information on authorization see authentication.

Remote Platform Configuration

The next step is to configure the instances that will connect to VOLTTRON Central. In the second and third terminal
windows run vcfg. Like the VOLTTRON_HOME variable, these instances need to have a unique VIP address and a
unique instance name.

Install a platform agent and a historian as before. Since we used the default options when configuring VOLTTRON
Central, we can use the default options when configuring these platform agents as well. The configuration will be
a little different. The example below is for the second volttron instance. Note the unique VIP address and instance
name. Please ensure the web-address of the volttron central is configured correctly.

(volttron)user@volttron-pc:~/volttron$ vcfg

Your VOLTTRON_HOME currently set to: /home/user/.volttron2

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmq/zmq)? [zmq]:
What is the vip address? [tcp://127.0.0.1]: tcp://127.0.0.2
What is the port for the vip address? [22916]:
Is this instance web enabled? [N]:
Will this instance be controlled by volttron central? [Y]:
Configuring /home/user/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [volttron1]: volttron2
What is the hostname for volttron central? [https://volttron-pc]:
What is the port for volttron central? [8443]:
Should the agent autostart? [N]: y
Would you like to install a platform historian? [N]: y
Configuring /home/user/volttron/services/core/SQLHistorian.
Should the agent autostart? [N]: y
Would you like to install a platform driver? [N]:
Would you like to install a listener agent? [N]:
Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/user/.volttron2/config

(volttron)user@volttron-pc:~/volttron$

194 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Starting the Demo

Start each Volttron instance after configuration. You have two options.

Option 1: The following command starts the volttron process in the background. The “-l” option tells volttron to log
to a file. The file name should be different for each instance.

$ volttron -vv -l volttron.log&

Option 2: Use the utility script start-volttron. This will override the default log file each time the script is ran unless
the script is modified with a different filename for each instance.

$./start-volttron

Note: If you chose to not start your agents with their platforms they will need to be started by hand.

List the installed agents with

$ vctl status

A portion of each agent’s uuid makes up the leftmost column of the status output. This is all that is needed to start or
stop the agent. If any installed agents share a common prefix then more of the uuid will be needed to identify it.

$ vctl start uuid

or

$ vctl start --tag tag

Note: In each of the above examples one could use * suffix to match more than one agent.

VOLTTRON Admin

The admin page is used to set the master username and password for both admin page and VOLTTRON Central page.
Admin page can then be used to manage RMQ and ZMQ certificates and credentials.

Open a web browser and navigate to https://volttron-pc:8443/admin/login.html

There may be a message warning about a potential security risk. Check to see if the certificate that was created in vcfg
is being used. The process below is for firefox.

2.16. Multi-Platform Connection 195

https://volttron-pc:8443/admin/login.html

VOLTTRON Documentation, Release 8.1.3

196 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

2.16. Multi-Platform Connection 197

VOLTTRON Documentation, Release 8.1.3

When the admin page is accessed for the first time, the user will be prompted to set up a master username and password.

Open your browser to the web address that you specified for the VOLTTRON Central agent that you configured for the
first instance. In the above examples, the configuration file would be located at ~/.volttron1/config and the VOLTTRON
Central address would be defined in the “volttron-central-address” field. The VOLTTRON Central address takes the
pattern: https://<localhost>:8443/vc/index.html, where localhost is the hostname of your machine. In the above
examples, our hostname is volttron-pc; thus our VC interface would be https://volttron-pc:8443/vc/index.html.

You will need to provide the username and password set earlier through admin web page.

198 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Stopping the Demo

Once you have completed your walk through of the different elements of the VOLTTRON Central demo you can stop
the demos by executing the following command in each terminal window.

$./stop-volttron

Once the demo is complete you may wish to see the VOLTTRON Central Management Agent page for more details on
how to configure the agent for your specific use case.

Log In

To log in to VOLTTRON Central, open a browser and login to the Volttron web interface, which takes the form
https://localhost:8443/vc/index.html where localhost is the hostname of your machine. In the above example, we open
the following URL in which our localhost is “volttron-pc”: https://volttron-pc:8443/vc/index.html and enter the user
name and password on the login screen.

2.16. Multi-Platform Connection 199

https://volttron-pc:8443/vc/index.html

VOLTTRON Documentation, Release 8.1.3

Log Out

To log out of VOLTTRON Central, click the link at the top right of the screen.

Platforms Tree

The side panel on the left of the screen can be extended to reveal the tree view of registered platforms.

200 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

2.16. Multi-Platform Connection 201

VOLTTRON Documentation, Release 8.1.3

Top-level nodes in the tree are platforms. Platforms can be expanded in the tree to reveal installed agents, devices on
buildings, and performance statistics about the platform instances.

Loading the Tree

The initial state of the tree is not loaded. The first time a top-level node is expanded is when the items for that platform
are loaded.

202 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

After a platform has been loaded in the tree, all the items under a node can be quickly expanded by double-clicking
on the node.

Health Status

The health status of an item in the tree is indicated by the color and shape next to it. A green triangle means healthy, a
red circle means there’s a problem, and a gray rectangle means the status can’t be determined.

Information about the health status also may be found by hovering the cursor over the item.

2.16. Multi-Platform Connection 203

VOLTTRON Documentation, Release 8.1.3

Filter the Tree

The tree can be filtered by typing in the search field at the top or clicking on a status button next to the search field.

204 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Meta terms such as “status” can also be used as filter keys. Type the keyword “status” followed by a colon, and then

2.16. Multi-Platform Connection 205

VOLTTRON Documentation, Release 8.1.3

the word “good,” “bad,” or “unknown.”

Platforms Screen

This screen lists the registered VOLTTRON platforms and allows new platforms to be registered by clicking the
Register Platform button. Each platform is listed with its unique ID and the number and status of its agents. The
platform’s name is a link that can be clicked on to go to the platform management view.

206 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Platform View

From the platforms screen, click on the name link of a platform to manage it. Managing a platform includes installing,
starting, stopping, and removing its agents.

To install a new agent, all you need is the agent’s wheel file. Click on the button and choose the file to upload it and
install the agent.

To start, stop, or remove an agent, click on the button next to the agent in the list. Buttons may be disabled if the user
lacks the correct permission to perform the action or if the action can’t be performed on a specific type of agent. For
instance, platform agents and VOLTTRON Central agents can’t be removed or stopped, but they can be restarted if
they’ve been interrupted.

Add Charts

Performance statistics and device points can be added to charts either from the Charts page or from the platforms tree
in the side panel.

Click the Charts link at the top-right corner of the screen to go to the Charts page.

2.16. Multi-Platform Connection 207

VOLTTRON Documentation, Release 8.1.3

From the Charts page, click the Add Chart button to open the Add Chart window.

208 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Click in the topics input field to make the list of available chart topics appear.

2.16. Multi-Platform Connection 209

VOLTTRON Documentation, Release 8.1.3

Scroll and select from the list, or type in the field to filter the list, and then select.

210 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Select a chart type and click the Load Chart button to close the window and load the chart.

2.16. Multi-Platform Connection 211

VOLTTRON Documentation, Release 8.1.3

To add charts from the side panel, check boxes next to items in the tree.

Choose points with the same name from multiple platforms or devices to plot more than one line in a chart.

212 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Move the cursor arrow over the chart to inspect the graphs.

To change the chart’s type, click on the Chart Type button and choose a different option.

2.16. Multi-Platform Connection 213

VOLTTRON Documentation, Release 8.1.3

Dashboard Charts

To pin a chart to the Dashboard, click the Pin Chart button to toggle it. When the pin image is black and upright, the
chart is pinned; when the pin image is gray and diagonal, the chart is not pinned and won’t appear on the Dashboard.

Charts that have been pinned to the Dashboard are saved to the database and will automatically load when the user
logs in to VOLTTRON Central. Different users can save their own configurations of dashboard charts.

Remove Charts

To remove a chart, uncheck the box next to the item in the tree or click the X button next to the chart on the Charts
page. Removing a chart removes it from the Charts page and the Dashboard.

VOLTTRON Central

Navigate to https://volttron-pc:8443/vc/index.html

Log in using the username and password you set up on the admin web page.

214 Chapter 2. Features

https://volttron-pc:8443/vc/index.html

VOLTTRON Documentation, Release 8.1.3

Once you have logged in, click on the Platforms tab in the upper right corner of the window.

2.16. Multi-Platform Connection 215

VOLTTRON Documentation, Release 8.1.3

Once in the Platforms screen, click on the name of the platform.

You will now see a list of agents. They should all be running.

For more information on VOLTTRON Central, please see:

• VOLTTRON Central Management

• VOLTTRON Central Demo

Note: You may want to consider securing your VC deployment Please take particular note of the implementation of
a reverse proxy.

216 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

2.17 Security Considerations of Deployment

Security of computing systems is a complex topic which depends not only on the security of each component, but
on how software components interact and on the environment in which they are running. In the subsections here, we
will discuss a variety of possible actions which may increase the security of a particular deployment, along with their
context.

For more examples and discussion, see the Publications section of the VOLTTRON website where there are a number
of Threat Profile reports.

2.17.1 Running as a Managed System Process

It is possible that the running VOLTTRON process could exit undesirably (either due to a bug, or some malicious
action). For scenarios where not having the VOLTTRON process running presents a business risk, it is recommended
to follow the Setting up VOLTTRON as a System Service to leverage the host system’s process monitoring and man-
agement system. Under this configuration, the system will be configured to restart VOLTTRON in the event that it
fails.

Note: For this configuration to be effective, it is important that the platfrom is configured such that it automatically
starts up in the desired state. In particular, review the installed agents and be sure that agents which should be running
are “enabled” and that their priorities are set such that they start in the intended order.

There are scenarios when this configuration may not be desired:

1. If a system restarts cleanly after an unexpected failure, it is possible that the underlying issue could go unnoticed
(and therefore unresolved). This would happen if a user checks the system and sees it is running but does not
have a way to realize that there has been one or more restarts. For development systems it may be desirable
to not restart, leaving the system in a failed state which is more likely to be noticed as unusual, and with the
failure details still present in the recent logs. Consider the relative value of platform up-time and failure this
kind of failure discovery. If both are highly valuable, it may be possible to add extra notifications to the process
monitoring system (systemd, initd, or other) so that records are retained while service is restored.

2. For development systems, or systems that are frequently stopped or restarted, it can be more convenient to use
the normal start and stop scripts packaged with VOLTTRON. These do not require the user have system-level
permissions and are easily used from the terminal.

2.17.2 Run Web Server Behind Proxy

A VOLTTRON deployment may be web-enabled, allowing various interactions over HTTP. There are many reasons
why it is often desirable to deploy an external reverse proxy in front of the system, including:

• Allows regular security patching of the exposed web server independent of the VOLTTRON process’s lifecycle.

• Prevents DDoS and similar attacks, which may successfuly impact the web server, from impacting the VOLT-
TRON process itself.

• Provides a opportunity for institutional cyber security experts to help maintain a secure and compliant web
server configuration without needing to gain VOLTTRON-specific experience.

• Many other traffic management and filtering options which are documented by the various tools (load balancing,
http header management, etc.).

The full complexity of configuring a reverse proxy is outside the scope of this documentation. For reference, two
common open source options are apache httpd and nginx (relevant portions of their respective documentation pages
are linked).

2.17. Security Considerations of Deployment 217

https://volttron.org/publications
https://httpd.apache.org/docs/2.4/howto/reverse_proxy.html
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/

VOLTTRON Documentation, Release 8.1.3

To set up a reverse proxy for VOLTTRON using apache, please refer to this document: Apache Reverse Proxy Setup

2.17.3 Monitor for Data Tampering

One common indication of a potential problem, including tampering, would be the presence of out of bounds values.
The Threshold Detection Agent can be used leveraged to create alerts in the event that a topic has a value which is out
of reasonable bounds.

This approach has some limitations, including:

• There can be subtleties in selecting the correct bounds to both ensure issues are seen while minimizing false
positives.

• Including value limits adds a significant amount of configuration to maintain, and which is not necessarily
high-visibility because it is in another agent.

• Currently there is only support for monitoring for values crossing a threshold, more complex conditional logic
would require a custom monitor.

• There could be cases where tampering adjusts values to incorrect but in-bounds values which would not be
detected.

2.17.4 Limit Publishing on the Devices Topic to Platform Driver

To further reduce the chances of malicious data disrupting your system, you can limit the ability to publish to the
“devices” topic to the platform driver only.

To accomplish this, you will need to modify protected_topics.json, found in your $VOLTTRON_HOME di-
rectory. In this specific case, you would need to add the topic “devices” and some capability, for example
“can_publish_to_devices”.

{
"write-protect": [

{"topic": "devices", "capabilities": ["can_publish_to_devices"]}
]

}

Next, using vctl auth list get the auth index for the platform.driver, and use the command vctl auth
update <index of platform.driver>. You will get a prompt to update the auth entry. Skip through the
prompts until it prompts for capabilities, and add can_publish_to_devices.

capabilities (delimit multiple entries with comma) []: can_publish_to_devices

For more information, refer to the section on Protecting Pub/Sub Topics.

2.17.5 Limit Access to RPC Methods Using Capabilities

RPC enabled methods provide convenient interfaces between agents. When they are unrestricted however, they open
up the potential for malicious agents to cause harm to your system. The best way to prevent this is through the use of
capabilities. A capability is a user defined arbitrary string used by an agent to describe its exported RPC method. It is
used to limit the access to that RPC method to only those agents who have that capability listed in their authentication
record.

To add a capability restriction to an RPC method, the RPC.allow decorator is used. For example, to limit those who
can call the RPC enabled method “foo” to those with the capability “can_call_foo”:

218 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

@RPC.export
@RPC.allow("can_call_foo")
def foo:

print("hello")

To give an agent permission to access this method, the auth file must be updated. As in the above example for limiting
publishing to the devices topic, vctl can be used to update the auth file and grant the specific agent permission to access
the RPC enabled method.

capabilities (delimit multiple entries with comma) []: can_call_foo

For a secure system, only add capabilties to the agents that will need to call a specific RPC enabled method, and apply
the allow decorator to all RPC enabled methods.

For more information, refer to the section on VIP Authorization.

2.17.6 Monitoring RabbitMQ Server

Monitoring of RabbitMQ server in deployment setup can be achieved by running RabbitMQ server as a systemd
service. RabbitMQ server is configured to run as a systemd service and allow systemd to monitor the status of the
service. It can be further configured to detect and restart the RabbitMQ service if it crashes. VOLTTRON agents have
the ability to detect when the RabbitMQ server crashes/disconnects and reconnect when it becomes available. In this
deployment setup, a VOLTTRON platform will not start/stop the RabbitMQ server.

2.18 Linux System Hardening

2.18.1 Introduction

VOLTTRON is built with modern security principles in mind [security-wp] and implements many security features
for hosted agents. However, VOLTTRON is deployed on top of a Linux-based operating system and evaluating the
security of a deployment must include the configuration of the host system itself, as well as any other applications
deployed on the system, both of which provide additional attack surface and failure opportunities.

There is no such thing as “a secure system.” Rather, any computing system must be evaluated in the context of its
deployment environment with considerations for assurance of confidentiality, integrity, and availability. The impact of
a compromised system must be considered, along with the costs assocated with risk mitigation. Threat profile analyses
have been comleted for several VOLTTRON deployment configurations; the reports are available on the VOLTTRON
website’s publications section.

2.18.2 Recommendations

The VOLTTRON team recommends a risk-based cyber security approach that considers each risk, the impact of an
exploit or failure, and the costs associated with the available mitigation strategies. Based on this evaluation, a set of
mitigations can be identified to meet deployment requirements.

In many cases, the first step is to coordinate with the cyber security team at your institution; they should be able to help
you with risk assessment and mitigation strategies, as well s as understanding any relevant regulartory requirements.

For continuously running and production-like systems, one common area of concern is hardening of the host operating
system. Instructions are maintained by OpenSCAP for a large number of operating systems and guides are available
for a range of common linux distributions. You are encouraged to select the operating system and profile corresponding

2.18. Linux System Hardening 219

https://volttron.org/publications
https://volttron.org/publications
https://static.open-scap.org

VOLTTRON Documentation, Release 8.1.3

to your security requirements. The guides there provide instruction for compliance in regulated environments, but are
also appropriate in less regulated environments where risk levels are equivalent.

It is also important to evaluate any other applications running on the same system. In addtion to the potential for
exploitation or failure of the individual application, it is important to consider the ways in which the risks associated
with one application may expose new risks in another application. For example, if a system is running a webserver
which is exploited in a way that provides unauthorized access to the host system, then the VOLTTRON system is now
exposed to attack from local users.

2.19 Deployment Recipes (Multi-Machine)

For more details about ansible recipes for scalable deployment strategies, see readthedocs pages of the VOLTTRON
ansible repository

2.20 Agents Overview

Agents in VOLTTRON can be loosely defined as software modules communicating on the platform which perform
some function on behalf of the user. Agents may perform a huge variety of tasks, but common use cases involve
data collection, control of ICS and IOT devices, and various platform management tasks. Agents implemented using
the VOLTTRON agent framework inherit a number of capabilities, including message bus connectivity and agent
lifecycle.

Agents deployed on VOLTTRON can perform one or more roles which can be broadly classified into the following
groups:

• Platform Agents: Agents which are part of the platform and provide a service to other agents. Examples are the
Actuator and Platform Driver agents which serve as interfaces between control agents and drivers.

• Control Agents: These agents implement algorithms to control the devices of interest and interact with other
resources to achieve some goal.

• Service Agents: These agents perform various data collection or platform management services. Agents in this
category include weather service agents which collect weather data from remote sources or operations agents
which help users maintain situational awareness of their deployment.

• Cloud Agents: These agents represent a remote application which needs access to the messages and data on
the platform. This agent would subscribe to topics of interest to the remote application and would also allow it
publish data to the platform.

The platform includes some valuable services which can be leveraged by agents:

• Message Bus: All agents and services publish and subscribe to topics on the message bus. This provides a single
interface that abstracts the details of devices and agents from each other. Components in the platform basically
produce and consume events.

• Configuration Store: Using the configuration store, agent operations can be altered ad-hoc without significant
disruption or downtime.

• Historian Framework: Historian agents automatically collect data from a subset of topics on the message bus and
store them in a data store of choice. Currently SQL, MongoDB, CrateDB and other historians exist, and more
can be developed to fit the needs of a deployment by inheriting from the base historian. The base historian has
been developed to be fast and reliable, and to handle many common pitfalls of data collection over a network.

• Weather Information: These agents periodically retrieve data from the a remote weather API then format the
response and publish it to the platform message bus on a weather topic.

220 Chapter 2. Features

https://volttron.readthedocs.io/projects/volttron-ansible/en/main/index.html
https://volttron.readthedocs.io/projects/volttron-ansible/en/main/index.html

VOLTTRON Documentation, Release 8.1.3

• Device interfaces: Drivers publish device data onto the message bus and send control signals issued from control
agents to the corresponding device. Drivers are capable of handling the locking of devices to prevent multiple
conflicting directives.

• Application Scheduling: This service allows the scheduling of agents’ access to devices in order to prevent
conflicts.

• Logging service: Agents can publish arbitrary strings to a logging topic and this service will push them to a
historian for later analysis.

2.21 Core Services

Agents in the services/core directory support the most common use cases of the platform. For details on each, please
refer to the corresponding documents.

2.21.1 Platform Driver Agent

The Platform Driver Agent manages all device communication. To communicate with devices you must setup and
deploy the Platform Driver Agent. For more information on the Platform Driver Agent’s operations, read about the
Platform Driver in the driver framework docs.

Configuring the Platform Driver

The Platform Driver requires a configuration file (described in brief below) to set global settings for all drivers. Once
the user has copied the example or created their own config, the Platform Driver Agent is deployed with this command:

python scripts/install-agent.py -s services/core/PlatformDriverAgent -c <platform
→˓driver config file>

Requirements

VOLTTRON drivers operated by the platform driver may have additional requirements for installation. Required
libraries:

BACnet driver - bacpypes
Modbus driver - pymodbus
Modbus_TK driver - modbus-tk
DNP3 and IEEE 2030.5 drivers - pydnp3

The easiest way to install the requirements for drivers included in the VOLTTRON repository is to use bootstrap.
py (see platform installation for more detail)

python bootstrap.py --drivers

2.21. Core Services 221

VOLTTRON Documentation, Release 8.1.3

Platform Driver Agent Configuration

The Platform Driver Agent configuration consists of general settings for all devices. Below is an example config from
the repository:

{
"driver_scrape_interval": 0.05,
"publish_breadth_first_all": false,
"publish_depth_first": false,
"publish_breadth_first": false

}

The example platform driver configuration file above can be found in the VOLTTRON repository in
services/core/PlatformDriverAgent/platform-driver.agent.

For information on configuring the Platform Driver with devices, including creating driver configs and using the config
store, please read ref`configuration <Platform-Driver-Configuration>` the section in the Driver Framework docs.

Global Override Specification

This document describes the specification for the global override feature. By default, every user is allowed write access
to the devices by the platform driver. The override feature will allow the user (for example, a building administrator)
to override this default behavior and enable the user to lock the write access on the devices for a specified duration of
time or indefinitely.

Functional Capabilities

1. User shall be able to specify the following when turning on the override behavior on the devices.

• Override pattern examples:

– If pattern is campus/building1/* - Override condition is turned on for all the devices under
campus/building1/.

– If pattern is campus/building1/ahu1 - Override condition is turned on for only cam-
pus/building1/ahu1

– The pattern matching shall use bash style filename matching semantics.

• Time duration over which override behavior is applicable - If the time duration is negative, then the override
condition is applied indefinitely.

• Optional revert-to-fail-safe-state flag - If the flag is set, the platform driver shall set all the set points falling
under the override condition to its default state/value immediately. This is to ensure that the devices are
in fail-safe state when the override/lock feature is removed. If the flag is not set, the device state/value is
untouched.

• Optional staggered revert flag - If this flag is set, reverting of devices will be staggered.

2. User shall be able to disable/turn off the override behavior on devices by specifying:

• Pattern on which the override/lock feature has be disabled. (example: campus/building/*)

3. User shall be able to get a list of all the devices with the override condition set.

4. User shall be able to get a list of all the override patterns that are currently active.

5. User shall be able to clear all the overrides.

222 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

6. Any changes to override patterns list shall be stored in the config store. On startup, list of override patterns and
corresponding end times are retrieved from the config store. If the end time is indefinite or greater than current
time for any pattern, then override is set on the matching devices for remaining duration of time.

7. Whenever a device is newly configured, a check is made to see if it is part of the overridden patterns. If yes, it
is added to list of overridden devices.

8. When a device is being removed, a check is made to see if it is part of the overridden devices. If yes, it is
removed from the list of overridden devices.

Driver RPC Methods

• set_override_on(pattern, duration=0.0, failsafe_revert=True, staggered_revert=True) - Turn on override con-
dition on all the devices matching the pattern. Time duration for the override condition has to be in seconds. For
indefinite duration, the time duration has to be <= 0.0.

• set_override_off(pattern) - Turn off override condition on all the devices matching the pattern. The specified
pattern will be removed from the override patterns list. All the devices falling under the given pattern will be
removed from the list of overridden devices.

• get_override_devices() - Get a list of all the devices with override condition.

• get_override_patterns() - Get a list of override patterns that are currently active.

• clear_overrides() - Clear all the overrides.

2.21.2 Market Service Agent

Introduction

The Market Service Agent implements a variation of a double-blind auction, in which each market participant bids to
buy or sell a commodity for a given price.

In contrast to other common implementations, participants do not bid single price-quantity pairs. Instead, they bid a
price-quantity curve, or “flexibility curve” into their respective markets. Market participants may be both buyers in
one market and sellers in another.

Settling of the market is a “single shot” process that begins with bidding that progresses from the bottom up and
concludes with a clearing of the markets from the top down. This is termed “single shot” because there is no iteration
required to find the clearing price or quantity at any level of the market structure.

Once the market has cleared, the process begins again for the next market interval, and new bids are submitted based
on the updated states of the agents.

Requirements

The Market Service Agent requires the Transitions (version 0.6.9) and NumPy (version 1.15.4) packages. These
packages can be installed in an activated environment with:

pip install transitions==0.6.9
pip install numpy==1.15.4

2.21. Core Services 223

VOLTTRON Documentation, Release 8.1.3

Market Timing

The MarketServiceAgent is driven by the Director. The Director drives the MarketServiceAgent through a timed loop.
The Director has just a few parameters that are configured by default with adequate values. They are:

1. The market_period with a default value of 5 minutes

2. The reservation_delay with a default value of 0 minutes

3. The offer_delay with a default value of 2 minutes

The timing loop works as follows:

• The market period begins.

• A request for reservations is published after the reservation delay.

• A request for offers/bids is published after the offer delay.

• The aggregate demand curve is published as soon all the buy offers are completed for the market.

• The aggregate supply curve is published as soon all the sell offers are completed for the market.

• The cleared price is published as soon as all bids have been received.

• Error messages are published when discovered and usually occur at the end of one of the delays.

• The cycle repeats.

How to Use the MarketServiceAgent

A given agent participates in one or more markets by inheriting from the base MarketAgent. The base MarketAgent
handles all of the communication between the agent and the MarketServiceAgent. The agent only needs to join each
market with the join_market method and then respond to the appropriate callback methods. The callback methods
are described at the base MarketAgent.

2.21.3 DNP3 Agent

DNP3 (Distributed Network Protocol) is a set of communications protocols that are widely used by utilities such as
electric power companies, primarily for SCADA purposes. It was adopted in 2010 as IEEE Std 1815-2010, later
updated to 1815-2012.

VOLTTRON’s DNP3 Agent is an implementation of a DNP3 Outstation as specified in IEEE Std 1815-2012. It
engages in bidirectional network communications with a DNP3 Master, which might be located at a power utility.

Like some other VOLTTRON protocol agents (e.g. IEEE2030_5Agent), the DNP3 Agent can optionally be front-
ended by a DNP3 device driver running under VOLTTRON’s PlatformDriverAgent. This allows a DNP3 Master to be
treated like any other device in VOLTTRON’s ecosystem.

The VOLTTRON DNP3 Agent implementation of an Outstation is built on PyDNP3, an open-source library from
Kisensum containing Python language bindings for Automatak’s C++ opendnp3 library, the de facto reference imple-
mentation of DNP3.

The DNP3 Agent exposes DNP3 application-layer functionality, creating an extensible base from which specific cus-
tom behavior can be designed and supported. By default, the DNP3 Agent acts as a simple transfer agent, publishing
data received from the Master on the VOLTTRON Message Bus, and responding to RPCs from other VOLTTRON
agents by sending data to the Master.

224 Chapter 2. Features

https://en.wikipedia.org/wiki/DNP3
https://en.wikipedia.org/wiki/SCADA
http://ieeexplore.ieee.org/document/5518537/?reload=true
https://standards.ieee.org/findstds/standard/1815-2012.html
https://www.automatak.com/opendnp3/

VOLTTRON Documentation, Release 8.1.3

Requirements

PyDNP3 can be installed in an activated environment with:

pip install pydnp3

RPC Calls

The DNP3 Agent exposes the following VOLTTRON RPC calls:

def get_point(self, point_name):
"""

Look up the most-recently-received value for a given output point.

@param point_name: The point name of a DNP3 PointDefinition.
@return: The (unwrapped) value of a received point.
"""

def get_point_by_index(self, group, index):
"""

Look up the most-recently-received value for a given point.

@param group: The group number of a DNP3 point.
@param index: The index of a DNP3 point.
@return: The (unwrapped) value of a received point.
"""

def get_points(self):
"""

Look up the most-recently-received value of each configured output point.

@return: A dictionary of point values, indexed by their VOLTTRON point names.
"""

def set_point(self, point_name, value):
"""

Set the value of a given input point.

@param point_name: The point name of a DNP3 PointDefinition.
@param value: The value to set. The value's data type must match the one in the

→˓DNP3 PointDefinition.
"""

def set_points(self, point_list):
"""

Set point values for a dictionary of points.

@param point_list: A dictionary of {point_name: value} for a list of DNP3 points
→˓to set.

"""

def config_points(self, point_map):
"""

For each of the agent's points, map its VOLTTRON point name to its DNP3 group
→˓and index.

(continues on next page)

2.21. Core Services 225

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

@param point_map: A dictionary that maps a point's VOLTTRON point name to its
→˓DNP3 group and index.

"""

def get_point_definitions(self, point_name_list):
"""

For each DNP3 point name in point_name_list, return a dictionary with each of
→˓the point definitions.

The returned dictionary looks like this:

{
"point_name1": {

"property1": "property1_value",
"property2": "property2_value",
...

},
"point_name2": {

"property1": "property1_value",
"property2": "property2_value",
...

}
}

If a definition cannot be found for a point name, it is omitted from the
→˓returned dictionary.

:param point_name_list: A list of point names.
:return: A dictionary of point definitions.
"""

Pub/Sub Calls

The DNP3 Agent uses two topics when publishing data to the VOLTTRON message bus:

• Point Values (default topic: `dnp3/point`): As the DNP3 Agent communicates with the Master, it publishes
received point values on the VOLTTRON message bus.

• Outstation status (default topic: dnp3/status): If the status of the DNP3 Agent outstation changes, for exam-
ple if it is restarted, it publishes its new status on the VOLTTRON message bus.

226 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Data Dictionary of Point Definitions

The DNP3 Agent loads and uses a data dictionary of point definitions, which are maintained by agreement between
the (DNP3 Agent) Outstation and the DNP3 Master. The data dictionary is stored in the agent’s registry.

Current Point Values

The DNP3 Agent tracks the most-recently-received value for each point definition in its data dictionary, regardless of
whether the point value’s source is a VOLTTRON RPC call or a message from the DNP3 Master.

Agent Configuration

The DNP3Agent configuration file specifies the following fields:

• local_ip: (string) Outstation’s host address (DNS resolved). Default: 0.0.0.0.

• port: (integer) Outstation’s port number - the port that the remote endpoint (Master) is listening on. Default:
20000.

• point_topic: (string) VOLTTRON message bus topic to use when publishing DNP3 point values. Default:
dnp3/point.

• outstation_status_topic: (string) Message bus topic to use when publishing outstation status. Default: dnp3/
outstation_status.

• outstation_config: (dictionary) Outstation configuration parameters. All are optional. Parameters include:

– database_sizes: (integer) Size of each outstation database buffer. Default: 10.

– event_buffers: (integer) Size of the database event buffers. Default: 10.

– allow_unsolicited: (boolean) Whether to allow unsolicited requests. Default: True.

– link_local_addr: (integer) Link layer local address. Default: 10.

– link_remote_addr: (integer) Link layer remote address. Default: 1.

– log_levels: (list) List of bit field names (OR’d together) that filter what gets logged by DNP3. Default:
NORMAL. Possible values: ALL, ALL_APP_COMMS, ALL_COMMS, NORMAL, NOTHING.

– threads_to_allocate: (integer) Threads to allocate in the manager’s thread pool. Default: 1.

A sample DNP3 Agent configuration file is available in services/core/DNP3Agent/config.

VOLTTRON DNP3 Device Driver

VOLTTRON’s DNP3 device driver exposes get_point/set_point RPC calls and scrapes for DNP3 points.

The driver periodically issues DNP3Agent RPC calls to refresh its cached representation of DNP3 data. It issues RPC
calls to the DNP3 Agent as needed when responding to get_point, set_point and scrape_all calls.

For information about the DNP3 driver, see DNP3 Driver.

2.21. Core Services 227

VOLTTRON Documentation, Release 8.1.3

Installing the DNP3 Agent

To install DNP3Agent, please consult the installation advice in services/core/DNP3Agent/README.md. README.md
specifies a default agent configuration, which can be overridden as needed.

An agent installation script is available:

$ export VOLTTRON_ROOT=<volttron github install directory>
$ cd $VOLTTRON_ROOT
$ source services/core/DNP3Agent/install_dnp3_agent.sh

When installing the Mesa Agent, please note that the agent’s point definitions must be loaded into the agent’s config
store. See install_dnp3_agent.sh for an example of how to load them.

2.21.4 Mesa Agent

The Mesa Agent is a VOLTTRON agent that handles MESA-ESS DNP3 outstation communications. It subclasses
and extends the functionality of VOLTTRON’s DNP3 Agent. Like the DNP3 Agent, the Mesa Agent models a DNP3
outstation, communicating with a DNP3 master.

For a description of DNP3 and the VOLTTRON DNP3 agent, please refer to the DNP3 Agent documentation.

VOLTTRON’s Mesa Agent and DNP3 Agent are implementations of a DNP3 Outstation as specified in IEEE Std
1815-2012. They engage in bidirectional network communications with a DNP3 Master, which might be located at a
power utility.

MESA-ESS is an extension and enhancement to DNP3. It builds on the basic DNP3 communications protocol, adding
support for more complex structures, including functions, arrays, curves and schedules. The draft specification for
MESA-ESS, as well as a spreadsheet of point definitions, can be found at http://mesastandards.org/mesa-standards/.

VOLTTRON’s DNP3 Agent and Mesa Agent implementations of an Outstation are built on pydnp3, an open-source
library from Kisensum containing Python language bindings for Automatak’s C++ opendnp3 library, the de-facto
reference implementation of DNP3.

MesaAgent exposes DNP3 application-layer functionality, creating an extensible base from which specific custom
behavior can be designed and supported, including support for MESA functions, arrays and selector blocks. By
default, the Mesa Agent acts as a simple transfer agent, publishing data received from the Master on the VOLTTRON
Message Bus, and responding to RPCs from other VOLTTRON agents by sending data to the Master. Properties of
the point and function definitions also enable the use of more complex controls for point data capture and publication.

The Mesa Agent was developed by Kisensum for use by 8minutenergy, which provided generous financial support for
the open-source contribution to the VOLTTRON platform, along with valuable feedback based on experience with the
agent in a production context.

RPC Calls

The Mesa Agent exposes the following VOLTTRON RPC calls:

def get_point(self, point_name):
"""

Look up the most-recently-received value for a given output point.

@param point_name: The point name of a DNP3 PointDefinition.
@return: The (unwrapped) value of a received point.
"""

(continues on next page)

228 Chapter 2. Features

http://mesastandards.org/mesa-standards/
https://www.automatak.com/opendnp3/

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

def get_point_by_index(self, data_type, index):
"""

Look up the most-recently-received value for a given point.

@param data_type: The data_type of a DNP3 point.
@param index: The index of a DNP3 point.
@return: The (unwrapped) value of a received point.
"""

def get_points(self):
"""

Look up the most-recently-received value of each configured output point.

@return: A dictionary of point values, indexed by their point names.
"""

def get_configured_points(self):
"""

Look up the most-recently-received value of each configured point.

@return: A dictionary of point values, indexed by their point names.
"""

def set_point(self, point_name, value):
"""

Set the value of a given input point.

@param point_name: The point name of a DNP3 PointDefinition.
@param value: The value to set. The value's data type must match the one in the

→˓DNP3 PointDefinition.
"""

def set_points(self, point_dict):
"""

Set point values for a dictionary of points.

@param point_dict: A dictionary of {point_name: value} for a list of DNP3 points
→˓to set.

"""

def config_points(self, point_map):
"""

For each of the agent's points, map its VOLTTRON point name to its DNP3 group
→˓and index.

@param point_map: A dictionary that maps a point's VOLTTRON point name to its
→˓DNP3 group and index.

"""

def get_point_definitions(self, point_name_list):
"""

For each DNP3 point name in point_name_list, return a dictionary with each of
→˓the point definitions.

The returned dictionary looks like this:

{
(continues on next page)

2.21. Core Services 229

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"point_name1": {
"property1": "property1_value",
"property2": "property2_value",
...

},
"point_name2": {

"property1": "property1_value",
"property2": "property2_value",
...

}
}

If a definition cannot be found for a point name, it is omitted from the
→˓returned dictionary.

:param point_name_list: A list of point names.
:return: A dictionary of point definitions.
"""

def get_selector_block(self, point_name, edit_selector):
"""

Return a dictionary of point values for a given selector block.

:param point_name: Name of the first point in the selector block.
:param edit_selector: The index (edit selector) of the block.
:return: A dictionary of point values.
"""

def reset(self):
"""

Reset the agent's internal state, emptying point value caches. Used during
→˓iterative testing.

"""

Pub/Sub Calls

MesaAgent uses three topics when publishing data to the VOLTTRON message bus:

• Point Values (default topic: dnp3/point): As the Mesa Agent communicates with the Master, it publishes
received point values on the VOLTTRON message bus.

• Functions (default topic: mesa/function): When the Mesa Agent receives a function step with a “publish”
action value, it publishes the current state of the function (all steps received to date) on the VOLTTRON message
bus.

• Outstation status (default topic: mesa/status): If the status of the Mesa Agent outstation changes, for example
if it is restarted, it publishes its new status on the VOLTTRON message bus.

230 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Data Dictionaries of Point and Function Definitions

The Mesa Agent loads and uses data dictionaries of point and function definitions, which are maintained by agreement
between the (Mesa Agent) Outstation and the DNP3 Master. The data dictionaries are stored in the agent’s registry.

Current Point Values

The Mesa Agent tracks the most-recently-received value for each point definition in its data dictionary, regardless of
whether the point value’s source is a VOLTTRON RPC call or a message from the DNP3 Master.

Agent Configuration

The Mesa Agent configuration specifies the following fields:

• local_ip: (string) Outstation’s host address (DNS resolved). Default: 0.0.0.0.

• port: (integer) Outstation’s port number - the port that the remote endpoint (Master) is listening on. Default:
20000.

• point_topic: (string) VOLTTRON message bus topic to use when publishing DNP3 point values. Default:
dnp3/point.

• function_topic: (string) Message bus topic to use when publishing MESA-ESS functions. Default: mesa/
function.

• outstation_status_topic: (string) Message bus topic to use when publishing outstation status. Default: mesa/
outstation_status.

• all_functions_supported_by_default: (boolean) When deciding whether to reject points for unsupported func-
tions, ignore the values of their ‘supported’ points: simply treat all functions as supported. Used primarily during
testing. Default: False.

• function_validation: (boolean) When deciding whether to support sending single points to the Mesa Agent. If
function_validation is True, the Mesa Agent will raise an exception when receiving any invalid point in current
function. If function_validation is False, Mesa Agent will reset current function to None instead of raising the
exception. Default: False.

• outstation_config: (dictionary) Outstation configuration parameters. All are optional. Parameters include:

– database_sizes: (integer) Size of each outstation database buffer. Default: 10.

– event_buffers: (integer) Size of the database event buffers. Default: 10.

– allow_unsolicited: (boolean) Whether to allow unsolicited requests. Default: True.

– link_local_addr: (integer) Link layer local address. Default: 10.

– link_remote_addr: (integer) Link layer remote address. Default: 1.

– log_levels: (list) List of bit field names (OR’d together) that filter what gets logged by DNP3. Default:
[NORMAL]. Possible values: ALL, ALL_APP_COMMS, ALL_COMMS, NORMAL, NOTHING.

– threads_to_allocate: (integer) Threads to allocate in the manager’s thread pool. Default: 1.

A sample Mesa Agent configuration file is available in services/core/DNP3Agent/mesaagent.config.

2.21. Core Services 231

VOLTTRON Documentation, Release 8.1.3

Installing the Mesa Agent

To install the Mesa Agent, please consult the installation advice in services/core/DNP3Agent/README.md,
which includes advice on installing pydnp3, a library upon which the DNP3 Agent depends.

After installing libraries as described in the Mesa Agent README.md file, the agent can be installed from a command-
line shell as follows:

$ export VOLTTRON_ROOT=<volttron github install directory>
$ cd $VOLTTRON_ROOT
$ source services/core/DNP3Agent/install_mesa_agent.sh

README.md specifies a default agent configuration, which can be overridden as needed.

Here are some things to note when installing the Mesa Agent:

• The Mesa Agent source code resides in, and is installed from, a DNP3 subdirectory, thus allowing
it to be implemented as a subclass of the base DNP3 agent class. When installing the Mesa Agent,
inform the install script that it should build from the mesa subdirectory by exporting the following
environment variable:

$ export AGENT_MODULE=dnp3.mesa.agent

• The agent’s point and function definitions must be loaded into the agent’s config store. See the
install_mesa_agent.sh script for an example of how to load them.

2.21.5 External Data Publisher Agent

The External Data Publisher agent (ExternalData) was created to fetch data from remote APIs based on configured
values and publish the remote data on the VOLTTRON message bus. The agent is primarily an agent wrapper around
the requests library that sends the request then broadcast it via VIP pub/sub publish.

Configuration Options

The following JSON configuration file shows all the options currently supported by the ExternalData agent. Config-
uration values specify the interval between remote data polling requests, default authentication for remote API calls,
VOLTTRON message bus publish topics, and for defining the remote API request behavior. Below is an example
configuration file with additional parameter documentation.

{
#Interval at which to scrape the sources.
"interval":300,

#Global topic prefix for all publishes.
"global_topic_prefix": "record",

#Default user name and password if all sources require the same
#credentials. Can be overridden in individual sources.
#"default_user":"my_user_name",
#"default_password" : "my_password",

"sources":
[
{

#Valid types are "csv", "json", and "raw"

(continues on next page)

232 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

#Defaults to "raw"
"type": "csv",
#Source URL for CSV data.
"url": "https://example.com/example",

#URL parameters for data query (optional).
See https://en.wikipedia.org/wiki/Query_string
"params": {"period": "currentinterval",

"format": "csv"},

#Topic to publish on.
"topic": "example/examplecsvdata1",

#Column used to break rows in CSV out into separate publishes.
#The key will be removed from the row data and appended to the end
of the publish topic.
If this option is missing the entire CSV will be published as a list
of objects.
#If the column does not exist nothing will be published.
"key": "Key Column",

#Attempt to parse these columns in the data into numeric types.
#Currently columns are parsed with ast.literal_eval()
#Values that fail to parse are left as strings unless the
values is an empty string. Empty strings are changed to None.
"parse": ["Col1", "Col2"],

#Source specific authentication.
"user":"username",
"password" : "password"

},
{

#Valid types are "csv", "json", and "raw"
#Defaults to "raw"
"type": "csv",
#Source URL for CSV data.
"url": "https://example.com/example_flat",

#URL parameters for data query (optional).
See https://en.wikipedia.org/wiki/Query_string
"params": {"format": "csv"},

#Topic to publish on. (optional)
"topic": "example/examplecsvdata1",

#If the rows in a csv represent key/value pairs use this
#setting to reduce this format to a single object for publishing.
"flatten": true,

#Attempt to parse these columns in the data into numeric types.
#Currently columns are parsed with ast.literal_eval()
#Values that fail to parse are left as strings unless the
values is an empty string. Empty strings are changed to None.
"parse": ["Col1", "Col2"]

},
{

#Valid types are "csv", "json", and "raw"
(continues on next page)

2.21. Core Services 233

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

#Defaults to "raw"
"type": "json",
#Source URL for JSON data.
"url": "https://example.com/api/example1",

#URL parameters for data query (optional)
See https://en.wikipedia.org/wiki/Query_string
"params": {"format": "json"},

#Topic to publish on. (optional)
"topic": "example/exampledata1",

#Path to desired data withing the JSON. Optional.
#Elements in a path may be either a string or an integer.
#Useful for peeling off unneeded layers around the wanted data.
"path": ["parentobject", "0"],

#After resolving the path above if the resulting data is a list
the key is the path to a value in a list item. Each item in the list
is published separately with the key appended to the end of the topic.
Elements in a key may be a string or an integer. (optional)
"key": ["Location", "$"],

#Source specific authentication.
"user":"username",
"password" : "password"

}
]

}

2.21.6 IEEE 2030.5 DER Agent

The IEEE 2030.5 Agent (IEEE2030_5 in the VOLTTRON repository) implements a IEEE 2030.5 server that receives
HTTP POST/PUT requests from IEEE 2030.5 devices. The requests are routed to the IEEE 2030.5 Agent over the
VOLTTRON message bus by VOLTTRON’s Master Web Service. The IEEE 2030.5 Agent returns an appropriate
HTTP response. In some cases (e.g., DERControl requests), this response includes a data payload.

The IEEE 2030.5 Agent maps IEEE 2030.5 resource data to a VOLTTRON IEEE 2030.5 data model based on SunSpec,
using block numbers and point names as defined in the SunSpec Information Model, which in turn is harmonized with
61850. The data model is given in detail below.

Each device’s data is stored by the IEEE 2030.5 Agent in an EndDevice memory structure. This structure is not
persisted to a database. Each EndDevice retains only the most recently received value for each field.

The IEEE2030_5 Agent exposes RPC calls for getting and setting EndDevice data.

234 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

VOLTTRON IEEE 2030.5 Device Driver

The IEEE 2030.5 device driver is a new addition to VOLTTRON Platform Driver Agent’s family of standard device
drivers. It exposes get_point/set_point calls for IEEE 2030.5 EndDevice fields.

The IEEE 2030.5 device driver periodically issues IEEE2030_5 Agent RPC calls to refresh its cached representation of
EndDevice data. It issues RPC calls to IEEE2030_5Agent as needed when responding to get_point, set_point
and scrape_all calls.

Field Definitions

These field IDs correspond to the ones in the IEEE 2030.5 device driver’s configuration file, ieee2030_5.csv.
They have been used in that file’s “Volttron Point Name” column and also in its “Point Name” column.

2.21. Core Services 235

VOLTTRON Documentation, Release 8.1.3

Field ID IEEE 2030.5 Re-
source/Property

Description Units Type

b1_Md
device_information

mfModel

Model (32 char
lim).

string

b1_Opt
device_information

lfdi

Long-form device
identifier (32 char
lim).

string

b1_SN
abstract_device

sfdi

Short-form device
identifier (32 char
lim).

string

b1_Vr
device_information

mfHwVer

Version (16 char
lim).

string

b113_A
mirror_meter_reading

PhaseCurrentAvg

AC current. A float

b113_DCA
mirror_meter_reading

InstantPackCurrent

DC current. A float

b113_DCV
mirror_meter_reading

LineVoltageAvg

DC voltage. V float

b113_DCW
mirror_meter_reading

PhasePowerAvg

DC power. W float

b113_PF
mirror_meter_reading

PhasePFA

AC power factor. % float

b113_WH
mirror_meter_reading

EnergyIMP

AC energy. Wh float

b120_AhrRtg
der_capability

rtgAh

Usable capacity of
the battery. Maxi-
mum charge minus
minimum charge.

Ah float

b120_ARtg
der_capability

rtgA

Maximum RMS AC
current level capa-
bility of the inverter.

A float

b120_MaxChaRte
der_capability

rtgMaxChargeRate

Maximum rate of
energy transfer into
the device.

W float

b120_MaxDisChaRte
der_capability

rtgMaxDischargeRate

Maximum rate of
energy transfer out
of the device.

W float

b120_WHRtg
der_capability

rtgWh

Nominal energy rat-
ing of the storage
device.

Wh float

b120_WRtg
der_capability

rtgW

Continuous power
output capability of
the inverter.

W float

b121_WMax
der_settings

setMaxChargeRate

Maximum power
output. Default to
WRtg.

W float

b122_ActWh
mirror_meter_reading

EnergyEXP

AC lifetime active
(real) energy output.

Wh float

b122_StorConn
der_status

storConnectStatus

CONNECTED=0,
AVAILABLE=1,
OPERATING=2,
TEST=3.

enum

b124_WChaMax
der_control

opModFixedFlow

Setpoint for maxi-
mum charge. This
is the only field that
is writable with a
set_point call.

W float

b403_Tmp
mirror_meter_reading

InstantPackTemp

Pack temperature. C float

b404_DCW
PEVInfo

chargingPowerNow

Power flow in or out
of the inverter.

W float

b404_DCWh
der_availability

availabilityDuration

Output energy (ab-
solute SOC). Calcu-
lated as (availabili-
tyDuration / 3600) *
WMax.

Wh float

b802_LocRemCtl
der_status

localControlModeStatus

Control Mode:
REMOTE=0, LO-
CAL=1.

enum

b802_SoC
der_status

stateOfChargeStatus

State of Charge %. % WHRtg float

b802_State
der_status

inverterStatus

DISCONNECTED=1,
INITIALIZING=2,
CONNECTED=3,
STANDBY=4, SOC
PROTECTION=5,
FAULT=99.

enum

236 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Revising and Expanding the Field Definitions

The IEEE 2030.5-to-SunSpec field mappings in this implementation are a relatively thin subset of all possible field
definitions. Developers are encouraged to expand the definitions.

The procedure for expanding the field mappings requires you to make changes in two places:

1. Update the driver’s point definitions in services/core/PlatformDriverAgent/
platform_driver/ieee2030_5.csv

2. Update the IEEE 2030.5-to-SunSpec field mappings in services/core/IEEE2030_5Agent/
ieee2030_5/end_device.py and __init__.py

When updating VOLTTRON’s IEEE 2030.5 data model, please use field IDs that conform to the SunSpec block-
number-and-field-name model outlined in the SunSpec Information Model Reference (see the link below).

View the IEEE 2030.5 agent specification document to learn more about IEEE 2030.5 and the IEEE 2030.5 agent and
driver.

IEEE 2030.5 DER Support

Version 1.0

Smart Energy Profile 2.0 (SEP 2.0, IEEE 2030.5) specifies a REST architecture built around the core HTTP verbs:
GET, HEAD, PUT, POST and DELETE. A specification for the IEEE 2030.5 protocol can be found here.

IEEE 2030.5 EndDevices (clients) POST XML resources representing their state, and GET XML resources containing
command and control information from the server. The server never reaches out to the client unless a “subscription”
is registered and supported for a particular resource type. This implementation does not use IEEE 2030.5 registered
subscriptions.

The IEEE 2030.5 specification requires HTTP headers, and it explicitly requires RESTful response codes, for example:

• 201 - “Created”

• 204 - “No Content”

• 301 - “Moved Permanently”

• etc.

IEEE 2030.5 message encoding may be either XML or EXI. Only XML is supported in this implementation.

IEEE 2030.5 requires HTTPS/TLS version 1.2 along with support for the cipher suite
TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8. Production installation requires a certificate issued by a
IEEE 2030.5 CA. The encryption requirement can be met by using a web server such as Apache to proxy the HTTPs
traffic.

IEEE 2030.5 discovery, if supported, must be implemented by an xmDNS server. Avahi can be modified to perform
this function.

2.21. Core Services 237

https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/presentations/smart_energy_slides.pdf

VOLTTRON Documentation, Release 8.1.3

Function Sets

IEEE 2030.5 groups XML resources into “Function Sets.” Some of these function sets provide a core set of function-
ality used across higher-level function sets. This implementation implements resources from the following function
sets:

• Time

• Device Information

• Device Capabilities

• End Device

• Function Set Assignments

• Power Status

• Distributed Energy Resources

Distributed Energy Resources (DERs)

Distributed energy resources (DERs) are devices that generate energy, e.g., solar inverters, or store energy, e.g., battery
storage systems, electric vehicle supply equipment (EVSEs). These devices are managed by a IEEE 2030.5 DER server
using DERPrograms which are described by the IEEE 2030.5 specification as follows:

Servers host one or more DERPrograms, which in turn expose DERControl events to DER clients. DER-
Control instances contain attributes that allow DER clients to respond to events that are targeted to their
device type. A DERControl instance also includes scheduling attributes that allow DER clients to store
and process future events. These attributes include start time and duration, as well an indication of the
need for randomization of the start and / or duration of the event. The IEEE 2030.5 DER client model is
based on the SunSpec Alliance Inverter Control Model [SunSpec] which is derived from IEC 61850-90-7
[61850] and [EPRI].

EndDevices post multiple IEEE 2030.5 resources describing their status. The following is an example of a Power
Status resource that might be posted by an EVSE (vehicle charging station):

<PowerStatus xmlns="http://zigbee.org/sep" xmlns:xsi="http://www.w3.org/2001/
→˓XMLSchema-instance" href="/sep2/edev/96/ps">

<batteryStatus>4</batteryStatus>
<changedTime>1487812095</changedTime>
<currentPowerSource>1</currentPowerSource>
<estimatedChargeRemaining>9300</estimatedChargeRemaining>
<PEVInfo>

<chargingPowerNow>
<multiplier>3</multiplier>
<value>-5</value>

</chargingPowerNow>
<energyRequestNow>

<multiplier>3</multiplier>
<value>22</value>

</energyRequestNow>
<maxForwardPower>

<multiplier>3</multiplier>
<value>7</value>

</maxForwardPower>
<minimumChargingDuration>11280</minimumChargingDuration>
<targetStateOfCharge>10000</targetStateOfCharge>

(continues on next page)

238 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

<timeChargeIsNeeded>9223372036854775807</timeChargeIsNeeded>
<timeChargingStatusPEV>1487812095</timeChargingStatusPEV>

</PEVInfo>
</PowerStatus>

Design Details

VOLTTRON’s IEEE 2030.5 implementation includes a IEEE 2030.5 Agent and a IEEE 2030.5 device driver, as
described below.

VOLTTRON IEEE 2030.5 Device Driver

The IEEE 2030.5 device driver is a new addition to VOLTTRON Platform Driver Agent’s family of standard device
drivers. It exposes get_point/set_point calls for IEEE 2030.5 EndDevice fields.

The IEEE 2030.5 device driver periodically issues the IEEE 2030.5 Agent RPC calls to refresh its cached represen-
tation of EndDevice data. It issues RPC calls to the IEEE 2030.5 Agent as needed when responding to get_point,
set_point and scrape_all calls.

2.21. Core Services 239

VOLTTRON Documentation, Release 8.1.3

Field Definitions

These field IDs correspond to the ones in the IEEE 2030.5 device driver’s configuration file, ieee2030_5.csv. They
have been used in that file’s Volttron Point Name column and also in its Point Name column.

240 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Field ID IEEE 2030.5 Re-
source/Property

Description Units Type

b1_Md
device_information

mfModel

Model (32 char
lim).

string

b1_Opt
device_information

lfdi

Long-form device
identifier (32 char
lim).

string

b1_SN
abstract_device

sfdi

Short-form device
identifier (32 char
lim).

string

b1_Vr
device_information

mfHwVer

Version (16 char
lim).

string

b113_A
mirror_meter_reading

PhaseCurrentAvg

AC current. A float

b113_DCA
mirror_meter_reading

InstantPackCurrent

DC current. A float

b113_DCV
mirror_meter_reading

LineVoltageAvg

DC voltage. V float

b113_DCW
mirror_meter_reading

PhasePowerAvg

DC power. W float

b113_PF
mirror_meter_reading

PhasePFA

AC power factor. % float

b113_WH
mirror_meter_reading

EnergyIMP

AC energy. Wh float

b120_AhrRtg
der_capability

rtgAh

Usable capacity of
the battery. Maxi-
mum charge minus
minimum charge.

Ah float

b120_ARtg
der_capability

rtgA

Maximum RMS AC
current level capa-
bility of the inverter.

A float

b120_MaxChaRte
der_capability

rtgMaxChargeRate

Maximum rate of
energy transfer into
the device.

W float

b120_MaxDisChaRte
der_capability

rtgMaxDischargeRate

Maximum rate of
energy transfer out
of the device.

W float

b120_WHRtg
der_capability

rtgWh

Nominal energy rat-
ing of the storage
device.

Wh float

b120_WRtg
der_capability

rtgW

Continuous power
output capability of
the inverter.

W float

b121_WMax
der_settings

setMaxChargeRate

Maximum power
output. Default to
WRtg.

W float

b122_ActWh
mirror_meter_reading

EnergyEXP

AC lifetime active
(real) energy output.

Wh float

b122_StorConn
der_status

storConnectStatus

CONNECTED=0,
AVAILABLE=1,
OPERATING=2,
TEST=3.

enum

b124_WChaMax
der_control

opModFixedFlow

Setpoint for maxi-
mum charge. This
is the only field that
is writable with a
set_point call.

W float

b403_Tmp
mirror_meter_reading

InstantPackTemp

Pack temperature. C float

b404_DCW
PEVInfo

chargingPowerNow

Power flow in or out
of the inverter.

W float

b404_DCWh
der_availability

availabilityDuration

Output energy (ab-
solute SOC). Calcu-
lated as (availabili-
tyDuration / 3600) *
WMax.

Wh float

b802_LocRemCtl
der_status

localControlModeStatus

Control Mode:
REMOTE=0, LO-
CAL=1.

enum

b802_SoC
der_status

stateOfChargeStatus

State of Charge %. % WHRtg float

b802_State
der_status

inverterStatus

DISCONNECTED=1,
INITIALIZING=2,
CONNECTED=3,
STANDBY=4, SOC
PROTECTION=5,
FAULT=99.

enum

2.21. Core Services 241

VOLTTRON Documentation, Release 8.1.3

Revising and Expanding the Field Definitions

The IEEE 2030.5-to-SunSpec field mappings in this implementation are a relatively thin subset of all possible field
definitions. Developers are encouraged to expand the definitions.

The procedure for expanding the field mappings requires you to make changes in two places:

1. Update the driver’s point definitions in services/core/PlatformDriverAgent/platform_driver/ieee2030_5.csv

2. Update the IEEE 2030.5-to-SunSpec field mappings in services/core/IEEE2030_5Agent/ieee2030_5/end_device.py
and __init__.py

When updating VOLTTRON’s IEEE 2030.5 data model, please use field IDs that conform to the SunSpec block-
number-and-field-name model outlined in the SunSpec Information Model Reference (see the link below).

For Further Information

SunSpec References:

• Information model specification: http://sunspec.org/wp-content/uploads/2015/06/
SunSpec-Information-Models-12041.pdf

• Information model reference spreadsheet: http://sunspec.org/wp-content/uploads/2015/06/
SunSpec-Information-Model-Reference.xlsx

• Inverter models: http://sunspec.org/wp-content/uploads/2015/06/SunSpec-Inverter-Models-12020.pdf

• Energy storage models: http://sunspec.org/wp-content/uploads/2015/06/
SunSpec-Energy-Storage-Models-12032.pdf

Questions? Please contact:

• Rob Calvert (rob@kisensum.com) or James Sheridan (james@kisensum.com)

2.21.7 Obix History Agent

The Obix History Agent captures data history data from an Obix RESTful interface and publishes it to the message bus
like a driver for capture by agents and historians. The Agent will setup its queries to ensure that data is only publishes
once. For points queried for the first time it will go back in time and publish old data as configured.

The data will be collated into device all publishes automatically and will use a timestamp in the header based on the
timestamps reported by the Obix interface. The publishes will be made in chronological order.

Units data is automatically read from the device.

For sending commands to devices see Obix Driver Configuration.

Agent Configuration

There are three arguments for the driver_config section of the device configuration file:

• url - URL of the interface.

• username - User name for site..

• password - Password for username.

• check_interval - How often to check for new data on each point.

• path_prefix - Path prefix for all publishes.

242 Chapter 2. Features

http://sunspec.org/wp-content/uploads/2015/06/SunSpec-Information-Models-12041.pdf
http://sunspec.org/wp-content/uploads/2015/06/SunSpec-Information-Models-12041.pdf
http://sunspec.org/wp-content/uploads/2015/06/SunSpec-Information-Model-Reference.xlsx
http://sunspec.org/wp-content/uploads/2015/06/SunSpec-Information-Model-Reference.xlsx
http://sunspec.org/wp-content/uploads/2015/06/SunSpec-Inverter-Models-12020.pdf
http://sunspec.org/wp-content/uploads/2015/06/SunSpec-Energy-Storage-Models-12032.pdf
http://sunspec.org/wp-content/uploads/2015/06/SunSpec-Energy-Storage-Models-12032.pdf
mailto:rob@kisensum.com
mailto:james@kisensum.com

VOLTTRON Documentation, Release 8.1.3

• register_config - Registry configuration file.

• default_last_read - Time, in hours, to go back and retrieve data for a point for the first time.

Here is an example device configuration file:

{
"url": "http://example.com/obix/histories/EXAMPLE/",
"username": "username",
"password": "password",
Interval to query interface for updates in minutes.
History points are only published if new data is available
config points are gathered and published at this interval.
"check_interval": 15,
Path prefix for all publishes
"path_prefix": "devices/obix/history/",
"register_config": "config://registry_config.csv",
"default_last_read": 12

}

A sample Obix configuration file can be found in the VOLTTRON repository in services/core/
ObixHistoryPublish/config

Registry Configuration File

Similar to a driver the Obix History Agent requires a registry file to select the points to publish.

The registry configuration file is a CSV file. Each row configures a point on the device.

The following columns are required for each row:

• Device Name - Name of the device to associate with this point.

• Volttron Point Name - The VOLTTRON Point name to use when publishing this value.

• Obix Name - Name of the point on the Obix interface. Escaping of spaces and dashes for use with the interface
is handled internally.

Any additional columns will be ignored. It is common practice to include a Notes or Unit Details for additional
information about a point.

The following is an example of a Obix History Agent registry configuration file:

Table 3: Obix
Device Name Volttron Point Name Obix Name
device1 Local Outside Dry Bulb Local Outside Dry Bulb
device2 CG-1 Gas Flow F-2 CG-1 Gas Flow F-2
device2 Cog Plant Gas Flow F-1 Cog Plant Gas Flow F-1
device2 Boiler Plant Hourly Gas Usage Boiler Plant Hourly Gas Usage
device3 CG-1 Water Flow H-1 CG-1 Water Flow H-1

A sample Obix History Agent configuration can be found in the VOLTTRON repository in ser-
vices/core/ObixHistoryPublish/registry_config.csv

2.21. Core Services 243

https://en.wikipedia.org/wiki/Comma-separated_values

VOLTTRON Documentation, Release 8.1.3

Automatic Obix Configuration File Creation

A script that will automatically create both a device and register configuration file for a site is located in the repository
at scripts/obix/get_obix_history_config.py.

The utility is invoked with the command:

python get_obix_history_config.py <url> <registry_file> <driver_file> -u <username> -
→˓p <password> -d <device name>

If either the registry_file or driver_file is omitted the script will output those files to stdout.

If either the username or password options are left out the script will ask for them on the command line before
proceeding.

The device name option specifies a default device for every point in the configuration.

The registry file produced by this script assumes that the Volttron Point Name and the Obix Name have the same value.
Also, it is assumed that all points should be read only. Users are expected to fix this as appropriate.

2.21.8 OpenADR 2.0b VEN Agent

OpenADR (Automated Demand Response) is a standard for alerting and responding to the need to adjust electric
power consumption in response to fluctuations in grid demand.

OpenADR communications are conducted between Virtual Top Nodes (VTNs) and Virtual End Nodes (VENs). In
this implementation a VOLTTRON agent, the VEN agent, acts as a VEN, communicating with its VTN by means of
EIEvent and EIReport services in conformance with a subset of the OpenADR 2.0b specification. This document’s
VOLTTRON Interface section defines how the VEN agent relays information to, and receives data from, other VOLT-
TRON agents.

The OpenADR 2.0b specification (http://www.openadr.org/specification) is available from the OpenADR Alliance.
This implementation also generally follows the DR program characteristics of the Capacity Program described in
Section 9.2 of the OpenADR Program Guide (http://www.openadr.org/assets/openadr_drprogramguide_v1.0.pdf).

DR Capacity Bidding and Events

The OpenADR Capacity Bidding program relies on a pre-committed agreement about the VEN’s load shed capacity.
This agreement is reached in a bidding process transacted outside of the OpenADR interaction, typically with a long-
term scope, perhaps a month or longer. The VTN can “call an event,” indicating that a load-shed event should occur
in conformance with this agreement. The VTN indicates the level of load shedding desired, when the event should
occur, and for how long. The VEN responds with an optIn acknowledgment. (It can also optOut, but since it has been
pre-committed, an optOut may incur penalties.)

Reporting

The VEN agent reports device status and usage telemetry to the VTN, relying on information received periodically
from other VOLTTRON agents.

244 Chapter 2. Features

http://www.openadr.org/specification
http://www.openadr.org/assets/openadr_drprogramguide_v1.0.pdf

VOLTTRON Documentation, Release 8.1.3

General Approach

Events:

• The VEN agent maintains a persistent record of DR events.

• Event updates (including creation) trigger publication of event JSON on the VOLTTRON message bus.

• Other VOLTTRON agents can also call a get_events() RPC to retrieve the current status of particular events, or
of all active events.

Reporting:

• The VEN agent configuration defines telemetry values (data points) that can be reported to the VTN.

• The VEN agent maintains a persistent record of telemetry values over time.

• Other VOLTTRON agents are expected to call report_telemetry() to supply the VEN agent with a regular stream
of telemetry values for reporting.

• Other VOLTTRON agents can receive notification of changes in telemetry reporting requirements by subscribing
to publication of telemetry parameters.

VEN Agent VOLTTRON Interface

The VEN agent implements the following VOLTTRON PubSub and RPC calls.

PubSub: event update

def publish_event(self, an_event):
"""

Publish an event.

When an event is created/updated, it is published to the VOLTTRON bus
with a topic that includes 'openadr/event_update'.

Event JSON structure:
{

"event_id" : String,
"creation_time" : DateTime,
"start_time" : DateTime,
"end_time" : DateTime or None,
"signals" : String, # Values: json string describing one or

→˓more signals.
"status" : String, # Values: unresponded, far, near,

→˓active,
completed, canceled.

"opt_type" : String # Values: optIn, optOut, none.
}

If an event status is 'unresponded', the VEN agent is awaiting a decision on
whether to optIn or optOut. The downstream agent that subscribes to this

→˓PubSub
message should communicate that choice to the VEN agent by calling respond_to_

→˓event()
(see below). The VEN agent then relays the choice to the VTN.

@param an_event: an EiEvent.
"""

2.21. Core Services 245

VOLTTRON Documentation, Release 8.1.3

PubSub: telemetry parameters update

def publish_telemetry_parameters_for_report(self, report):
"""

Publish telemetry parameters.

When the VEN agent telemetry reporting parameters have been updated (by the
→˓VTN),

they are published with a topic that includes 'openadr/telemetry_parameters'.
If a particular report has been updated, the reported parameters are for that

→˓report.

Telemetry parameters JSON example:
{

"telemetry": {
"baseline_power_kw": {

"r_id": "baseline_power",
"frequency": "30",
"report_type": "baseline",
"reading_type": "Mean",
"method_name": "get_baseline_power"

}
"current_power_kw": {

"r_id": "actual_power",
"frequency": "30",
"report_type": "reading",
"reading_type": "Mean",
"method_name": "get_current_power"

}
"manual_override": "False",
"report_status": "active",
"online": "False",

}
}

The above example indicates that, for reporting purposes, telemetry values
for baseline_power and actual_power should be updated -- via report_

→˓telemetry() -- at
least once every 30 seconds.

Telemetry value definitions such as baseline_power and actual_power come from
→˓the

agent configuration.

@param report: (EiReport) The report whose parameters should be published.
"""

RPC calls:

@RPC.export
def respond_to_event(self, event_id, opt_in_choice=None):

"""
Respond to an event, opting in or opting out.

If an event's status=unresponded, it is awaiting this call.
When this RPC is received, the VENAgent sends an eventResponse to
the VTN, indicating whether optIn or optOut has been chosen.
If an event remains unresponded for a set period of time,

(continues on next page)

246 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

it times out and automatically optsIn to the event.

Since this call causes a change in the event's status, it triggers
a PubSub call for the event update, as described above.

@param event_id: (String) ID of an event.
@param opt_in_choice: (String) 'OptIn' to opt into the event, anything else is

→˓treated as 'OptOut'.
"""

@RPC.export
def get_events(self, event_id=None, in_progress_only=True, started_after=None, end_
→˓time_before=None):

"""
Return a list of events as a JSON string.

Sample request:
self.get_events(started_after=utils.get_aware_utc_now() -

→˓timedelta(hours=1),
end_time_before=utils.get_aware_utc_now())

Return a list of events.

By default, return only event requests with status=active or
→˓status=unresponded.

If an event's status=active, a DR event is currently in progress.

@param event_id: (String) Default None.
@param in_progress_only: (Boolean) Default True.
@param started_after: (DateTime) Default None.
@param end_time_before: (DateTime) Default None.
@return: (JSON) A list of events -- see 'PubSub: event update'.
"""

@RPC.export
def get_telemetry_parameters(self):

"""
Return the VEN agent's current set of telemetry parameters.

@return: (JSON) Current telemetry parameters -- see 'PubSub: telemetry parameters
→˓update'.

"""

@RPC.export
def set_telemetry_status(self, online, manual_override):

"""
Update the VEN agent's reporting status.

Set these properties to either 'TRUE' or 'FALSE'.

@param online: (Boolean) Whether the VEN agent's resource is online.
@param manual_override: (Boolean) Whether resource control has been overridden.
"""

2.21. Core Services 247

VOLTTRON Documentation, Release 8.1.3

@RPC.export
def report_telemetry(self, telemetry):

"""
Receive an update of the VENAgent's report metrics, and store them in the

→˓agent's database.

Examples of telemetry are:
{

'baseline_power_kw': '15.2',
'current_power_kw': '371.1',
'start_time': '2017-11-21T23:41:46.051405',
'end_time': '2017-11-21T23:42:45.951405'

}

@param telemetry_values: (JSON) Current value of each report metric, with
→˓reporting-interval start/end.

"""

PubSub: Event Update

When an event is created/updated, the event is published with a topic that includes openadr/event/{ven_id}.

Event JSON structure:

{
"event_id" : String,
"creation_time" : DateTime - UTC,
"start_time" : DateTime - UTC,
"end_time" : DateTime - UTC,
"priority" : Integer, # Values: 0, 1, 2, 3. Usually expected to be 1.
"signals" : String, # Values: json string describing one or more

→˓signals.
"status" : String, # Values: unresponded, far, near, active, completed,

→˓ canceled.
"opt_type" : String # Values: optIn, optOut, none.

}

If an event status is ‘unresponded’, the VEN is awaiting a decision on whether to optIn or optOut. The down-
stream agent that subscribes to this PubSub message should communicate that choice to the VEN by calling re-
spond_to_event() (see below). The VEN then relays the choice to the VTN.

PubSub: Telemetry Parameters Update

When the VEN telemetry reporting parameters have been updated (by the VTN), they are published with a topic that
includes openadr/status/{ven_id}.

These parameters include state information about the current report.

Telemetry parameters structure:

{
'telemetry': '{

"baseline_power_kw": {
"r_id" : "baseline_power", # ID of the reporting metric
"report_type" : "baseline", # Type of reporting metric, e.

→˓g. baseline or reading (continues on next page)

248 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"reading_type" : "Direct Read", # (per OpenADR telemetry_
→˓usage report requirements)

"units" : "powerReal", # (per OpenADR telemetry_
→˓usage reoprt requirements)

"method_name" : "get_baseline_power", # Name of the VEN agent
→˓method that gets the metric

"min_frequency" : (Integer), # Data capture frequency in
→˓seconds (minimum)

"max_frequency" : (Integer) # Data capture frequency in
→˓seconds (maximum)

},
"current_power_kw": {

"r_id" : "actual_power", # ID of the reporting metric
"report_type" : "reading", # Type of reporting metric, e.

→˓g. baseline or reading
"reading_type" : "Direct Read", # (per OpenADR telemetry_

→˓usage report requirements)
"units" : "powerReal", # (per OpenADR telemetry_

→˓usage report requirements)
"method_name" : "get_current_power", # Name of the VEN agent

→˓method that gets the metric
"min_frequency" : (Integer), # Data capture frequency in

→˓seconds (minimum)
"max_frequency" : (Integer) # Data capture frequency in

→˓seconds (maximum)
}

}'
'report parameters': '{

"status" : (String), # active, inactive, completed,
→˓ or cancelled

"report_specifier_id" : "telemetry", # ID of the report definition
"report_request_id" : (String), # ID of the report request;

→˓supplied by the VTN
"request_id" : (String), # Request ID of the most

→˓recent VTN report modification
"interval_secs" : (Integer), # How often a report update

→˓is sent to the VTN
"granularity_secs" : (Integer), # How often a report update

→˓is sent to the VTN
"start_time" : (DateTime - UTC), # When the report started
"end_time" : (DateTime - UTC), # When the report is

→˓scheduled to end
"last_report" : (DateTime - UTC), # When a report update was

→˓last sent
"created_on" : (DateTime - UTC) # When this set of

→˓information was recorded in the VEN db
}',
'manual_override' : (Boolean) # VEN manual override status,

→˓as supplied by Control Agent
'online' : (Boolean) # VEN online status, as

→˓supplied by Control Agent
}

Telemetry value definitions such as baseline_power_kw and current_power_kw come from the VEN agent config.

2.21. Core Services 249

VOLTTRON Documentation, Release 8.1.3

OpenADR VEN Agent: Installation and Configuration

The VEN agent can be configured, built and launched using the VOLTTRON agent installation pro-
cess described in http://volttron.readthedocs.io/en/develop/devguides/agent_development/Agent-Development.html#
agent-development.

The VEN agent depends on some third-party libraries that are not in the standard VOLTTRON installation. They
should be installed in the VOLTTRON virtual environment prior to building the agent:

(volttron) $ cd $VOLTTRON_ROOT/services/core/OpenADRVenAgent
(volttron) $ pip install -r requirements.txt

where $VOLTTRON_ROOT is the base directory of the cloned VOLTTRON code repository.

The VEN agent is designed to work in tandem with a “control agent,” another VOLTTRON agent that uses VOLT-
TRON RPC calls to manage events and supply report data. A sample control agent has been provided in the
test/ControlAgentSim subdirectory under OpenADRVenAgent.

The VEN agent maintains a persistent store of event and report data in $VOLTTRON_HOME/data/openadr.
sqlite. Some care should be taken in managing the disk consumption of this data store. If no events or reports are
active, it is safe to take down the VEN agent and delete the file; the persistent store will be reinitialized automatically
on agent startup.

Configuration Parameters

The VEN agent’s configuration file contains JSON that includes several parameters for configuring VTN server com-
munications and other behavior. A sample configuration file, config, has been provided in the agent directory.

The VEN agent supports the following configuration parameters:

250 Chapter 2. Features

http://volttron.readthedocs.io/en/develop/devguides/agent_development/Agent-Development.html#agent-development
http://volttron.readthedocs.io/en/develop/devguides/agent_development/Agent-Development.html#agent-development

VOLTTRON Documentation, Release 8.1.3

Pa-
rame-
ter

Example Description

db_path “$VOLT-
TRON_HOME/data/
ope-
nadr.sqlite”

Pathname of the agent’s sqlite database. Shell variables will be expanded if they are
present in the pathname.

ven_id “0” The OpenADR ID of this virtual end node. Identifies this VEN to the VTN. If automated
VEN registration is used, the ID is assigned by the VTN at that time. If the VEN is
registered manually with the VTN (i.e., via configuration file settings), then a common
VEN ID should be entered in this config file and in the VTN’s site definition.

ven_name“ven01” Name of this virtual end node. This name is used during automated registration only,
identiying the VEN before its VEN ID is known.

vtn_id “vtn01” OpenADR ID of the VTN with which this VEN communicates.
vtn_address“http://

openadr-vtn.
ki-
evi.com:8000”

URL and port number of the VTN.

send_registration“False” (“True” or ”False”) If “True”, the VEN sends a one-time automated registration request
to the VTN to obtain the VEN ID. If automated registration will be used, the VEN should
be run in this mode initially, then shut down and run with this parameter set to “False”
thereafter.

secu-
rity_level

“standard” If ‘high’, the VTN and VEN use a third-party signing authority to sign and authenticate
each request. The default setting is “standard”: the XML payloads do not contain Signa-
ture elements.

poll_interval_secs30 (integer) How often the VEN should send an OadrPoll request to the VTN. The poll
interval cannot be more frequent than the VEN’s 5-second process loop frequency.

log_xml “False” (“True” or “False”) Whether to write each inbound/outbound request’s XML data to the
agent’s log.

opt_in_timeout_secs1800 (integer) How long to wait before making a default optIn/optOut decision.
opt_in_default_decision“optOut” (“True” or “False”) Which optIn/optOut choice to make by default.
re-
quest_events_on_startup

“False” (“True” or “False”) Whether to ask the VTN for a list of current events during VEN
startup.

re-
port_parameters

(see below) A dictionary of definitions of reporting/telemetry parameters.

Reporting Configuration

The VEN’s reporting configuration, specified as a dictionary in the agent configuration, defines each telemetry element
(metric) that the VEN can report to the VTN, if requested. By default, it defines reports named “telemetry” and
“telemetry_status”, with a report configuration dictionary containing the following parameters:

2.21. Core Services 251

http://openadr-vtn
http://openadr-vtn

VOLTTRON Documentation, Release 8.1.3

“telemetry” report: parameters Example Description
report_name “TELEME-

TRY_USAGE”
Friendly name of the report.

report_name_metadata “META-
DATA_TELEMETRY_USAGE”

Friendly name of the report’s metadata, when sent
by the VEN’s oadrRegisterReport request.

report_specifier_id “telemetry” Uniquely identifies the report’s data set.
report_interval_secs_default “300” How often to send a reporting update to the VTN.
telemetry_parameters (base-
line_power_kw): r_id

“baseline_power” (baseline_power) Unique ID of the metric.

telemetry_parameters (base-
line_power_kw): report_type

“baseline” (baseline_power) The type of metric being reported.

telemetry_parameters (base-
line_power_kw): reading_type

“Direct Read” (baseline_power) How the metric was calculated.

telemetry_parameters (base-
line_power_kw): units

“powerReal” (baseline_power) The reading’s data type.

telemetry_parameters (base-
line_power_kw): method_name

“get_baseline_power” (baseline_power) The VEN method to use when ex-
tracting the data for reporting.

telemetry_parameters (base-
line_power_kw): min_frequency

30 (baseline_power) The metric’s minimum sampling
frequency.

telemetry_parameters (base-
line_power_kw): max_frequency

60 (baseline_power) The metric’s maximum sampling
frequency.

telemetry_parameters (cur-
rent_power_kw): r_id

“actual_power” (current_power) Unique ID of the metric.

telemetry_parameters (cur-
rent_power_kw): report_type

“reading” (current_power) The type of metric being reported.

telemetry_parameters (cur-
rent_power_kw): reading_type

“Direct Read” (current_power) How the metric was calculated.

telemetry_parameters (cur-
rent_power_kw): units

“powerReal” (baseline_power) The reading’s data type.

telemetry_parameters (cur-
rent_power_kw): method_name

“get_current_power” (current_power) The VEN method to use when ex-
tracting the data for reporting.

telemetry_parameters (cur-
rent_power_kw): min_frequency

30 (current_power) The metric’s minimum sampling
frequency.

telemetry_parameters (cur-
rent_power_kw): max_frequency

60 (current_power) The metric’s maximum sampling
frequency.

252 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

“telemetry_status” report:
parameters

Example Description

report_name “TELEME-
TRY_STATUS”

Friendly name of the report.

report_name_metadata “META-
DATA_TELEMETRY_STATUS”

Friendly name of the report’s metadata, when sent by
the VEN’s oadrRegisterReport request.

report_specifier_id “telemetry_status” Uniquely identifies the report’s data set.
re-
port_interval_secs_default

“300” How often to send a reporting update to the VTN.

telemetry_parameters (Sta-
tus): r_id

“Status” Unique ID of the metric.

telemetry_parameters (Sta-
tus): report_type

“x-resourceStatus” The type of metric being reported.

telemetry_parameters (Sta-
tus): reading_type

“x-notApplicable” How the metric was calculated.

telemetry_parameters (Sta-
tus): units

“” The reading’s data type.

telemetry_parameters (Sta-
tus): method_name

“” The VEN method to use when extracting the data for
reporting.

telemetry_parameters (Sta-
tus): min_frequency

60 The metric’s minimum sampling frequency.

telemetry_parameters (Sta-
tus): max_frequency

120 The metric’s maximum sampling frequency.

2.21.9 VOLTTRON Central Management Overview

VOLTTRON Central is responsible for controlling multiple VOLTTRON instances with a single management instance.
The managed VOLTTRON instances can be either local or remote. Each managed instance will have a VOLTTRON
Central Platform agent installed and running to interface with the primary VOLTTRON Central agent.

2.21. Core Services 253

VOLTTRON Documentation, Release 8.1.3

There is a VOLTTRON Central Deployment Demo that will allow you to quickly setup and see the current offerings of
the interface.

VOLTTRON Central will allow you to:

• See a list of platforms being managed.

• Add and remove platforms.

• Install, start and stop agents on the managed platforms.

• Create dynamic graphs from the historians based upon data points.

• Execute functions on remote platforms.

Volttron Central Agent

The VOLTTRON Central (VC) agent serves a web-based management UI that interfaces with the VOLTTRON Central
web API.

VOLTTRON Central Platform Agent

The VOLTTRON Central Platform (VCP) Agent allows communication with a VOLTTRON Central instance. Each
VOLTTRON instance managed by VOLTTRON Central should have only one Platform Agent. The Platform Agent
must have the VIP Identity of platform.agent which is specified as default by VOLTTRON known identities.

254 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Additional VOLTTRON Central Resources

VOLTTRON Central (VC)

The VC Agent is responsible for controlling multiple VOLTTRON instances through a single web interface. The
VOLTTRON instances can be either local or remote. VC leverages an internal VOLTTRON web server providing a
interface to our JSON-RPC based web API. Both the web api and the interface are served through the VC agent.

Instance Configuration

In order for any web agent to be enabled, there must be a port configured to serve the content. The easiest way to do
this is to create a config file in the root of your VOLTTRON_HOME directory (to do this automatically see VOLTTRON
Config.)

The following is an example of the configuration file

[volttron]
instance-name = volttron1
message-bus = rmq
vip-addres = tcp://127.0.0.1:22916
bind-web-address = https://localhost:8443
volttron-central-address = https://localhost:8443

Note: The above configuration will open a discoverable port for the volttron instance. In addition, the opening of this
web address allows you to serve both static as well as dynamic pages.

Verify that the instance is serving properly by pointing your web browser to https://localhost:8443/
index.html

Agent Execution

To setup an instance of VC, it is recommended to follow one of the following guides depending on your use case.
For a single instance, please consult the VOLTTRON Central Demo. For controlling multiple instances with different
message busses, consider the VOLTTRON Central Multi-Platform Multi-Bus Demo.

However, if you already have an instance of VOLTTRON configured that you wish to make an instance of VOLTTRON
Central. you may install and start it as follows:

Arguments are package to execute, config file to use, tag to use as reference
./scripts/core/pack_install.sh services/core/VolttronCentral services/core/
→˓VolttronCentral/config vc

Start the agent
vctl start --tag vc

2.21. Core Services 255

VOLTTRON Documentation, Release 8.1.3

Security Considerations

When deploying any web agent, including VOLTTRON Central, it is important to consider security. Please refer to
the documentation for Security Considerations of Deployment. In particular, it would be recommended to consider the
use of a reverse proxy for a VOLTTRON Central deployment.

Volttron Central Platform (VCP)

The VCP agent exposes a VOLTTRON instance to a Volttron Central (VC) agent. The VC agent can either be on the
same or a remote VOLTTRON instance. The VCP agent will, once authenticated with the VC agent’s instance, auto
connect to the VC agent’s instance and register itself on startup. The VCP instance will attempt to reconnect to the
VC agent’s instance if connection is disrupted.VCP has many configuration options available that can be set via the
configuration store. An example config is provided below with information on these options.

Publish Specifications

During connection to the VC agent’s instance the instance-name from the VCP will be used to connect to the VC
agent’s instance. It will have the form vcp-instance name with all invalid characters replaced with an underscore.
See volttron.platform.agent.util.normalize_identity() for how the instance name is normal-
ized into a identity.

FAQ / Notes

• VCP agent has an identity of ‘platform.agent’. This cannot be changed.

• There may only be a single agent connected to a VOLTTRON instance with the identity of ‘platform.agent’

• From VC’s perspective, the VCP agent’s identity is <VCP Instance Name>.platform.agent

• VCP will publish to the remote platform under the topic platforms/vcp-(normalized instance name)/

• VC subscribes to platforms/* and gets status of the remote instance.

• VCP connects to the remote instance using the auth subsystem. Once is connected to the remote instance, VCP’s
rpc functions are available for the remote VC to call.

• VC looks at the peers connected to the instance in order to determine what remote instances are connected to
the platform (.platform.agent are assumed to be VCP instances).

256 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Configuration Options

The following JSON configuration file shows all the options currently supported by the VCP agent. By default an
empty config file is used.

{
The volttron-central-address, volttron-central-serverkey and
instance-name may be set in the VCP instance configuration file or
or as command line parameters to the VOLTTRON instance.
#
The volttron-central-address is either an http address or a tcp
address. If it is an http address vc must be running at the resolution
of http://ip:port/discovery/. VCP will use the tcp address and
serverkey in the response payload to connect to the VC agent instance.
#
If the specified address is a tcp address then the configuration
must also contain a volttron-central-serverkey.
"volttron-central-address": "http://ip<host>:port" or "tcp://ip:port",

The serverkey of the VC agent's instance.
"volttron-central-serverkey" "VC agent's instance serverkey",

interval at which VCP will attempt to connect to the VC agent's
instance when a disconnection occurs.
"volttron-central-reconnect-interval": 5,

The name of instance to be sent to volttron central for displaying
on the interface.
"instance-name": "name of instances (VC agent's instance ip address as default)",

(continues on next page)

2.21. Core Services 257

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

VCP will publish health statistics of the instance at a specified
interval.
"stats-publish-interval": 30,

The VCP provides a topic/replace mapping for the platform. It is
available via rpc function so that sensitive information won't be
published through forwarding.
#
The topic-replace-map is used to search/replace all of the topics
published from ForwardHistorians and other agents that connect with
external instances.
"topic-replace-map": {

"from": "to",
"from1": "to1"

}
}

Device Configuration in VOLTTRON Central

Devices in your network can be detected and configured through the VOLTTRON Central UI. The current version
of VOLTTRON enables device detection and configuration for BACnet devices. The following sections describe the
processes involved with performing scans to detect physical devices and get their points, and configuring them as
virtual devices installed on VOLTTRON instances.

• Launching Device Configuration

• Scanning for Devices

• Scanning for Points

• Registry Configuration File

• Additional Attributes

• Quick Edit Features

• Keyboard Commands

• Registry Preview

• Registry Configuration Options

• Reloading Device Points

• Device Configuration Form

• Configuring Sub-devices

• Reconfiguring Devices

• Exporting Registry Configuration Files

258 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Launching Device Configuration

To begin device configuration in VOLTTRON Central, extend the side panel on the left and find the cogs button next
to the platform instance you want to add a device to. Click the cogs button to launch the device configuration feature.

Currently the only method of adding devices is to conduct a scan to detect BACnet devices. A BACnet Proxy Agent
must be running in order to do the scan. If more than one BACnet Proxy is installed on the platform, choose the one
that will be used for the scan.

The scan can be conducted using default settings that will search for all physical devices on the network. However,
optional settings can be used to focus on specific devices or change the duration of the scan. Entering a range of device
IDs will limit the scan to return only devices with IDs in that range. Advanced options include the ability to specify

2.21. Core Services 259

VOLTTRON Documentation, Release 8.1.3

the IP address of a device to detect as well as the ability to change the duration of the scan from the default of five
seconds.

Scanning for Devices

To start the scan, click the large cog button to the right of the scan settings.

Devices that are detected will appear in the space below the scan settings. Scanning can be repeated at any time by
clicking the large cog button again.

260 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Scanning for Points

Another scan can be performed on each physical device to retrieve its available points. This scan is initiated by clicking
the triangle next to the device in the list. The first time the arrow is clicked, it initiates the scan. After the points are
retrieved, the arrow becomes a hide-and-show toggle button and won’t re-initiate scanning the device.

After the points have been retrieved once, the only way to scan the same device for points again is to relaunch the
device configuration process from the start by clicking on the small cogs button next to the platform instance in the
panel tree.

Registry Configuration File

The registry configuration determines which points on the physical device will be associated with the virtual device that
uses that particular registry configuration. The registry configuration determines which points’ data will be published
to the message bus and recorded by the historian, and it determines how the data will be presented.

When all the points on the device have been retrieved, the points are loaded into the registry configuration editor.
There, the points can be modified and selected to go into the registry configuration file for a device.

Each row in the registry configuration editor represents a point, and each cell in the row represents an attribute of the
point.

Only points that have been selected will be included in the registry configuration file. To select a point, check the box
next to the point in the editor.

2.21. Core Services 261

VOLTTRON Documentation, Release 8.1.3

262 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Type directly in a cell to change an attribute value for a point.

2.21. Core Services 263

VOLTTRON Documentation, Release 8.1.3

Additional Attributes

The editor’s default view shows the attributes that are most likely to be changed during configuration: the VOLTTRON
point name, the writable setting, and the units. Other attributes are present but not shown in the default view. To see
the entire set of attributes for a point, click the Edit Point button (the three dots) at the end of the point row.

In the window that opens, point attributes can be changed by typing in the fields and clicking the Apply button.

Checking or unchecking the Show in Table box for an attribute will add or remove it as a column in the registry
configuration editor.

264 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Quick Edit Features

Several quick-edit features are available in the registry configuration editor.

The list of points can be filtered based on values in the first column by clicking the filter button in the first column’s
header and entering a filter term.

The filter feature allows points to be edited, selected, or deselected more quickly by narrowing down potentially large
lists of points. However, the filter doesn’t select points, and if the registry configuration is saved while a filter is
applied, any selected points not included in the filter will still be included in the registry file.

To clear the filter, click on the Clear Filter button in the filter popup.

2.21. Core Services 265

VOLTTRON Documentation, Release 8.1.3

To add a new point to the points listed in the registry configuration editor, click on the Add Point button in the header
of the first column.

266 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Provide attribute values, and click the Apply button to add the new point, which will be appended to the bottom of the
list.

To remove points from the list, select the points and click the Remove Points button in the header of the first column.

2.21. Core Services 267

VOLTTRON Documentation, Release 8.1.3

Each column has an Edit Column button in its header.

Click on the button to display a popup menu of operations to perform on the column. The options include inserting a
blank new column, duplicating an existing column, removing a column, or searching for a value within a column.

268 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

A duplicate or new column has to be given a unique name.

2.21. Core Services 269

VOLTTRON Documentation, Release 8.1.3

To search for values in a column, choose the Find and Replace option in the popup menu.

Type the term to search for, and click the Find Next button to highlight all the matched fields in the column.

270 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Click the Find Next button again to advance the focus down the list of matched terms.

To quickly replace the matched term in the cell with focus, type a replacement term, and click on the Replace button.

To replace all the matched terms in the column, click on the Replace All button. Click the Clear Search button to end
the search.

2.21. Core Services 271

VOLTTRON Documentation, Release 8.1.3

Keyboard Commands

Some keyboard commands are available to expedite the selection or de-selection of points. To initiate use of the
keyboard commands, strike the Control key on the keyboard. For keyboard commands to be activated, the registry
configuration editor has to have focus, which comes from interacting with it. But the commands won’t be activated if
the cursor is in a type-able field.

If the keyboard commands have been successfully activated, a faint highlight will appear over the first row in the
registry configuration editor.

Keyboard commands are deactivated when the mouse cursor moves over the configuration editor. If unintentional
deactivation occurs, strike the Control key again to reactivate the commands.

With keyboard commands activated, the highlighted row can be advanced up or down by striking the up or down arrow
on the keyboard. A group of rows can be highlighted by striking the up or down arrow while holding down the Shift
key.

272 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

To select the highlighted rows, strike the Enter key.

Striking the Enter key with rows highlighted will also deselect any rows that were already selected.

Click on the Keyboard Shortcuts button to show a popup list of the available keyboard commands.

2.21. Core Services 273

VOLTTRON Documentation, Release 8.1.3

274 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Registry Preview

To save the registry configuration, click the Save button at the bottom of the registry configuration editor.

A preview will appear to let you confirm that the configuration is what you intended.

The configuration also can be inspected in the comma-separated format of the actual registry configuration file.

2.21. Core Services 275

VOLTTRON Documentation, Release 8.1.3

Provide a name for the registry configuration file, and click the Save button to save the file.

276 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Registry Configuration Options

Different subsets of configured points can be saved from the same physical device and used to create separate registry
files for multiple virtual devices and sub-devices. Likewise, a single registry file can be reused by multiple virtual
devices and sub-devices.

To reuse a previously saved registry file, click on the Select Registry File (CSV) button at the end of the physical
device’s listing.

The Previously Configured Registry Files window will appear, and a file can be selected to load it into the registry
configuration editor.

2.21. Core Services 277

VOLTTRON Documentation, Release 8.1.3

Another option is to import a registry configuration file from the computer running the VOLTTRON Central web
application, if one has been saved to local storage connected to the computer. To import a registry configuration file
from local storage, click on the Import Registry File (CSV) button at the end of the physical device’s listing, and use
the file selector window to locate and load the file.

278 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Reloading Device Points

Once a physical device has been scanned, the original points from the scan can be reloaded at any point during device
configuration by clicking on the Reload Points From Device button at the end of the device’s listing.

Device Configuration Form

After the registry configuration file has been saved, the device configuration form appears. Creating the device con-
figuration results in the virtual device being installed in the platform and determines the device’s position in the side
panel tree. It also contains some settings that determine how data is collected from the device.

2.21. Core Services 279

VOLTTRON Documentation, Release 8.1.3

After the device configuration settings have been entered, click the Save button to save the configuration and add the
device to the platform.

280 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Configuring Sub-devices

After a device has been configured, sub-devices can be configured by pointing to their position in the Path attribute
of the device configuration form. But a sub-device can’t be configured until its parent device has been configured first.

As devices are configured, they’re inserted into position in the side panel tree, along with their configured points.

2.21. Core Services 281

VOLTTRON Documentation, Release 8.1.3

Reconfiguring Devices

A device that’s been added to a VOLTTRON instance can be reconfigured by changing its registry configuration or its
device configuration. To launch reconfiguration, click on the wrench button next to the device in the side panel tree.

Reconfiguration reloads the registry configuration editor and the device configuration form for the virtual device. The
editor and the form work the same way in reconfiguration as during initial device configuration.

282 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

The reconfiguration view shows the name, address, and ID of the physical device that the virtual device was configured
from. It also shows the name of the registry configuration file associated with the virtual device as well as its configured
path.

A different registry configuration file can be associated with the device by clicking on the Select Registry File (CSV)
button or the Import Registry File (CSV) button.

The registry configuration can be edited by making changes to the configuration in the editor and clicking the Save
button.

To make changes to the device configuration form, click on the File to Edit selector and choose Device Config.

2.21. Core Services 283

VOLTTRON Documentation, Release 8.1.3

Exporting Registry Configuration Files

The registry configuration file associated with a virtual device can be exported from the web browser to the computer’s
local storage by clicking on the File Export Button in the device reconfiguration view.

284 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

VOLTTRON Central Web Services Api Documentation

VOLTTRON Central (VC) is meant to be the hub of communication within a cluster of VOLTTRON instances. VC
exposes a JSON-RPC 2.0 based API that allows a user to control multiple instances of VOLTTRON.

Why JSON-RPC

SOAP messaging is unfriendly to many developers, especially those wanting to make calls in a browser from AJAX
environment. We have therefore have implemented a JSON-RPC API capability to VC, as a more JSON/JavaScript
friendly mechanism.

How the API is Implemented

• All calls are made through a POST to /vc/jsonrpc

• All calls (not including the call to authenticate) will include an authorization token (a json-rpc extension).

JSON-RPC Request Payload

All posted JSON payloads will look like the following block:

{
"jsonrpc": "2.0",
"method": "method_to_invoke",
"params": {

"param1name": "param1value",
"param2name": "param2value"

},
"id": "unique_message_id",
"authorization": "server_authorization_token"

}

As an alternative, the params can be an array as illustrated by the following:

{
"jsonrpc": "2.0",
"method": "method_to_invoke",
"params": [

"param1value",
"param2value"

],
"id": "unique_message_id",
"authorization": "server_authorization_token"

}

For full documentation of the Request object please see section 4 of the JSON-RPC 2.0 specification.

2.21. Core Services 285

http://www.jsonrpc.org/specification
http://www.jsonrpc.org/specification

VOLTTRON Documentation, Release 8.1.3

JSON-RPC Response Payload

All responses shall have either an either an error response or a result response. The result key shown below can be a
single instance of a JSON type, an array or a JSON object.

A result response will have the following format:

{
"jsonrpc": "2.0",
"result": "method_results",
"id": "sent_in_unique_message_id"

}

An error response will have the following format:

{
"jsonrpc": "2.0",
"error": {

"code": "standard_code_or_extended_code",
"message": "error message"

}
"id": "sent_in_unique_message_id_or_null"

}

For full documentation of the Response object please see section 5 of the JSON-RPC 2.0 specification.

JSON-RPC Data Objects

Table 4: Platform
Key Type Value
uuid string A unique identifier for the platform.
name string A user defined string for the platform.
status Status A status object for the platform.

Table 5: PlatformDetails
Key Type Value
uuid string A unique identifier for the platform.
name string A user defined string for the platform.
status Status A status object for the platform.

Table 6: Agent
Key Type Value
uuid string A unique identifier for the agent.
name string Defaults to the agentid of the installed agent
tag string A shortcut that can be used for referencing the agent
priority int If this is set the agent will autostart on the instance.
process_id int The process id or null if not running.
status string A status string made by the status rpc call, on an agent.

286 Chapter 2. Features

http://www.jsonrpc.org/specification

VOLTTRON Documentation, Release 8.1.3

Table 7: DiscoveryRegistryEntry
Key Type Value
name
discovery_address

Table 8: AdvancedRegistratyEntry_TODO
Key Type Value
name
vip_address

Table 9: Agent_TODO
Key Type Value
uuid string A unique identifier for the platform.
name string A user defined string for the platform.
status Status A status object for the platform.

Table 10: Building_TODO
Key Type Value
uuid string A unique identifier for the platform.
name string A user defined string for the platform.
status Status A status object for the platform.

Table 11: Device_TODO
Key Type Value
uuid string A unique identifier for the platform.
name string A user defined string for the platform.
status Status A status object for the platform.

Table 12: Status
Key Type Value
status string A value of GOOD, BAD, UNKNOWN, SUCCESS, FAIL
context string Provides context about what the status means (optional)

JSON-RPC API Methods

Table 13: Methods
method parameters returns
get_authentication (username,

password)
authentication token

2.21. Core Services 287

VOLTTRON Documentation, Release 8.1.3

Messages

Retrieve Authorization Token

POST /vc/jsonrpc
{

"jsonrpc": "2.0",
"method": "get_authorization",
"params": {

"username": "dorothy",
"password": "toto123"

},
"id": "someID"

}

Response Success

200 OK
{

"jsonrpc": "2.0",
"result": "someAuthorizationToken",
"id": "someID"

}

Failure

HTTP Status Code 401

Register a VOLTTRON Platform Instance (Using Discovery)

POST /vc/jsonrpc
{

"jsonrpc": "2.0",
"method": "register_instance",
"params": {

"discovery_address": "http://127.0.0.2:8080",
"display_name": "foo" # Optional

}
"authorization": "someAuthorizationToken",
"id": "someID"

}

Success

200 OK
{

"jsonrpc": "2.0",
"result": {

"status": {
"code": "SUCCESS"
"context": "Registered instance foo" # or the uri if not

→˓specified.
}

},
"id": "someID"

}

Unregister a Volttron Platform Instance

288 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

POST /vc/jsonrpc
{

"jsonrpc": "2.0",
"method": "unregister_platform",
"params": {

"platform_uuid": "somePlatformUuid",
}
"authorization": "someAuthorizationToken",
"id": "someID"

}

Retrieve Managed Instances

#POST /vc/jsonrpc
{

"jsonrpc": "2.0",
"method": "list_platforms",
"authorization": "someAuthorizationToken",
"id": #

}

Response Success

200 OK
{

"jsonrpc": "2.0",
"result": [

{
"name": "platform1",
"uuid": "abcd1234-ef56-ab78-cd90-efabcd123456",
"health": {

"status": "GOOD",
"context": null,
"last_updated": "2016-04-27T19:47:05.184997+00:00"

}
},
{

"name": "platform2",
"uuid": "0987fedc-65ba-43fe-21dc-098765bafedc",
"health": {

"status": "BAD",
"context": "Expected 9 agents running, but only 5 are",
"last_updated": "2016-04-27T19:47:05.184997+00:00",

}

},
{

"name": "platform3",
"uuid": "0000aaaa-1111-bbbb-2222-cccc3333dddd",
"health": {

"status": "GOOD",
"context": "Currently scraping 20 devices",
"last_updated": "2016-04-27T19:47:05.184997+00:00",

}
}

],
"id": #

}

2.21. Core Services 289

VOLTTRON Documentation, Release 8.1.3

Retrieve Installed Agents From Platform

POST /vc/jsonrpc
{

"jsonrpc": "2.0",
"method": "platforms.uuid.abcd1234-ef56-ab78-cd90-efabcd123456.list_agents",
"authorization": "someAuthorizationToken",
"id": #

}

Response Success

200 OK
{

"jsonrpc": "2.0",
"result": [

{
"name": "HelloAgent",
"identity": "helloagent-0.0_1",
"uuid": "a1b2c3d4-e5f6-a7b8-c9d0-e1f2a3b4c5d6",
"process_id": 3142,
"error_code": null,
"is_running": true,
"permissions": {

"can_start": true,
"can_stop": true,
"can_restart": true,
"can_remove": true

}
"health": {

"status": "GOOD",
"context": null

}
},
{

"name": "Historian",
"identity": "sqlhistorianagent-3.5.0_1",
"uuid": "a1b2c3d4-e5f6-a7b8-c9d0-e1f2a3b4c5d6",
"process_id": 3143,
"error_code": null,
"is_running": true,
"permissions": {

"can_start": true,
"can_stop": true,
"can_restart": true,
"can_remove": true

}

"health": {
"status": "BAD",
"context": "No publish in last 5 minutes"

}
},
{

"name": "VolltronCentralPlatform",
"identity": "platform.agent",
"uuid": "a1b2c3d4-e5f6-a7b8-c9d0-e1f2a3b4c5d6",
"process_id": 3144,

(continues on next page)

290 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"error_code": null,
"is_running": true,
"permissions": {

"can_start": false,
"can_stop": false,
"can_restart": true,
"can_remove": false

}
"health": {

"status": "BAD",
"context": "One agent has reported bad status"

}
},
{

"name": "StoppedAgent-0.1",
"identity": "stoppedagent-0.1_1",
"uuid": "a1b2c3d4-e5f6-a7b8-c9d0-e1f2a3b4c5d6",
"process_id": null,
"error_code": 0,
"is_running": false,s
"health": {

"status": "UNKNOWN",
"context": "Error code -15"

}
"permissions": {

"can_start": true,
"can_stop": false,
"can_restart": true,
"can_remove": true

}
}

],
"id": #

}

Install Agent

POST /vc/jsonrpc
{

"jsonrpc": "2.0",
"method": "platforms.uuid.0987fedc-65ba-43fe-21dc-098765bafedc.install",
"params": {

"files": [
{

"file_name": "helloagent-0.1-py2-none-any.whl",
"file": "data:application/octet-stream;base64,..."

},
{

"file_name": "some-non-wheel-file.txt",
"file": "data:application/octet-stream;base64,..."

},
...

],
}
"authorization": "someAuthorizationToken",
"id": #

}

2.21. Core Services 291

VOLTTRON Documentation, Release 8.1.3

Success Response

200 OK
{

"jsonrpc": "2.0",
"result": {

[
{

"uuid": "a1b2c3d4-e5f6-a7b8-c9d0-e1f2a3b4c5d6"
},
{

"error": "Some error message"
},
...

]
},
"id": #

}

Remove An Agent

POST /vc/jsonrpc
{

"jsonrpc": "2.0",
"method": "platforms.uuid.0987fedc-65ba-43fe-21dc-098765bafedc.remove_agent",
"params": ["a1b2c3d4-e5f6-a7b8-c9d0-e1f2a3b4c5d6"],
"authorization": "someAuthorizationToken",
"id": #

}

Response Success

200 OK
{

"jsonrpc": "2.0",
"result": {

"process_id": 1000,
"return_code": 0

},
"id": #

}

292 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

2.22 Operations

Operations agents assist with the operations of the platform systems and provide alerts for various platform and envi-
ronmental conditions. For details on each, please refer to the corresponding documents.

2.22.1 Emailer Agent

Emailer agent is responsible for sending emails for an instance. It has been written so that any agent on the in-
stance can send emails through it via the “send_email” method or through the pubsub message bus using the topic
“platform/send_email”.

By default any alerts will be sent through this agent. In addition all emails will be published to the “record/sent_email”
topic for a historian to be able to capture that data.

Configuration

A typical configuration for this agent is as follows. We need to specify the SMTP server address, email address of the
sender, email addresses of all the recipients and minimum time for duplicate emails based upon the key.

{
"smtp-address": "smtp.foo.com",
"from-address": "billy@foo.com",
"to-addresses": ["ann@foo.com", "bob@gmail.com"],
"allow-frequency-minutes": 10

}

Finally package, install and start the agent. For more details, see Agent Creation Walk-through

2.22.2 Failover Agent

Introduction

The failover agent provides a generic high availability option to VOLTTRON. When the primary platform becomes
inactive the secondary platform will start an installed agent.

Standard Failover

There are two behavior patterns implemented in the agent. In the default configuration, the secondary instance will
ask Volttron Central to verify that the primary instance is down. This helps to avoid a split brain scenario. If neither
Volttron Central nor the other failover instance is reachable then the failover agent will stop the agent it is managing.
These states are shown in the tables below.

Primary Behavior

VC Up VC Down
Secondary Up start start
Secondary Down start stop

Secondary Behavior

2.22. Operations 293

VOLTTRON Documentation, Release 8.1.3

VC Up VC Down
Primary Up stop stop
Primary Down Verify with VC before starting stop

Simple Failover

There is also a simple configuration available that does not involve coordination with Volttron Central. The secondary
agent will start its managed agent if believes the primary to be inactive. The simple primary always has its managed
agent started.

Configuration

Failover behavior is set in the failover agent’s configuration file. Example primary and secondary configuration files
are shown below.

{ | {
"agent_id": "primary", | "agent_id": "secondary",
"simple_behavior": true, | "simple_behavior": true,

|
"remote_vip": "tcp://127.0.0.1:8001", | "remote_vip": "tcp://127.0.0.

→˓1:8000",
"remote_serverkey": "", | "remote_serverkey": "",

|
"agent_vip_identity": "platform.driver",| "agent_vip_identity": "platform.

→˓driver",
|

"heartbeat_period": 10, | "heartbeat_period": 10,
|

"timeout": 120 | "timeout": 120
} | }

• agent_id - primary or secondary

• simple_behavior - Switch to turn on or off simple behavior. Both instances should match.

• remote_vip - Address where remote_id can be reached.

• remote_serverkey - The public key of the platform where remote_id lives.

• agent_vip_identity - The VIP Identity of the agent that we want to manage.

• heartbeat_period - Send a message to remote_id with this period. Measured in seconds.

• timeout - Consider a platform inactive if a heartbeat has not been received for timeout seconds.

2.22.3 File Watch Publisher Agent

Introduction

FileWatchPublisher agent watches files for changes and publishes those changes per line on the corresponding topics.
Files and topics should be provided in the configuration.

294 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Configuration

A simple configuration for FileWatchPublisher with two files to monitor is as follows:

{
"files": [

{
"file": "/var/log/syslog",
"topic": "platform/syslog"

},
{

"file": "/home/volttron/tempfile.txt",
"topic": "temp/filepublisher"

}
]

}

Using this example configuration, FileWatchPublisher will watch syslog and tempFile.txt files and publish the changes
per line on their respective topics.

2.22.4 Message Debugging

VOLTTRON agent messages are routed over the VOLTTRON message bus. The Message Debugger Agent provides
enhanced examination of this message stream’s contents as an aid to debugging and troubleshooting agents and drivers.

This feature is implemented to provide visibility into the ZeroMQ message bus. The RabbitMQ message bus includes
methods for message debugging by default in the RabbitMQ management UI.

When enabled, the Message Debugger Agent captures and records each message as it is routed. A second process,
Message Viewer, provides a user interface that optimizes and filters the resulting data stream, either in real time or
retrospectively, and displays its contents.

The Message Viewer can convey information about high-level interactions among VOLTTRON agents, representing
the message data as conversations that can be filtered and/or expanded. A simple RPC call involving 4 individual
message send/receive segments can be displayed as a single row, which can then be expanded to drill down into the
message details. This results in a higher-level, easier-to-obtain view of message bus activity than might be gleaned by
using grep on verbose log files.

Pub/Sub interactions can be summarized by topic, including counts of messages published during a given capture
period by sender, receiver and topic.

Another view displays the most-recently-published message, or message exchange, that satisfies the current filter
criteria, continuously updated as new messages are routed.

Enabling the Message Debugger

In order to use the Message Debugger, two steps are required:

• VOLTTRON must have been started with a --msgdebug command line option.

• The Message Debugger Agent must be running.

When VOLTTRON has been started with --msgdebug, its Router publishes each message to an IPC socket for which
the Message Debugger Agent is a subscriber. This is kept disabled by default because it consumes a significant quantity
of CPU and memory resources, potentially affecting VOLTTRON timing and performance. So as a general rule, the
--msgdebug option should be employed during development/debugging only, and should not be left enabled in a
production environment.

2.22. Operations 295

https://www.rabbitmq.com/management.html

VOLTTRON Documentation, Release 8.1.3

Example of starting VOLTTRON with the --msgdebug command line option:

(volttron) ./start-volttron ``--msgdebug``

If VOLTTRON is running in this mode, the stream of routed messages is available to a subscribing Message Debugger
Agent. It can be started from volttron-ctl in the same fashion as other agents, for example:

(volttron) $ vctl status
AGENT IDENTITY TAG STATUS

fd listeneragent-3.2 listener listener
08 messagedebuggeragent-0.1 platform.messagedebugger platform.messagedebugger
e1 vcplatformagent-3.5.4 platform.agent vcp
47 volttroncentralagent-3.5.5 volttron.central vc

(volttron) $ vctl start 08
Starting 089c53f0-f225-4608-aecb-3e86e0df30eb messagedebuggeragent-0.1

(volttron) $ vctl status
AGENT IDENTITY TAG STATUS

fd listeneragent-3.2 listener listener
08 messagedebuggeragent-0.1 platform.messagedebugger platform.messagedebugger
→˓running [43498]
e1 vcplatformagent-3.5.4 platform.agent vcp
47 volttroncentralagent-3.5.5 volttron.central vc

See Agent Creation Walk-through for further details on installing and starting agents from vctl.

Once the Message Debugger Agent is running, it begins capturing message data and writing it to a SQLite database.

Message Viewer

The Message Viewer is a separate process that interacts with the Message Debugger Agent primarily via VOLTTRON
RPC calls. These calls allow it to request and report on filtered sets of message data.

Since the Agent’s RPC methods are available for use by any VOLTTRON agent, the Message Viewer is really just
one example of a Message Debugger information consumer. Other viewers could be created to satisfy a variety of
specific debugging needs. For example, a viewer could support browser-based message debugging with a graphical
user interface, or a viewer could transform message data into PCAP format for consumption by WireShark.

The Message Viewer in services/ops/MessageDebuggerAgent/messageviewer/viewer.py implements a command-line
UI, subclassing Python’s Cmd class. Most of the command-line options that it displays result in a MessageDebugger-
Agent RPC request. The Message Viewer formats and displays the results.

In Linux, the Message Viewer can be started as follows, and displays the following menu:

(volttron) $ cd services/ops/MessageDebuggerAgent/messageviewer
(volttron) $ python viewer.py
Welcome to the MessageViewer command line. Supported commands include:

display_message_stream
display_messages
display_exchanges
display_exchange_details
display_session_details_by_agent <session_id>
display_session_details_by_topic <session_id>

list_sessions
set_verbosity <level>
list_filters

(continues on next page)

296 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

set_filter <filter_name> <value>
clear_filters
clear_filter <filter_name>

start_streaming
stop_streaming
start_session
stop_session
delete_session <session_id>
delete_database

help
quit

Please enter a command.
Viewer>

Command-Line Help

The Message Viewer offers two help levels. Simply typing help gives a list of available commands. If a command
name is provided as an argument, advice is offered on how to use that command:

Viewer> help

Documented commands (type help <topic>):
==
clear_filter display_messages set_filter
clear_filters display_session_details_by_agent set_verbosity
delete_database display_session_details_by_topic start_session
delete_session help start_streaming
display_exchange_details list_filters stop_session
display_exchanges list_sessions stop_streaming
display_message_stream quit

Viewer> help set_filter

Set a filter to a value; syntax is: set_filter <filter_name> <value>

Some recognized filters include:
. freq <n>: Use a single-line display, refreshing every <n> seconds (<n>

→˓can be floating point)
. session_id <n>: Display Messages and Exchanges for the indicated

→˓debugging session ID only
. results_only <n>: Display Messages and Exchanges only if they have a

→˓result
. sender <agent_name>
. recipient <agent_name>
. device <device_name>
. point <point_name>
. topic <topic_name>: Matches all topics that start with the supplied

→˓<topic_name>
. starttime <YYYY-MM-DD HH:MM:SS>: Matches rows with timestamps after the

→˓supplied time
. endtime <YYYY-MM-DD HH:MM:SS>: Matches rows with timestamps before the

→˓supplied time
. (etc. -- see the structures of DebugMessage and DebugMessageExchange)

2.22. Operations 297

VOLTTRON Documentation, Release 8.1.3

Debug Sessions

The Message Debugger Agent tags each message with a debug session ID (a serial number), which groups a set of
messages that are bounded by a start time and an end time. The list_sessions command describes each session
in the database:

Viewer> list_sessions
rowid start_time end_time num_messages
1 2017-03-20 17:07:13.867951 - 2243
2 2017-03-20 17:17:35.725224 - 1320
3 2017-03-20 17:33:35.103204 2017-03-20 17:46:15.657487 12388

A new session is started by default when the Agent is started. After that, the stop_session and start_session
commands can be used to create new session boundaries. If the Agent is running but no session is active (i.e., because
stop_session was used to stop it), messages are still written to the database, but they have no session ID.

Filtered Display

The set_filter <property> <value> command enables filtered display of messages. A variety of proper-
ties can be filtered.

In the following example, message filters are defined by session_id and sender, and the display_messages com-
mand displays the results:

Viewer> set_filter session_id 4
Set filters to {'session_id': '4'}
Viewer> set_filter sender testagent
Set filters to {'sender': 'testagent', 'session_id': '4'}
Viewer> display_messages

timestamp direction sender recipient request_id
→˓ subsystem method topic device
→˓point result
11:51:00 incoming testagent messageviewer.connection -

→˓ RPC pubsub.sync - - -
→˓ -
11:51:00 outgoing testagent pubsub -

→˓ RPC pubsub.push - - -
→˓ -
11:51:00 incoming testagent platform.driver

→˓1197886248649056372.284581685 RPC get_point -
→˓ chargepoint1 Status -
11:51:01 outgoing testagent platform.driver

→˓1197886248649056372.284581685 RPC - -
→˓ - - AVAILABLE
11:51:01 incoming testagent pubsub

→˓1197886248649056373.284581649 RPC pubsub.publish test_topic/test_
→˓subtopic - - -
11:51:01 outgoing testagent pubsub

→˓1197886248649056373.284581649 RPC - -
→˓ - - None

298 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Debug Message Exchanges

A VOLTTRON message’s request ID is not unique to a single message. A group of messages in an “exchange”
(essentially a small conversation among agents) will often share a common request ID, for instance during RPC
request/response exchanges.

The following example uses the same filters as above, and then uses display_exchanges to display a single line
for each message exchange, reducing the number of displayed rows from 6 to 2. Note that not all messages have a
request ID; messages with no ID are absent from the responses to exchange queries.

Viewer> list_filters
{'sender': 'testagent', 'session_id': '4'}
Viewer> display_exchanges

sender recipient sender_time topic device
→˓point result
testagent platform.driver 11:51:00 - chargepoint1

→˓Status AVAILABLE
testagent pubsub 11:51:01 test_topic/test_subtopic - -

→˓ None

Special Filters

Most filters that can be set with the set_filter command are simple string matches on one or another property of
a message. Some filters have special characteristics, though. The set_filter starttime <timestamp> and
set_filter endtime <timestamp> filters are inequalities that test for messages after a start time or before
an end time.

In the following example, note the use of quotes in the endtime value supplied to set_filter. Any filter value can be
delimited with quotes. Quotes must be used when a value contains embedded spaces, as is the case here:

Viewer> list_sessions
rowid start_time end_time num_messages
1 2017-03-20 17:07:13.867951 - -
2 2017-03-20 17:17:35.725224 - -
3 2017-03-21 11:48:33.803288 2017-03-21 11:50:57.181136 6436
4 2017-03-21 11:50:59.656693 2017-03-21 11:51:05.934895 450
5 2017-03-21 11:51:08.431871 - 74872
6 2017-03-21 12:17:30.568260 - 2331

Viewer> set_filter session_id 5
Set filters to {'session_id': '5'}
Viewer> set_filter sender testagent
Set filters to {'sender': 'testagent', 'session_id': '5'}
Viewer> set_filter endtime '2017-03-21 11:51:30'
Set filters to {'endtime': '2017-03-21 11:51:30', 'sender': 'testagent', 'session_id
→˓': '5'}
Viewer> display_exchanges

sender recipient sender_time topic device
→˓point result
testagent platform.driver 11:51:11 - chargepoint1

→˓Status AVAILABLE
testagent pubsub 11:51:11 test_topic/test_subtopic - -

→˓ None
testagent platform.driver 11:51:25 - chargepoint1

→˓Status AVAILABLE
testagent pubsub 11:51:25 test_topic/test_subtopic - -

→˓ None
(continues on next page)

2.22. Operations 299

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

testagent platform.driver 11:51:26 - chargepoint1
→˓Status AVAILABLE
testagent pubsub 11:51:26 test_topic/test_subtopic - -

→˓ None

Another filter type with special behavior is set_filter topic <name>. Ordinarily, filters do an exact match
on a message property. Since message topics are often expressed as hierarchical substrings, though, the topic filter
does a substring match on the left edge of a message’s topic, as in the following example:

Viewer> set_filter topic test_topic
Set filters to {'topic': 'test_topic', 'endtime': '2017-03-21 11:51:30', 'sender':
→˓'testagent', 'session_id': '5'}
Viewer> display_exchanges

sender recipient sender_time topic device point
→˓ result
testagent pubsub 11:51:11 test_topic/test_subtopic - -

→˓ None
testagent pubsub 11:51:25 test_topic/test_subtopic - -

→˓ None
testagent pubsub 11:51:26 test_topic/test_subtopic - -

→˓ None
Viewer>

Another filter type with special behavior is set_filter results_only 1. In the JSON representation of a
response to an RPC call, for example an RPC call to a Platform Driver interface, the response to the RPC request
typically appears as the value of a ‘result’ tag. The results_only filter matches only those messages that have a
non-empty value for this tag.

In the following example, note that when the results_only filter is set, it is given a value of ‘1’. This is actually
a meaningless value that gets ignored. It must be supplied because the set_filter command syntax requires that a value
be supplied as a parameter.

In the following example, note the use of clear_filter <property> to remove a single named filter from the
list of filters that are currently in effect. There is also a clear_filters command, which clears all current filters.

Viewer> clear_filter topic
Set filters to {'endtime': '2017-03-21 11:51:30', 'sender': 'testagent', 'session_id
→˓': '5'}
Viewer> set_filter results_only 1
Set filters to {'endtime': '2017-03-21 11:51:30', 'sender': 'testagent', 'session_id
→˓': '5', 'results_only': '1'}
Viewer> display_exchanges

sender recipient sender_time topic device point
→˓result
testagent platform.driver 11:51:11 - chargepoint1 Status

→˓AVAILABLE
testagent platform.driver 11:51:25 - chargepoint1 Status

→˓AVAILABLE
testagent platform.driver 11:51:26 - chargepoint1 Status

→˓AVAILABLE

300 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Streamed Display

In addition to exposing a set of RPC calls that allow other agents (like the Message Viewer) to query the Message
Debugger Agent’s SQLite database of recent messages, the Agent can also publish messages in real time as it receives
them.

This feature is disabled by default due to the large quantity of data that it might need to handle. When it is enabled,
the Agent applies the filters currently in effect to each message as it is received, and re-publishes the transformed,
ready-for-debugging message to a socket if it meets the filter criteria. The Message Viewer can listen on that socket
and display the message stream as it arrives.

In the following display_message_stream example, the Message Viewer displays all messages sent by the
agent named ‘testagent’, as they arrive. It continues to display messages until execution is interrupted with ctrl-C:

Viewer> clear_filters
Set filters to {}
Viewer> set_filter sender testagent
Set filters to {'sender': 'testagent'}
Viewer> display_message_stream
Streaming debug messages

timestamp direction sender recipient request_id subsystem
→˓method topic device point result
12:28:58 outgoing testagent pubsub - RPC

→˓pubsub.push - - - -
12:28:58 incoming testagent platform.dr 11978862486 RPC get_

→˓point - chargepoint Status -
iver 49056826.28

→˓ 1
4581713

12:28:58 outgoing testagent platform.dr 11978862486 RPC -
→˓ - - - AVAILABLE

iver 49056826.28
4581713

12:28:58 incoming testagent pubsub 11978862486 RPC
→˓pubsub.publ test_topic/ - - -

49056827.28 ish
→˓ test_subtop

4581685
→˓ ic
12:28:58 outgoing testagent pubsub 11978862486 RPC -

→˓ - - - None
49056827.28
4581685

12:28:58 outgoing testagent pubsub - RPC
→˓pubsub.push - - - -
^CViewer> stop_streaming
Stopped streaming debug messages

(Note the use of wrapping in the column formatting. Since these messages aren’t known in advance, the Message
Viewer has incomplete information about how wide to make each column. Instead, it must make guesses based on
header widths, data widths in the first row received, and min/max values, and then wrap the data when it overflows the
column boundaries.)

2.22. Operations 301

VOLTTRON Documentation, Release 8.1.3

Single-Line Display

Another filter with special behavior is set_filter freq <seconds>. This filter, which takes a number N as
its value, displays only one row, the most recently captured row that satisfies the filter criteria. (Like other filters, this
filter can be used with either display_messages or display_exchanges.) It then waits N seconds, reissues
the query, and overwrites the old row with the new one. It continues this periodic single-line overwritten display until
it is interrupted with ctrl-C:

Viewer> list_filters
{'sender': 'testagent'}
Viewer> set_filter freq 10
Set filters to {'freq': '10', 'sender': 'testagent'}
Viewer> display_exchanges

sender recipient sender_time topic device point
→˓ result
testagent pubsub 12:31:28 test_topic/test_subtopic - -

→˓ None

(Again, the data isn’t known in advance, so the Message Viewer has to guess the best width of each column. In this
single-line display format, data gets truncated if it doesn’t fit, because no wrapping can be performed – only one
display line is available.)

Displaying Exchange Details

The display_exchange_details <request_id> command provides a way to get more specific details
about an exchange, i.e. about all messages that share a common request ID. At low or medium verbosity, when
this command is used (supplying the relevant request ID, which can be obtained from the output of other commands),
it displays one row for each message:

Viewer> set_filter sender testagent
Set filters to {'sender': 'testagent', 'session_id': '4'}
Viewer> display_messages

timestamp direction sender recipient request_id
→˓ subsystem method topic device
→˓point result
11:51:00 incoming testagent messageviewer.connection -

→˓ RPC pubsub.sync - - -
→˓ -
11:51:00 outgoing testagent pubsub -

→˓ RPC pubsub.push - - -
→˓ -
11:51:00 incoming testagent platform.driver

→˓1197886248649056372.284581685 RPC get_point -
→˓ chargepoint1 Status -
11:51:01 outgoing testagent platform.driver

→˓1197886248649056372.284581685 RPC - -
→˓ - - AVAILABLE
11:51:01 incoming testagent pubsub

→˓1197886248649056373.284581649 RPC pubsub.publish test_topic/test_
→˓subtopic - - -
11:51:01 outgoing testagent pubsub

→˓1197886248649056373.284581649 RPC - -
→˓ - - None
Viewer> display_exchange_details 1197886248649056373.284581649

timestamp direction sender recipient request_id
→˓subsystem method topic device point
→˓result

(continues on next page)

302 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

11:51:01 incoming testagent pubsub 1197886248649056373.284581649
→˓RPC pubsub.publish test_topic/test_subtopic - - -
11:51:01 outgoing testagent pubsub 1197886248649056373.284581649

→˓RPC - - - -
→˓None

At high verbosity, display_exchange_details switches display formats, showing all properties for each mes-
sage in a json-like dictionary format:

Viewer> set_verbosity high
Set verbosity to high
Viewer> display_exchange_details 1197886248649056373.284581649

{
"data": "{\"params\":{\"topic\":\"test_topic/test_subtopic\",\"headers\":{\"Date\

→˓":\"2017-03-21T11:50:56.293830\",\"max_compatible_version\":\"\",\"min_compatible_
→˓version\":\"3.0\"},\"message\":[{\"property_1\":1,\"property_2\":2},{\"property_3\
→˓":3,\"property_4\":4}],\"bus\":\"\"},\"jsonrpc\":\"2.0\",\"method\":\"pubsub.
→˓publish\",\"id\":\"15828311332408898779.284581649\"}",

"device": "",
"direction": "incoming",
"frame7": "",
"frame8": "",
"frame9": "",
"headers": "{u'Date': u'2017-03-21T11:50:56.293830', u'max_compatible_version': u'

→˓', u'min_compatible_version': u'3.0'}",
"message": "[{u'property_1': 1, u'property_2': 2}, {u'property_3': 3, u'property_4

→˓': 4}]",
"message_size": 374,
"message_value": "{u'property_1': 1, u'property_2': 2}",
"method": "pubsub.publish",
"params": "{u'topic': u'test_topic/test_subtopic', u'headers': {u'Date': u'2017-

→˓03-21T11:50:56.293830', u'max_compatible_version': u'', u'min_compatible_version': u
→˓'3.0'}, u'message': [{u'property_1': 1, u'property_2': 2}, {u'property_3': 3, u
→˓'property_4': 4}], u'bus': u''}",

"point": "",
"point_value": "",
"recipient": "pubsub",
"request_id": "1197886248649056373.284581649",
"result": "",
"sender": "testagent",
"session_id": 4,
"subsystem": "RPC",
"timestamp": "2017-03-21 11:51:01.027623",
"topic": "test_topic/test_subtopic",
"user_id": "",
"vip_signature": "VIP1"

}

{
"data": "{\"params\":{\"topic\":\"test_topic/test_subtopic\",\"headers\":{\"Date\

→˓":\"2017-03-21T11:50:56.293830\",\"max_compatible_version\":\"\",\"min_compatible_
→˓version\":\"3.0\"},\"message\":[{\"property_1\":1,\"property_2\":2},{\"property_3\
→˓":3,\"property_4\":4}],\"bus\":\"\"},\"jsonrpc\":\"2.0\",\"method\":\"pubsub.
→˓publish\",\"id\":\"15828311332408898779.284581649\"}",

"device": "",

(continues on next page)

2.22. Operations 303

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"direction": "outgoing",
"frame7": "",
"frame8": "",
"frame9": "",
"headers": "{u'Date': u'2017-03-21T11:50:56.293830', u'max_compatible_version': u'

→˓', u'min_compatible_version': u'3.0'}",
"message": "[{u'property_1': 1, u'property_2': 2}, {u'property_3': 3, u'property_4

→˓': 4}]",
"message_size": 383,
"message_value": "{u'property_1': 1, u'property_2': 2}",
"method": "pubsub.publish",
"params": "{u'topic': u'test_topic/test_subtopic', u'headers': {u'Date': u'2017-

→˓03-21T11:50:56.293830', u'max_compatible_version': u'', u'min_compatible_version': u
→˓'3.0'}, u'message': [{u'property_1': 1, u'property_2': 2}, {u'property_3': 3, u
→˓'property_4': 4}], u'bus': u''}",

"point": "",
"point_value": "",
"recipient": "testagent",
"request_id": "1197886248649056373.284581649",
"result": "",
"sender": "pubsub",
"session_id": 4,
"subsystem": "RPC",
"timestamp": "2017-03-21 11:51:01.031183",
"topic": "test_topic/test_subtopic",
"user_id": "testagent",
"vip_signature": "VIP1"

}

Verbosity

As mentioned in the previous section, Agent and Viewer behavior can be adjusted by changing the current verbosity
with the set_verbosity <level> command. The default verbosity is low. low, medium and high levels are
available:

Viewer> set_verbosity high
Set verbosity to high
Viewer> set_verbosity none
Invalid verbosity choice none; valid choices are ['low', 'medium', 'high']

At high verbosity, the following query formatting rules are in effect:

• When displaying timestamps, display the full date and time (including microseconds), not just HH:MM:SS.

• In responses to display_message_exchanges, use dictionary format (see example in previous section).

• Display all columns, not just “interesting” columns (see the list below).

• Don’t exclude messages/exchanges based on excluded senders/receivers (see the list below).

At medium or low verbosity:

• When displaying timestamps, display HH:MM:SS only.

• In responses to display_message_exchanges, use table format.

• Display “interesting” columns only (see the list below).

• Exclude messages/exchanges for certain senders/receivers (see the list below).

304 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

At low verbosity:

• If > 1000 objects are returned by a query, display the count only.

The following “interesting” columns are displayed at low and medium verbosity levels (at high verbosity levels, all
properties are displayed):

Debug Message Debug Message Exchange Debug Session

timestamp sender_time rowid
direction start_time
sender sender end_time
recipient recipient num_messages
request_id
subsystem
method
topic topic
device device
point point
result result

Messages from the following senders, or to the following receivers, are excluded at low and medium verbosity levels:

Sender Receiver

(empty) (empty)
None
control control
config.store config.store
pubsub
control.connection
messageviewer.connection
platform.messagedebugger
platform.messagedebugger.loopback_rpc

These choices about which columns are “interesting” and which senders/receivers are excluded are defined as param-
eters in Message Viewer, and can be adjusted as necessary by changing global value lists in viewer.py.

Session Statistics

One useful tactic for starting at a summary level and drilling down is to capture a set of messages for a session and then
examine the counts of sending and receiving agents, or sending agents and topics. This gives hints on which values
might serve as useful filters for more specific queries.

The display_session_details_by_agent <session_id> command displays statistics by sending and
receiving agent. Sending agents are table columns, and receiving agents are table rows. This query also applies
whatever filters are currently in effect; the filters can reduce the counts and can also reduce the number of columns
and rows.

The following example shows the command being used to list all senders and receivers for messages sent during debug
session 7:

Viewer> list_sessions
rowid start_time end_time num_messages
1 2017-03-20 17:07:13.867951 - -
2 2017-03-20 17:17:35.725224 - -
3 2017-03-21 11:48:33.803288 2017-03-21 11:50:57.181136 6436

(continues on next page)

2.22. Operations 305

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

4 2017-03-21 11:50:59.656693 2017-03-21 11:51:05.934895 450
5 2017-03-21 11:51:08.431871 - 74872
6 2017-03-21 12:17:30.568260 2017-03-21 12:38:29.070000 60384
7 2017-03-21 12:38:31.617099 2017-03-21 12:39:53.174712 3966

Viewer> clear_filters
Set filters to {}
Viewer> display_session_details_by_agent 7

Receiving Agent control listener messageviewer.connection
→˓platform.driver platform.messagedebugger pubsub testagent
(No Receiving Agent) - - 2

→˓ - - - -
control - - -

→˓ - - 2 -
listener - - -

→˓ - - 679 -
messageviewer.connection - - -

→˓ - 3 - -
platform.driver - - -

→˓ - - 1249 16
platform.messagedebugger - - 3

→˓ - - - -
pubsub 2 679 -

→˓ 1249 - 4 31
testagent - - -

→˓ 16 - 31 -

The display_session_details_by_topic <session_id> command is similar to
display_session_details_by_agent, but each row contains statistics for a topic instead of for a
receiving agent:

Viewer> display_session_details_by_topic 7
Topic control listener messageviewer.

→˓connection platform.driver platform.messagedebugger pubsub testagent
(No Topic) 1 664

→˓ 5 640 3 1314 39
devices/chargepoint1/Address - -

→˓ - 6 - 6 -
devices/chargepoint1/City - -

→˓ - 6 - 6 -
devices/chargepoint1/Connector - -

→˓ - 5 - 5 -
devices/chargepoint1/Country - -

→˓ - 5 - 5 -
devices/chargepoint1/Current - -

→˓ - 6 - 6 -
devices/chargepoint1/Description - -

→˓ - 6 - 6 -
devices/chargepoint1/Energy - -

→˓ - 5 - 5 -
devices/chargepoint1/Lat - -

→˓ - 6 - 6 -
devices/chargepoint1/Level - -

→˓ - 5 - 5 -
devices/chargepoint1/Long - -

→˓ - 6 - 6 -
devices/chargepoint1/Mode - -

→˓ - 5 - 5 -
(continues on next page)

306 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

devices/chargepoint1/Power - -
→˓ - 6 - 6 -
devices/chargepoint1/Reservable - -

→˓ - 5 - 5 -
devices/chargepoint1/State - -

→˓ - 6 - 6 -
devices/chargepoint1/Status - -

→˓ - 5 - 5 -
devices/chargepoint1/Status.TimeSta - -

→˓ - 6 - 6 -
mp
devices/chargepoint1/Type - -

→˓ - 6 - 6 -
devices/chargepoint1/Voltage - -

→˓ - 5 - 5 -
devices/chargepoint1/alarmTime - -

→˓ - 6 - 6 -
devices/chargepoint1/alarmType - -

→˓ - 6 - 6 -
devices/chargepoint1/all - -

→˓ - 5 - 5 -
devices/chargepoint1/allowedLoad - -

→˓ - 6 - 6 -
devices/chargepoint1/clearAlarms - -

→˓ - 6 - 6 -
devices/chargepoint1/currencyCode - -

→˓ - 6 - 6 -
devices/chargepoint1/driverAccountN - -

→˓ - 5 - 5 -
umber
devices/chargepoint1/driverName - -

→˓ - 5 - 5 -
devices/chargepoint1/endTime - -

→˓ - 5 - 5 -
devices/chargepoint1/mainPhone - -

→˓ - 6 - 6 -
devices/chargepoint1/maxPrice - -

→˓ - 5 - 5 -
devices/chargepoint1/minPrice - -

→˓ - 5 - 5 -
devices/chargepoint1/numPorts - -

→˓ - 6 - 6 -
devices/chargepoint1/orgID - -

→˓ - 5 - 5 -
devices/chargepoint1/organizationNa - -

→˓ - 5 - 5 -
me
devices/chargepoint1/percentShed - -

→˓ - 6 - 6 -
devices/chargepoint1/portLoad - -

→˓ - 6 - 6 -
devices/chargepoint1/portNumber - -

→˓ - 6 - 6 -
devices/chargepoint1/sessionID - -

→˓ - 5 - 5 -
devices/chargepoint1/sessionTime - -

→˓ - 6 - 6 -
(continues on next page)

2.22. Operations 307

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

devices/chargepoint1/sgID - -
→˓ - 6 - 6 -
devices/chargepoint1/sgName - -

→˓ - 6 - 6 -
devices/chargepoint1/shedState - -

→˓ - 5 - 5 -
devices/chargepoint1/startTime - -

→˓ - 6 - 6 -
devices/chargepoint1/stationID - -

→˓ - 5 - 5 -
devices/chargepoint1/stationMacAddr - -

→˓ - 6 - 6 -
devices/chargepoint1/stationManufac - -

→˓ - 5 - 5 -
turer
devices/chargepoint1/stationModel - -

→˓ - 6 - 6 -
devices/chargepoint1/stationName - -

→˓ - 5 - 5 -
devices/chargepoint1/stationRightsP - -

→˓ - 6 - 6 -
rofile
devices/chargepoint1/stationSerialN - -

→˓ - 6 - 6 -
um
heartbeat/control 1 -

→˓ - - - 1 -
heartbeat/listener - 15

→˓ - - - 15 -
heartbeat/platform.driver - -

→˓ - 1 - 1 -
heartbeat/pubsub - -

→˓ - - - 2 -
test_topic/test_subtopic - -

→˓ - - - 8 8

Database Administration

The Message Debugger Agent stores message data in a SQLite database’s DebugMessage, DebugMessageExchange
and DebugSession tables. If the database isn’t present already when the Agent is started, it is created automatically.

The SQLite database can consume a lot of disk space in a relatively short time, so the Message Viewer has command-
line options that recover that space by deleting the database or by deleting all messages belonging to a given debug
session.

The delete_session <session_id> command deletes the database’s DebugSession row with the indicated
ID, and also deletes all DebugMessage and DebugMessageExchange rows with that session ID. In the following
example, delete_session deletes the 60,000 DebugMessages that were captured during a 20-minute period as
session 6:

Viewer> list_sessions
rowid start_time end_time num_messages
1 2017-03-20 17:07:13.867951 - -
2 2017-03-20 17:17:35.725224 - -
3 2017-03-21 11:48:33.803288 2017-03-21 11:50:57.181136 6436

(continues on next page)

308 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

4 2017-03-21 11:50:59.656693 2017-03-21 11:51:05.934895 450
5 2017-03-21 11:51:08.431871 - 74872
6 2017-03-21 12:17:30.568260 2017-03-21 12:38:29.070000 60384
7 2017-03-21 12:38:31.617099 2017-03-21 12:39:53.174712 3966
8 2017-03-21 12:42:08.482936 - 3427

Viewer> delete_session 6
Deleted debug session 6
Viewer> list_sessions

rowid start_time end_time num_messages
1 2017-03-20 17:07:13.867951 - -
2 2017-03-20 17:17:35.725224 - -
3 2017-03-21 11:48:33.803288 2017-03-21 11:50:57.181136 6436
4 2017-03-21 11:50:59.656693 2017-03-21 11:51:05.934895 450
5 2017-03-21 11:51:08.431871 - 74872
7 2017-03-21 12:38:31.617099 2017-03-21 12:39:53.174712 3966
8 2017-03-21 12:42:08.482936 - 4370

The delete_database command deletes the entire SQLite database, removing all records of previously-captured
DebugMessages, DebugMessageExchanges and DebugSessions. The database will be re-created the next time a debug
session is started.

Viewer> delete_database
Database deleted
Viewer> list_sessions
No query results
Viewer> start_session
Message debugger session 1 started
Viewer> list_sessions

rowid start_time end_time num_messages
1 2017-03-22 12:39:40.320252 - 180

It’s recommended that the database be deleted if changes are made to the DebugMessage, DebugMessageExchange or
DebugSession object structures that are defined in agent.py. A skew between these data structures in Python code vs.
the ones in the database can cause instability in the Message Debugger Agent, perhaps causing it to fail. If a failure of
this kind prevents use of the Message Viewer’s delete_database command, the database can be deleted directly
from the filesystem. By default, it is located in $VOLTTRON_HOME’s run directory.

2.22. Operations 309

VOLTTRON Documentation, Release 8.1.3

Implementation Details

Router changes: MessageDebuggerAgent reads and stores all messages that pass through the VIP router. This is ac-
complished by subscribing to the messages on a new socket published by the platform’s Router.issue() method.

The ``direction`` property: Most agent interactions result in at least two messages, an incoming request and an
outgoing response. Router.issue() has a topic parameter with values INCOMING, OUTGOING, ERROR
and UNROUTABLE. The publication on the socket that happens in issue() includes this “issue topic” (not to be
confused with a message’s topic) along with each message. MessageDebuggerAgent records it as a DebugMessage
property called direction, since its value for almost all messages is either INCOMING or OUTGOING.

SQLite Database and SQL Alchemy: MessageDebuggerAgent records each messsage as a DebugMessage row in a
relational database. SQLite is used since it’s packaged with Python and is already being used by other VOLTTRON
agents. Database semantics are kept simple through the use of a SQL Alchemy object-relational mapping framework.
Python’s “SQLAlchemy” plug-in must be loaded in order for MessageDebuggerAgent to run.

Calling MessageViewer Directly: The viewer.py module that starts the Message Viewer command line also contains
a MessageViewer class. It exposes class methods which can be used to make direct Python calls that, in turn, make
Message Debugger Agent’s RPC calls. The MessageViewer class-method API includes the following calls:

• delete_debugging_db()

• delete_debugging_session(session_id)

• disable_message_debugging()

• display_db_objects(db_object_name, filters=None)

• display_message_stream()

• enable_message_debugging()

• message_exchange_details(message_id)

310 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

• session_details_by_agent(session_id)

• session_details_by_topic(session_id)

• set_filters(filters)

• set_verbosity(verbosity_level)

• start_streaming(filters=None)

• stop_streaming()

The command-line UI’s display_messages and display_exchanges commands are implemented here as
display_db_objects('DebugMessage') and display_db_objects(DebugMessageExchange).
These calls return json-encoded representations of DebugMessages and DebugMessageExchanges, which are for-
matted for display by MessageViewerCmd.

MessageViewer connection: MessageViewer is not actually a VOLTTRON agent. In order for it make MessageDe-
buggerAgent RPC calls, which are agent-agent interactions, it builds a “connection” that manages a temporary agent.
This is a standard VOLTTRON pattern that is also used, for instance, by Volttron Central.

View the message debugging specification for more information on the message debugging implementation for Ze-
roMQ.

Message Bus Debugging Specification

NOTE: This is a planning document, created prior to implementation of the VOLTTRON Message Debugger. It
describes the tool’s general goals, but it’s not always accurate about specifics of the ultimate implementation. For a
description of Message Debugging as implemented, with advice on how to configure and use it, please see Message-
Debugging.

Description

VOLTTRON agents send messages to each other on the VOLTTRON message bus. It can be useful to examine the
contents of this message stream while debugging and troubleshooting agents and drivers.

In satisfaction of this specification, a new Message Monitor capability will be implemented allowing VOLTTRON
agent/driver developers to monitor the message stream, filter it for an interesting set of messages, and display the
contents and characteristics of each message.

Some elements below are central to this effort (required), while others are useful improvements (optional) that may be
implemented if time permits.

Feature: Capture Messages and Display a Message Summary

When enabled, the Message Monitor will capture details about a stream of routed messages. On demand, it will
display a message summary, either in real time as the messages are routed, or retrospectively.

A summary view will convey the high level interactions occurring between VOLTTRON agents as conversations that
may be expanded for more detail. A simple RPC call that involves 4 message send/recv segments will be displayed as
a single object that can be expanded. In this way, the message viewer will provide a higher-level view of message bus
activity than might be gleaned from verbose logs using grep.

Pub/sub interactions will be summarized at the topic level with high-level statistics such as the number of subscribers,
of messages published during the capture period, etc. Drilling into the interaction might show the last message
published with the ability to drill deeper into individual messages. A diff display would show how the published data
is changing.

2.22. Operations 311

VOLTTRON Documentation, Release 8.1.3

Summary view

- 11:09:31.0831 RPC set_point charge.control platform.driver
| - params: ('set_load', 10) return: True
- 11:09:31.5235 Pub/Sub devices/my_device platform.driver 2 subscribers
| - Subscriber: charge.control

| - Last message 11:09:31.1104:
[

{
'Heartbeat': True,
'PowerState': 0,
'temperature': 50.0,
'ValveState': 0

},
...

]
| - Diff to 11:09:21.5431:

'temperature': 48.7,

The summary’s contents and format will vary by message subsystem.

RPC request/response pairs will be displayed on a single line:

(volttron) d1:volttron myname$ msmon --agent='(Agent1,Agent2)'

Agent1 Agent2
2016-11-22T11:09:31.083121+00:00 rpc: devices/my_topic; 2340972387; sent 2016-11-
→˓22T11:09:31.277933+00:00 responded: 0.194 sec
2016-11-22T11:09:32.005938+00:00 rpc: devices/my_topic; 2340972388; sent 2016-11-
→˓22T11:09:32.282193+00:00 responded: 0.277 sec
2016-11-22T11:09:33.081873+00:00 rpc: devices/my_topic; 2340972389; sent 2016-11-
→˓22T11:09:33.271199+00:00 responded: 0.190 sec
2016-11-22T11:09:34.049139+00:00 rpc: devices/my_topic; 2340972390; sent 2016-11-
→˓22T11:09:34.285393+00:00 responded: 0.236 sec
2016-11-22T11:09:35.053183+00:00 rpc: devices/my_topic; 2340972391; sent 2016-11-
→˓22T11:09:35.279317+00:00 responded: 0.226 sec
2016-11-22T11:09:36.133948+00:00 rpc: devices/my_topic; 2340972392; sent 2016-11-
→˓22T11:09:36.133003+00:00 dequeued

When PubSub messages are displayed, each message’s summary will include its count of subscribers:

(volttron) d1:volttron myname$ msmon --agent=(Agent1)

Agent1
2016-11-22T11:09:31.083121+00:00 pubsub: devices/my_topic; 2340972487; sent; 2 subs
2016-11-22T11:09:32.005938+00:00 pubsub: devices/my_topic; 2340972488; sent; 2 subs
2016-11-22T11:09:33.081873+00:00 pubsub: devices/my_topic; 2340972489; sent; 2 subs
2016-11-22T11:09:34.049139+00:00 pubsub: devices/my_topic; 2340972490; sent; 2 subs
2016-11-22T11:09:35.053183+00:00 pubsub: devices/my_topic; 2340972491; sent; 2 subs

While streaming output of a message summary, a defined keystroke sequence will “pause” the output, and another
keystroke sequence will “resume” displaying the stream.

312 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Feature: Capture and Display Message Details

The Message Monitor will capture a variety of details about each message, including:

1. Sending agent ID

2. Receiving agent ID

3. User ID

4. Message ID

5. Subsystem

6. Topic

7. Message data

8. Message lifecycle timestamps, in UTC (when sent, dequeued, responded)

9. Message status (sent, responded, error, timeout)

10. Message size

11. Other message properties TBD (e.g., queue depth?)

On demand, it will display these details for a single message ID:

(volttron)d1:volttron myname$ msmon --id='2340972390'

2016-11-22T11:09:31.053183+00:00 (Agent1)
INFO:

Subsystem: 'pubsub',
Sender: 'Agent1',
Topic: 'devices/my_topic',
ID: '2340972390',
Sent: '2016-11-22T11:09:31.004986+00:00',
Message:
[

{
'Heartbeat': True,
'PowerState': 0,
'temperature': 50.0,
'ValveState': 0

},
{

'Heartbeat':
{

'units': 'On/Off',
'type': 'integer'

},
'PowerState':
{

'units': '1/0',
'type': 'integer'

},
'temperature':
{

'units': 'Fahrenheit',
'type': 'integer'

},
'ValveState':

(continues on next page)

2.22. Operations 313

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

{
'units': '1/0',
'type': 'integer'

}
}

]

A VOLTTRON message ID is not unique to a single message. A group of messages in a “conversation” may share a
common ID, for instance during RPC request/response exchanges. When detailed display of all messages for a single
message ID is requested, they will be displayed in chronological order.

Feature: Display Message Statistics

Statistics about the message stream will also be available on demand:

1. Number of messages sent, by agent, subsystem, topic

2. Number of messages received, by agent, subsystem, topic

Feature: Filter the Message Stream

The Message Monitor will be able to filter the message stream display to show only those messages that match a given
set of criteria:

1. Sending agent ID(s)

2. Receiving agent ID(s)

3. User ID(s)

4. Subsystem(s)

5. Topic - Specific topic(s)

6. Topic - Prefix(es)

7. Specific data value(s)

8. Sampling start/stop time

9. Other filters TBD

User Interface: Linux Command Line

A Linux command-line interface will enable the following user actions:

1. Enable message tracing

2. Disable message tracing

3. Define message filters

4. Define verbosity of displayed-message output

5. Display message stream

6. Begin recording messages

7. Stop recording messages

314 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

8. Display recorded messages

9. Play back (re-send) recorded messages

Feature (not implemented): Watch Most Recent

Optionally, the Message Monitor can be asked to “watch” a specific data element. In that case, it will display the value
of that element in the most recent message matching the filters currently in effect. As the data to be displayed changes,
the display will be updated in place without scrolling (similar to “top” output):

(volttron) d1:volttron myname$ msmon --agent='(Agent1)' --watch='temperature'

Agent1
2016-11-22T11:09:31.053183+00:00 pubsub: my_topic; 2340972487; sent; 2 subs;
→˓temperature=50

Feature (not implemented): Regular Expression Support

It could help for the Message Monitor’s filtering logic to support regular expressions. Regex support has also been
requested (Issue #207) when identifying a subscribed pub/sub topic during VOLTTRON message routing.

Optionally, regex support will be implemented in Message Monitor filtering criteria, and also (configurably) during
VOLTTRON topic matching.

Feature (not implemented): Message Stream Record and Playback

The Message Monitor will be able to “record” and “play back” a message sequence:

1. Capture a set of messages as a single “recording”

2. Inspect the contents of the “recording”

3. “Play back” the recording – re-send the recording’s messsage sequence in VOLTTRON

Feature (not implemented): On-the-fly Message Inspection and Modification

VOLTTRON message inspection and modification, on-the-fly, may be supported from the command line. The syntax
and implementation would be similar to pdb (Python Debugger), and might be written as an extension to pdb.

Capabilities:

1. Drill-down inspection of message contents.

2. Set a breakpoint based on message properties, halting upon routing a matching message.

3. While halted on a breakpoint, alter a message’s contents.

2.22. Operations 315

VOLTTRON Documentation, Release 8.1.3

Feature (not implemented): PyCharm Debugging Plugin

VOLTTRON message debugging may also be published as a PyCharm plugin. The plugin would form a more user-
friendly interface for the same set of capabilities described above – on-the-fly message inspection and modification,
with the ability to set a breakpoint based on message properties.

User Interface (not implemented): PCAP/Wireshark

Optionally, we may elect to render the message trace as a stream of PCAP data, thereby exploiting Wireshark’s filtering
and display capabilities. This would be in accord with the enhancement suggested in VOLTTRON Issue #260.

User Interface (not implemented): Volttron Central Dashboard Widget

Optionally, the Message Monitor will be integrated as a new Volttron Central dashboard widget, supporting each of
the following:

1. Enable/Disable the monitor

2. Filter messages

3. Configure message display details

4. Record/playback messages

User Interface (not implemented): Graphical Display of Message Sequence

Optionally, the Volttron Central dashboard widget will provide graphical display of message sequences, allowing
enhanced visualization of request/response patterns.

Related Development: PyCharm Documentation

Also included in this effort will be a contribution to VOLTTRON documentation about installing and configuring a
PyCharm environment for developing, debugging and testing VOLTTRON agents and drivers.

Engineering Design Notes

Grabbing Messages Off the Bus

This tool depends on reading and storing all messages that pass through the VIP router. The Router class already has
hooks that allow for the capturing of messages at various points in the routing workflow. The BaseRouter abstract
class defines issue(self, topic, frames, extra). This method is called from BaseRouter.route
and BaseRouter._send during the routing of messasges. The topic parameter (not to be confused with a
message topic found in frames) identifies the point or state in the routing worflow at which the issue was called.

The defined topics are: INCOMING, OUTGOING, ERROR and UNROUTABLE. Most messages will result in
two calls, one with the INCOMING topic as the message enters the router and one with the OUTGOING topic as the
message is sent on to its destination. Messages without a recipient are intended for the router itself and do not result
in an OUTGOING call to issue.

Router.issue contains the concrete implementation of the method. It does two things:

1. It writes the topic, frames and optional extra parameters to the logger using the FramesFormatter.

316 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

2. It invokes self._tracker.hit(topic, frames, extra). The Tracker class collects statistics by
topic and counts the messages within a topic by peer, user and subsystem.

The issue method can be modified to optionally publish the issue messages to an in-process ZMQ address that
the message-viewing tool will subscribe to. This will minimize changes to core VOLTTRON code and minimize the
impact of processing these messages for debugging.

Message Processor

The message processor will subscribe to messages coming out of the Router.issue() method and process these messages
based on the current message viewer configuration. Messages will be written to a SQLite db since this is packaged
with Python and currently used by other VOLTTRON agents.

Message Viewer

The message viewer will display messages from the SQLite db. We need to consider whether it should also subscribe
to receiving messages in real-time. The viewer will be responsible for displaying message statistics and will provide a
command line interface to filter and display messages.

Message Db Schema

message(id, created_on, issue_topic, extras, sender, recipient, user_id, msg_id,
→˓subsystem, data)

msg_id will be used to associate pairs of incoming/outgoing messages.

Note: data will be a jsonified list of frames, alternatively we could add a message_data table with one row per frame.

A session table will track the start and end of a debug session and, at the end of a session, record statistics on the
messages in the session.

session(id, created_on, name, start_time, end_time, num_messages)

The command line tool will allow users to delete old sessions and select a session for review/playback.

2.22.5 System Monitoring Agent

The System Monitoring Agent (colloquially “SysMon”) can be installed on the platform to monitor various system
resource metrics, including percent CPU utilization, percent system memory (RAM) utilization, and percent storage
(disk) utilization based on disk path.

2.22. Operations 317

VOLTTRON Documentation, Release 8.1.3

Configuration

The SysMon agent configuration includes options for setting the base publish topic as well as intervals in seconds for
checking the various system resource utilization levels.

{
"base_topic": "datalogger/log/platform",
"cpu_check_interval": 5,
"memory_check_interval": 5,
"disk_check_interval": 5,
"disk_path": "/"

}

The base topic will be formatted with the name of the function call used to determine the utilization percentage
for the resource. For example, using the configuration above, the topic for cpu utilization would be “datalog-
ger/log/platform/cpu_percent”.

The disk path string can be set to specify the full path to a specific system data storage “disk”. Currently the SysMon
agent supports configuration for only a single disk at a time.

Periodic Publish

At the interval specified by the configuration option for each resource, the agent will automatically query the system
for the resource utilization statistics and publish it to the message bus using the topic as previously described. The
message content for each publish will contain only a single numeric value for that specific topic. Currently “scrape_all”
style publishes are not supported.

Example Publishes:

2020-03-10 11:20:33,755 (listeneragent-3.3 7993) listener.agent INFO: Peer: pubsub,
→˓Sender: platform.sysmon:, Bus: , Topic: datalogger/log/platform/cpu_percent,
→˓Headers: {'min_compatible_version': '3.0', 'max_compatible_version': ''}, Message:
4.8
2020-03-10 11:20:33,804 (listeneragent-3.3 7993) listener.agent INFO: Peer: pubsub,
→˓Sender: platform.sysmon:, Bus: , Topic: datalogger/log/platform/memory_percent,
→˓Headers: {'min_compatible_version': '3.0', 'max_compatible_version': ''}, Message:
35.6
2020-03-10 11:20:33,809 (listeneragent-3.3 7993) listener.agent INFO: Peer: pubsub,
→˓Sender: platform.sysmon:, Bus: , Topic: datalogger/log/platform/disk_percent,
→˓Headers: {'min_compatible_version': '3.0', 'max_compatible_version': ''}, Message:

JSON RPC Methods

The VIP subsystem developed for the VOLTTRON message bus supports remote procedure calls (RPC), which can
be used to more directly fetch data from the SysMon agent. Examples are provided below for each RPC call.

Get Percent CPU Utilization
self.vip.rpc.call(PLATFORM.SYSMON, "cpu_percent).get()

Get Percent System Memory Utilization
self.vip.rpc.call(PLATFORM.SYSMON, "memory_percent).get()

Get Percent Storage "disk" Utilization
self.vip.rpc.call(PLATFORM.SYSMON, "disk_percent).get()

318 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

2.22.6 Threshold Detection Agent

The ThresholdDetectionAgent will publish an alert when a value published to a topic exceeds or falls below a con-
figured value. The agent can be configured to watch topics are associated with a single value or to watch devices’ all
topics.

Configuration

The Threshold Detection Agent supports the config store and can be configured with a file named “config”.

The file must be in the following format:

• Topics and points in device publishes may have maximum and minimum thresholds but both are not required

• A device’s point entries are configured the same way as standard topic entries

{
"topic": {

"threshold_max": 10
},

"devices/some/device/all": {
"point0": {

"threshold_max": 10,
"threshold_min": 0

},
"point1": {

"threshold_max": 42
}

}
}

2.22.7 Topic Watcher Agent

The Topic Watcher Agent listens to a set of configured topics and publishes an alert if they are not published within
some time limit. In addition to “standard” topics the Topic Watcher Agent supports inspecting device all topics. This
can be useful when a device contains volatile points that may not be published.

Requirements

The Topic Watcher agent requires the Sqlite 3 package. This package can be installed in an activated environment
with:

pip install sqlite3

2.22. Operations 319

VOLTTRON Documentation, Release 8.1.3

Configuration

Topics are organied by groups. Any alerts raised will summarize all missing topics in the group.

Individual topics have two configuration options. For standard topics configuration consists of a key value pair of the
topic to its time limit.

The other option is for all publishes. The topic key is paired with a dictionary that has two keys, “seconds” and
“points”. “seconds” is the topic’s time limit and “points” is a list of points to watch.

{
"groupname": {

"devices/fakedriver0/all": 10,

"devices/fakedriver1/all": {
"seconds": 10,
"points": ["temperature", "PowerState"]

}
}

}

2.23 Historian Framework

Historian Agents are the way by which device, actuator, datalogger, and analysis topics are automatically captured
and stored in some sort of data store. Historians exist for the following storage options:

• A general SQL Historian implemented for MySQL, SQLite, PostgreSQL, and Amazon Redshift

• MongoDB Historian

• Crate Historian

• Forward Historian for sending data to another VOLTTRON instance

• OpenEIS Historian

• MQTT Historian Forwards data to an MQTT broker

• InfluxDB Historian

Other implementations of Historians can be created by following the Developing Historian Agents guide.

A video tutorial of historian framework can be found here

2.23.1 Base Historian

Historians are all built upon the BaseHistorian which provides general functionality the specific implementations are
built upon.

This base Historian will cache all received messages to a local database before publishing it to the Historian. This
allows recovery from unexpected happenings before the successful writing of data to the Historian.

320 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

2.23.2 Configuration

In most cases the default configuration settings are fine for all deployments.

All Historians support the following settings:

{
Maximum amount of time to wait before retrying a failed publish in seconds.
Will try more frequently if new data arrives before this timelime expires.
Defaults to 300
"retry_period": 300.0,

Maximum number of records to submit to the historian at a time.
Defaults to 1000
"submit_size_limit": 1000,

In the case where a historian needs to catch up after a disconnect
the maximum amount of time to spend writing to the database before
checking for and caching new data.
Defaults to 30
"max_time_publishing": 30.0,

Limit how far back the historian will keep data in days.
Partial days supported via floating point numbers.
A historian must implement this feature for it to be enforced.
"history_limit_days": 366,

Limit the size of the historian data store in gigabytes.
A historian must implement this feature for it to be enforced.
"storage_limit_gb": 2.5

Size limit of the backup cache in Gigabytes.
Defaults to no limit.
"backup_storage_limit_gb": 8.0,

How full should the backup storage be for an alert to be raised.
percentage as decimal. For example set value as 0.9 to get alerted when cache

→˓becomes more than 90% configured
size limit
"backup_storage_report" : 0.9,

Do not actually gather any data. Historian is query only.
"readonly": false,

capture_device_data
Defaults to true. Capture data published on the `devices/` topic.
"capture_device_data": true,

capture_analysis_data
Defaults to true. Capture data published on the `analysis/` topic.
"capture_analysis_data": true,

capture_log_data
Defaults to true. Capture data published on the `datalogger/` topic.
"capture_log_data": true,

capture_record_data
Defaults to true. Capture data published on the `record/` topic.

(continues on next page)

2.23. Historian Framework 321

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"capture_record_data": true,

After publishing every "message_publish_count" number of records, historian
→˓writes

INFO level log with total number of records published since start of historian
"message_publish_count": 10000,

If historian should subscribe to the configured topics from all platform
→˓(instead of just local platform)

by default subscription is only to local topics
"all_platforms": false,

Replace a one topic with another before saving to the database.
"topic_replace_list": [
#{"from": "FromString", "to": "ToString"}
],

For historian developers. Adds benchmarking information to gathered data.
Defaults to false and should be left that way.
"gather_timing_data": false

Allow for the custom topics or for limiting topics picked up by a historian
→˓instance.

the key for each entry in custom topics is the data handler. The topic and
→˓data must

conform to the syntax the handler expects (e.g., the capture_device_data
→˓handler expects

data the driver framework). Handlers that expect specific data format are
capture_device_data, capture_log_data, and capture_analysis_data. All other

→˓handlers will be
treated as record data. The list associated with the handler is a list of custom
topics to be associated with that handler.
#
To restrict collection to only the custom topics, set the following config

→˓variables to False
capture_device_data
capture_analysis_data
capture_log_data
capture_record_data
"custom_topics": {

"capture_device_data": ["devices/campus/building/device/all"],
"capture_analysis_data": ["analysis/application_data/example"],
"capture_record_data": ["example"]

},

To restrict the points processed by a historian for a device or set of devices
→˓(i.e., this configuration

parameter only filters data on topics with base 'devices). If the 'device' is
→˓in the

topic (e.g.,'devices/campus/building/device/all') then only points in the list
→˓will be passed to the

historians capture_data method, and processed by the historian for storage in
→˓its database (or forwarded to a

remote platform (in the case of the ForwardHistorian). The key in the device_
→˓data_filter dictionary can

be made more restrictive (e.g., "device/subdevice") to limit unnecessary
→˓searches through topics that may not

(continues on next page)

322 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

contain the point(s) of interest.
"device_data_filter":{

"device": ["point_name1", "point_name2"]
},

list of topics for which incoming record's timestamp should be compared with
→˓current timestamp to see if it

within the configured tolerance limit. Default value: "devices"
"time_tolerance_topics": ["devices"],

If this is set, timestamp of incoming records on time_tolerance_topics(by
→˓default, "devices" topics) are

compared with current timestamp. If the difference between current timestamp
→˓and the record's timestamp

exceeds the configured time_tolerance (seconds), then those records are added
→˓to a separate time_error table

in cache and are not sent to concrete historian for publishing. An alert is
→˓raised when records are entered

into the time_error table. Units: seconds
"time_tolerance": 5,

If set to true the base_historian will not publish to the concrete historian
→˓(SQLHistorian, CrateHistorian ...)

This is useful for storing historian data while updating database versions.
"cache_only_enabled": False

}

2.23.3 Topics

By default the base historian will listen to 4 separate root topics:

• datalogger/*

• record/*

• analysis/*

• devices/*

Each root topic has a specific message syntax that it is expecting for incoming data.

Messages published to datalogger will be assumed to be timepoint data that is composed of units and specific types
with the assumption that they have the ability to be plotted easily.

Messages published to devices are data that comes directly from drivers.

Messages published to analysis are analysis data published by agents in the form of key value pairs.

Finally, messages that are published to record will be handled as string data and can be customized to the user specific
situation.

2.23. Historian Framework 323

VOLTTRON Documentation, Release 8.1.3

2.23.4 Platform Historian

A platform historian is a “friendly named” historian on a VOLTTRON instance. It always has the identity of plat-
form.historian. A platform historian is made available to a VOLTTRON Central agent for monitoring of the VOLT-
TRON instances health and plotting topics from the platform historian. In order for one of the historians to be turned
into a platform historian the identity keyword must be added to it’s configuration with the value of platform.historian.
The following configuration file shows a SQLite based platform historian configuration:

{
"agentid": "sqlhistorian-sqlite",
"identity": "platform.historian",
"connection": {

"type": "sqlite",
"params": {

"database": "~/.volttron/data/platform.historian.sqlite"
}

}
}

2.23.5 Historian Video Tutorial

Historian Topic Syntax

Each historian will subscribe to the following message bus topics:

• datalogger/*

• anaylsis/*

• record/*

• devices/*

For each of these topics there is a different message syntax that must be adhered to in order for the correct interpretation
of the data being specified.

record/*

The record topic is the most flexible of all of the topics. This topic allows any serializable message to be published to
any topic under the root topic record/.

Note: This topic is not recommended to plot, as the structure of the messages are not necessarily numeric

Example messages that can be published

Dictionary data
{'foo': 'world'}

Numerical data
52

Time data (note: not a `datetime` object)
'2015-12-02T11:06:32.252626'

324 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

devices/*

The devices topic is meant to be data structured from a scraping of a Modbus or BACnet device. Currently drivers
for both of these protocols write data to the message bus in the proper format. VOLTTRON drivers also publish an
aggregation of points in an all topic.

Only the `all` topic messages are read and published to a historian.

Both the all topic and point topic have the same header information, but the message body for each is slightly
different. For a complete working example of these messages please see examples.ExampleSubscriber.
subscriber.subscriber_agent

The format of the header and message for device topics (i.e. messages published to topics with pattern “devices/*/all”)
follows the following pattern:

Header contains the data associated with the message.
{

python code to get this is
from datetime import datetime
from volttron.platform.messaging import headers as header_mod
from volttron.platform.agent import utils
now = utils.format_timestamp(datetime.utcnow())
{
headers_mod.DATE: now,
headers_mod.TIMESTAMP: now
}
"Date": "2015-11-17 21:24:10.189393+00:00",
"TimeStamp": "2015-11-17 21:24:10.189393+00:00"

}

Message Format:

WITH METADATA
Messages contains a two element list. The first element contains a
dictionary of all points under a specific parent. While the second
element contains a dictionary of meta data for each of the specified
points. For example devices/pnnl/building/OutsideAirTemperature and
devices/pnnl/building/MixedAirTemperature ALL message would be created as:
[

{"OutsideAirTemperature": 52.5, "MixedAirTemperature": 58.5},
{

"OutsideAirTemperature": {'units': 'F', 'tz': 'UTC', 'type': 'float'},
"MixedAirTemperature": {'units': 'F', 'tz': 'UTC', 'type': 'float'}

}
]

#WITHOUT METADATA
Message contains a dictionary of all points under a specific parent
{"OutsideAirTemperature": 52.5, "MixedAirTemperature": 58.5}

2.23. Historian Framework 325

VOLTTRON Documentation, Release 8.1.3

analysis/*

Data sent to analysis/* topics is result of analysis done by applications. The format of data sent to analysis/* topics is
similar to data sent to devices/*/all topics.

datalogger/*

Messages published to datalogger/* will be assumed to be time point data that is composed of units and specific types
with the assumption that they have the ability to be graphed easily.

{"MixedAirTemperature": {"Readings": ["2015-12-02T00:00:00",
<mixed_reading],

"Units": "F",
"tz": "UTC",
"data_type": "float"}}

If no datetime value is specified as a part of the reading, current time is used. A Message can be published without
any header. In the above message Readings and Units are mandatory.

Crate Historian

Crate is an open source SQL database designed on top of a No-SQL design. It allows automatic data replication and
self-healing clusters for high availability, automatic sharding, and fast joins, aggregations and sub-selects.

Find out more about crate from https://crate.io/.

Prerequisites

1. Crate Database

For Arch Linux, Debian, RedHat Enterprise Linux and Ubuntu distributions there is a simple installer to get Crate up
and running on your system.

sudo bash -c "$(curl -L https://try.crate.io)"

This command will download and install all of the requirements for running Crate, create a Crate user and install a
Crate service. After the installation the service will be available for viewing at http://localhost:4200 by
default.

Note: There is no authentication support within crate.

326 Chapter 2. Features

https://crate.io/

VOLTTRON Documentation, Release 8.1.3

2. Crate Driver

There is a Python library for crate that must be installed in the VOLTTRON Python virtual environment in order to
access Crate. From an activated environment, in the root of the volttron folder, execute the following command:

python bootstrap.py --crate

or

python bootstrap.py --databases

or

pip install crate

Configuration

Because there is no authorization to access a crate database the configuration for the Crate Historian is very easy.

{
"connection": {

"type": "crate",
Optional table prefix defaults to historian
"schema": "testing",
"params": {

"host": "localhost:4200"
}

}
}

Finally package, install and start the Crate Historian agent.

See also:

Agent Development Walk-through

Influxdb Historian

InfluxDB is an open source time series database with a fast, scalable engine and high availability. It’s often used to
build DevOps Monitoring (Infrastructure Monitoring, Application Monitoring, Cloud Monitoring), IoT Monitoring,
and real-time analytics solutions.

More information about InfluxDB is available from https://www.influxdata.com/.

Prerequisites

InfluxDB Installation

To install InfluxDB on an Ubuntu or Debian operating system, run the script:

services/core/InfluxdbHistorian/scripts/install-influx.sh

For installation on other operating systems, see https://docs.influxdata.com/influxdb/v1.4/introduction/installation/.

2.23. Historian Framework 327

https://www.influxdata.com/
https://docs.influxdata.com/influxdb/v1.4/introduction/installation/

VOLTTRON Documentation, Release 8.1.3

Authentication in InfluxDB

By default, the InfluxDB Authentication option is disabled, and no user authentication is required to access any In-
fluxDB database. You can enable authentication by updating the InfluxDB configuration file. For detailed informa-
tion on enabling authentication, see: https://docs.influxdata.com/influxdb/v1.4/query_language/authentication_and_
authorization/.

If Authentication is enabled, authorization privileges are enforced. There must be at least one defined admin user
with access to administrative queries as outlined in the linked document above. Additionally, you must pre-create
the user and database that are specified in the configuration file (the default configuration file for InfluxDB is
services/core/InfluxdbHistorian/config). If your user is a non-admin user, they must be granted a full set of privileges
on the desired database.

InfluxDB Driver

In order to connect to an InfluxDb client, the Python library for InfluxDB must be installed in VOLTTRON’s virtual
environment. From the command line, after enabling the virtual environment, install the InfluxDB library as follows:

python bootstrap.py --influxdb

or

python bootstrap.py --databases

or

pip install influxdb

Configuration

The default configuration file for VOLTTRON’s InfluxDB Historian agent should be in the format:

{
"connection": {
"params": {

"host": "localhost",
"port": 8086, # Don't change this unless default bind port

in influxdb config is changed
"database": "historian",
"user": "historian", # user is optional if authentication is turned off
"passwd": "historian" # passwd is optional if authentication is turned off

}
},
"aggregations": {
"use_calendar_time_periods": true

}
}

The InfluxDB Historian agent can be packaged, installed and started according to the standard VOLTTRON agent cre-
ation procedure. A sample VOLTTRON configuration file has been provided: services/core/InfluxdbHistorian/config.

See also:

Agent Development Walk-through

328 Chapter 2. Features

https://docs.influxdata.com/influxdb/v1.4/query_language/authentication_and_authorization/
https://docs.influxdata.com/influxdb/v1.4/query_language/authentication_and_authorization/

VOLTTRON Documentation, Release 8.1.3

Connection

The host, database, user and passwd values in the VOLTTRON configuration file can be modified. user and
passwd are optional if InfluxDB Authentication is disabled.

Note: Be sure to initialize or pre-create the database and user defined in the configuration file, and if user is a
non-admin user, be make sure to grant privileges for the user on the specified database. For more information, see
Authentication in InfluxDB.

Aggregations

In order to use aggregations, the VOLTTRON configuration file must also specify a value, either true or false, for
use_calendar_time_periods, indicating whether the aggregation period should align to calendar time periods.
If this value is omitted from the configuration file, aggregations cannot be used.

For more information on historian aggregations, see: Aggregate Historian Agent Specification.

Supported Influxdb aggregation functions:

• Aggregations: COUNT(), DISTINCT(), INTEGRAL(), MEAN(), MEDIAN(), MODE(), SPREAD(), STD-
DEV(), SUM()

• Selectors: FIRST(), LAST(), MAX(), MIN()

• Transformations: CEILING(),CUMULATIVE_SUM(), DERIVATIVE(), DIFFERENCE(), ELAPSED(),
NON_NEGATIVE_DERIVATIVE(), NON_NEGATIVE_DIFFERENCE()

More information how to use those functions: https://docs.influxdata.com/influxdb/v1.4/query_language/functions/

Note: Historian aggregations in InfluxDB are different from aggregations employed by other historian agents in
VOLTTRON. InfluxDB doesn’t have a separate agent for aggregations. Instead, aggregation is supported through the
query_historian function. Other agents can execute an aggregation query directly in InfluxDB by calling the
RPC.export method query. For an example, see Aggregate Historian Agent Specification

Database Schema

Each InfluxDB database has a meta table as well as other tables for different measurements, e.g. one table for
“power_kw”, one table for “energy”, one table for “voltage”, etc. (An InfluxDB measurement is similar to a rela-
tional table, so for easier understanding, InfluxDB measurements will be referred to below as tables.)

Measurement Table

Example: If a topic name is CampusA/Building1/Device1/Power_KW, the power_kw table might look as follows:

time building campus device source value
2017-12-28T20:41:00.004260096Z building1 campusa device1 scrape 123.4
2017-12-30T01:05:00.004435616Z building1 campusa device1 scrape 567.8
2018-01-15T18:08:00.126345Z building1 campusa device1 scrape 10

building, campus, device, and source are InfluxDB tags. value is an InfluxDB field.

2.23. Historian Framework 329

https://docs.influxdata.com/influxdb/v1.4/query_language/functions/

VOLTTRON Documentation, Release 8.1.3

Note: The topic is converted to all lowercase before being stored in the table. In other words, a set of tag names, as
well as a table name, are created by splitting topic_id into substrings (see meta table below).

In this example, where the typical format of a topic name is <campus>/<building>/<device>/<measurement>, cam-
pus, building and device are each stored as tags in the database.

A topic name might not confirm to that convention:

1. The topic name might contain additional substrings, e.g. Cam-
pusA/Building1/LAB/Device/OutsideAirTemperature. In this case, campus will be campusa/building,
building will be lab, and device will be device.

2. The topic name might contain fewer substrings, e.g. LAB/Device/OutsideAirTemperature. In this case, the
campus tag will be empty, building will be lab, and device will be device.

Meta Table

The meta table will be structured as in the following example:

time last_updated meta_dict topic topic_id
1970-01-
01T00:00:00Z

2017-12-
28T20:47:00.003051+00:00

{u’units’: u’kw’, u’tz’:
u’US/Pacific’, u’type’:
u’float’}

Cam-
pusA/Building1/Device1/Power_KW

cam-
pusa/building1/device1/power_kw

1970-01-
01T00:00:00Z

2017-12-
28T20:47:00.003051+00:00

{u’units’: u’kwh’, u’tz’:
u’US/Pacific’, u’type’:
u’float’}

Cam-
pusA/Building1/Device1/Energy_KWH

cam-
pusa/building1/device1/energy_kwh

In the InfluxDB, last_updated, meta_dict and topic are fields and topic_id is a tag.

Since InfluxDB is a time series database, the time column is required, and a dummy value (time=0, which is
1970-01-01T00:00:00Z based on epoch unix time) is assigned to all topics for easier metadata updating. Hence,
if the contents of meta_dict change for a specific topic, both last_updated and meta_dict values for that topic will be
replaced in the table.

Mongo Historian

MongoDB is a NoSQL document database, which allows for great performance for transactional data. Because Mon-
goDB documents do not have a schema, it is easy to store and query data which changes over time. MongoDB also
scales horizontally using sharding.

For more information about MongoDB, read the MongoDB documentation

Prerequisites

1. Mongodb

Setup mongodb based on using one of the three installation scripts for the corresponding environment:

1. Install as root on Redhat or Cent OS

sudo scripts/historian-scripts/root_install_mongo_rhel.sh

330 Chapter 2. Features

https://docs.mongodb.com/

VOLTTRON Documentation, Release 8.1.3

The above script will prompt user for os version, db user name, password and database name. Once
installed you can start and stop the service using the command:

sudo service mongod [start|stop|service]

2. Install as root on Ubuntu

sudo scripts/historian-scripts/root_install_mongo_ubuntu.sh

The above script will prompt user for os version, db user name, password and database name. Once
installed you can start and stop the service using the command:

sudo service mongod [start|stop|service]

3. Install as non root user on any Linux machine

scripts/historian-scripts/install_mongodb.sh

Usage:

install_mongodb.sh [-h] [-d download_url] [-i install_dir] [-c config_
→˓file] [-s]

Optional arguments:

-s setup admin user and test collection after install and startup

-d download url. defaults to https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3.2.
4.tgz

-i install_dir. defaults to current_dir/mongo_install

-c config file to be used for mongodb startup. Defaults to default_mongodb.conf in the same
directory as this script. Any data path mentioned in the config file should already exist and
should have write access to the current user

-h print the help message

2. Mongodb connector

This historian requires a mongodb connector installed in your activated VOLTTRON virtual environment to talk to
MongoDB. Please execute the following from an activated shell in order to install it:

python bootstrap.py --mongo

or

python bootstrap.py --databases

or

pip install pymongo==3.7.2
pip install bson
pip install ujson

2.23. Historian Framework 331

https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3.2.4.tgz
https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3.2.4.tgz

VOLTTRON Documentation, Release 8.1.3

3. Configuration Options

The historian configuration file can specify

"history_limit_days": <n days>

which will remove entries from the data and rollup collections older than n days. Timestamps passed to the
manage_db_size method are truncated to the day.

MQTT Historian

Overview

The MQTT Historian agent publishes data to an MQTT broker. The mqttlistener.py script will connect to the
broker and print all messages.

Dependencies

The Paho MQTT library from Eclipse is needed for the agent and can be installed with:

pip install paho-mqtt

The Mosquitto MQTT broker may be useful for testing and can be installed with

apt-get install mosquitto

OpenEIS Historian

An OpenEIS Historian has been developed to integrate real time data ingestion into the OpenEIS platform. In order
for the OpenEIS Historian to be able to communicate with an OpenEIS server a datasource must be created on the
OpenEIS server.

The process of creating a dataset is documented in the OpenEIS User’s Guide under Creating a Dataset heading.

Configuration

Once a dataset is created you will be able to add datasets through the configuration file. An example configuration for
the historian is as follows:

{
The agent id is used for display in volttron central.
"agentid": "openeishistorian",
The vip identity to use with this historian.
should not be a platform.historian!
#
Default value is un referenced because it listens specifically to the bus.
#"identity": "openeis.historian",

Require connection section for all historians. The openeis historian
requires a url for the openis server and login credentials for publishing
to the correct user's dataset.

(continues on next page)

332 Chapter 2. Features

https://github.com/VOLTTRON/openeis/raw/2.x/guides/PNNL-24065%20-%20OpenEIS%20Users%20Guide.pdf

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"connection": {
"type": "openeis",
"params": {

The server that is running openeis
the rest path for the dataset is dataset/append/{id}
and will be populated from the topic_dataset list below.
"uri": "http://localhost:8000",

Openeis requires a username/password combination in order to
login to the site via rest or the ui.
#
"login": "volttron",
"password": "volttron"

}
},

All datasets that are going to be recorded by this historian need to be
defined here.
#
A dataset definition consists of the following parts
"ds1": {
#
The dataset id that was created in openeis.
"dataset_id": 1,
#
Setting to 1 allows only the caching of data that actually meets
the mapped point criteria for this dataset.
Defaults to 0
"ignore_unmapped_points": 0,
#
An ordered list of points that are to be posted to openeis. The
points must contain a key specifying the incoming topic with the
value an openeis schema point:
[
{"rtu4/OutsideAirTemp": "campus1/building1/rtu4/OutdoorAirTemperature

→˓"}
]
},
"dataset_definitions": {

"ds1": {
"dataset_id": 1,
"ignore_unmapped_points": 0,
"points": [

{"campus1/building1/OutsideAirTemp": "campus1/building1/
→˓OutdoorAirTemperature"},

{"campus1/building1/HVACStatus": "campus1/building1/HVACStatus"},
{"campus1/building1/CompressorStatus": "campus1/building1/

→˓LightingStatus"}
]

}
#,
#"ds2": {
"id": 2,
"points": [
"rtu4/OutsideAirTemp",
"rtu4/MixedAirTemp"
]

(continues on next page)

2.23. Historian Framework 333

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

}
}

}

SQL Historian

An SQL Historian is available as a core service (services/core/SQLHistorian in the VOLTTRON repository).

The SQL Historian has been programmed to handle for inconsistent network connectivity (automatic re-connection
to tcp based databases). All additions to the historian are batched and wrapped within a transaction with commit and
rollback functions. This allows the maximum throughput of data with the most protection.

Configuration

The following example configurations show the different options available for configuring the SQL Historian Agent:

MySQL Specifics

MySQL requires a third party driver (mysql-connector) to be installed in order for it to work. Please execute the
following from an activated shell in order to install it.

pip install --allow-external mysql-connector-python mysql-connector-python

or

python bootstrap.py --mysql

or

python bootstrap.py --databases

In addition, the mysql database must be created and permissions granted for select, insert and update before the agent
is started. In order to support timestamp with microseconds you need at least MySql 5.6.4. Please see this MySql
documentation for more details
The following is a minimal configuration file for using a MySQL based historian. Other options are available and are
documented http://dev.mysql.com/doc/connector-python/en/connector-python-connectargs.html. Not all parameters
have been tested, use at your own risk.

{
"agentid": "sqlhistorian-mysql",
"connection": {

"type": "mysql",
"params": {

"host": "localhost",
"port": 3306,
"database": "volttron",
"user": "user",
"passwd": "pass"

(continues on next page)

334 Chapter 2. Features

http://dev.mysql.com/doc/refman/5.6/en/fractional-seconds.html
http://dev.mysql.com/doc/refman/5.6/en/fractional-seconds.html
http://dev.mysql.com/doc/connector-python/en/connector-python-connectargs.html

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

}
}

}

Sqlite3 Specifics

An Sqlite Historian provides a convenient solution for under powered systems. The database is a parameter to a
location on the file system; ‘database’ should be a non-empty string. By default, the location is relative to the agent’s
installation directory, however it will respect a rooted or relative path to the database.

If ‘database’ does not have a rooted or relative path, the location of the database depends on whether the volttron
platform is in secure mode. For more information on secure mode, see Running Agents as Unix Users. In secure mode,
the location will be under <install_dir>/<agent name>.agent-data directory because this will be the only directory in
which the agent will have write-access. In regular mode, the location will be under <install_dir>/data for backward
compatibility.

The following is a minimal configuration file that uses a relative path to the database.

{
"agentid": "sqlhistorian-sqlite",
"connection": {

"type": "sqlite",
"params": {

"database": "data/historian.sqlite"
}

}
}

PostgreSQL and Redshift

Installation notes

1. The PostgreSQL database driver supports recent PostgreSQL versions. It has been tested on 10.x, but should
work with 9.x and 11.x.

2. The user must have SELECT, INSERT, and UPDATE privileges on historian tables.

3. The tables in the database are created as part of the execution of the SQL Historian Agent, but this will fail if
the database user does not have CREATE privileges.

4. Care must be exercised when using multiple historians with the same database. This configuration may be used
only if there is no overlap in the topics handled by each instance. Otherwise, duplicate topic IDs may be created,
producing strange results.

5. Redshift databases do not support unique constraints. Therefore, it is possible that tables may contain some
duplicate data. The Redshift driver handles this by using distinct queries. It does not remove duplicates from
the tables.

2.23. Historian Framework 335

VOLTTRON Documentation, Release 8.1.3

Dependencies

The PostgreSQL and Redshift database drivers require the psycopg2 Python package.

From an activated shell execute:

pip install psycopg2-binary

PostgreSQL and Redshift Configuration

The following are minimal configuration files for using a psycopg2-based historian. Other options are available and
are documented.

Warning: Not all parameters have been tested, use at your own risk.

Local PostgreSQL Database

The following snippet demonstrates how to configure the SQL Historian Agent to use a PostgreSQL database on the
local system that is configured to use Unix domain sockets. The user executing VOLTTRON must have appropriate
privileges.

{
"connection": {

"type": "postgresql",
"params": {

"dbname": "volttron"
}

}
}

Remote PostgreSQL Database

The following snippet demonstrates how to configure the SQL Historian Agent to use a remote PostgreSQL database.

{
"connection": {

"type": "postgresql",
"params": {

"dbname": "volttron",
"host": "historian.example.com",
"port": 5432,
"user": "volttron",
"password": "secret"

}
}

}

336 Chapter 2. Features

http://initd.org/psycopg/docs/module.html

VOLTTRON Documentation, Release 8.1.3

TimescaleDB Support

Both of the above PostgreSQL connection types can make use of TimescaleDB’s high performance Hypertable back-
end for the primary time-series table. The agent assumes you have completed the TimescaleDB installation and setup
the database by following the instructions here.

To use, simply add timescale_dialect: true to the connection params in the Agent Config as below:

{
"connection": {

"type": "postgresql",
"params": {

"dbname": "volttron",
"host": "historian.example.com",
"port": 5432,
"user": "volttron",
"password": "secret",
"timescale_dialect": true

}
}

}

Redshift Database

The following snippet demonstrates how to configure the SQL Historian Agent to use a Redshift database.

{
"connection": {

"type": "redshift",
"params": {

"dbname": "volttron",
"host": "historian.example.com",
"port": 5432,
"user": "volttron",
"password": "secret"

}
}

}

Data Mover Historian

The Data Mover sends data from its platform to a remote platform in cases where there are not sufficient resources to
store data locally. It shares this functionality with the Forward Historian, however the Data Mover does not have the
goal of data appearing “live” on the remote platform. This allows DataMover to be more efficient by both batching
data and by sending an RPC call to a remote historian instead of publishing data on the remote message bus. This
allows allows the Data Mover to be more robust by ensuring that the receiving historian is running. If the target is
unreachable, the Data Mover will cache data until it is available.

2.23. Historian Framework 337

https://docs.timescale.com/latest/getting-started/setup

VOLTTRON Documentation, Release 8.1.3

Configuration

The default configuration file is services/core/DataMover/config. Change the destination-vip value to point towards
the foreign Volttron instance.

The following is an example configuration:

{
"destination-vip": "ipc://@/home/volttron/.volttron/run/vip.socket",
"destination-serverkey": null,
"required_target_agents": [],
"custom_topic_list": [],
"services_topic_list": [

"devices", "analysis", "record", "datalogger", "actuators"
],
"topic_replace_list": [

#{"from": "FromString", "to": "ToString"}
]

}

The services_topic_list allows you to specify which of the main data topics to forward. If there is no entry, the historian
defaults to sending all.

topic_replace_list allows you to replace portions of topics if needed. This could be used to correct or standardize topics
or to replace building/device names with an anonymous version. The receiving platform will only see the replaced
values.

Adding the configuration option below will limit the backup cache to n gigabytes. This will keep a hard drive from
filling up if the agent is disconnected from its target for a long time.

"backup_storage_limit_gb": n

See also:

Historian Framework

Forward Historian

The primary use case for the Forward Historian or Forwarder is to send data to another instance of VOLTTRON as if
the data were live. This allows agents running on a more secure and/or more powerful machine to run analysis on data
being collected on a potentially less secure/powerful board.

Given this use case, it is not optimized for batching large amounts of data when “live-ness” is not needed. For this use
case, please see the Data Mover Historian.

The Forward Historian can be found in the services/core directory.

Forward Historian can be used to forward data between two ZMQ instances, two RMQ instances, or between ZMQ and
RMQ instances. For Forward Historian to establish a successful connection to the destination VOLTTRON instance:

1. forward historian should be configured to connect and authenticate the destination instance, and

2. the remote instance should be configured to accept incoming connection from the forward historian

How we setup the above two depends on the message bus used in source instance and destination instance

338 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Setup for two ZMQ VOLTTRON instance or a ZMQ and RabbitMQ VOLTTRON instance

When forwarder is used between two ZeroMQ instances it relies on the CurveMQ authentication mechanism used
by ZMQ based VOLTTRON. When the communication is between a ZeroMQ and RabbitMQ instance, the forward
historian uses the proxy ZMQ router agent on the RabbitMQ instance and hence once again uses the CurveMQ au-
thentication

See also:

For more details about VIP authentication in ZMQ based VOLTTRON refer to VIP Authentication

Configuring Forwarder Agent

At a minimum, a forward historian’s configuration should contain enough details to connect to and authenticate the
remote destination. For this it needs

1. the destination’s VIP address (destination-vip)

2. the public key of the destination server (destination-serverkey)

There are two ways to provide these information

Minimum configuration: Option 1

Provide the needed information in the configuration file. For example

{
"destination-vip": "tcp://172.18.0.4:22916"
"destination-serverkey": "D3tIAPOFf7wS3787FgEOLjoPfXUT9rAGpv80ryloZGE"

}

The destination server key can be found by running the following command on the destination volttron instance:

vctl auth serverkey

Note: The example above uses the local IP address, the IP address for your configuration should match the intended
target

An example configuration with above parameters is available at services/core/ForwardHistorian/config.

Minimum configuration: Option 2

If the destination volttron instance is web enabled then the forward historian can find the destination’s vip address and
public key using the destination’s web discovery page. All web enabled volttron instances provide a <instance’s web
address>/discovery/ page that provides the following server information

1. server key

2. vip address

3. instance name

4. RabbitMQ server’s AMQP address (Only on RabbitMQ instances)

5. RabbitMQ server’s CA cert (Only on RabbitMQ instances)

2.23. Historian Framework 339

VOLTTRON Documentation, Release 8.1.3

To forward data to a web enabled volttron instance, forwarder can configured with the destination’s web address
instead of destination’s vip address and public key. For example

{
"destination-address": "https://centvolttron2:8443"

}

An example configuration with above parameters is available at services/core/ForwardHistorian/config_web_address.

Optional Configurations

The most common use case for a forwarder is to forward data to a remote historian. Therefore, forward historians’ by
default forward the default topics a historian subscribes to - devices, analysis, log, and record. However, a forward
historian can be configured to forward any custom topic or disable forwarding devices, analysis, log and/or record
topic data. For example

{
"destination-address": "https://centvolttron2:8443",
"custom_topic_list": ["heartbeat"],
"capture_log_data": false

}

See Configuration Options for all available forward historian configuration

Since forward historian extends BaseHistorian all BaseHistorian’s configuration can be added to forwarder. Please see
BaseHistorian Configurations for the list of available BaseHistorian configurations

Installation

Once we have our configuration file ready we can install the forwarder agent using the command

vctl install --agent-config <path to config file> services/core/ForwardHistorian

But before we start the agent we should configure the destination volttron instance to accept the connection from the
forwarder.

Configuring destination volttron instance

When a forwarder tries to connect to a destination volttron instance, the destination instance will check the ip address
of the source and public key of connecting agent against its list of accepted peers. So before forwarder can connect to
the destination instance, we should add these two details to the destination’s auth.json file.

To do this we can use the command

vctl auth add --address <address of source instance where forwarder is installed> --
→˓credentials <publickey of installed forwarder agent>

Only the address and credential keys are mandatory. You can add additional fields such as comments or user id for
reference. In the above command address is the ip address of the source instance in which the forwarder is installed.
Credentials is the public key of the installed forwarder agent. You can get the forwarder agent’s public key by running
the following command on the source instance

vctl auth publickey <agent uuid or name>

340 Chapter 2. Features

../../../volttron-api/services/ForwardHistorian/README.html#configuration-options
../../../agent-framework/historian-agents/historian-framework.html#configuration

VOLTTRON Documentation, Release 8.1.3

See also:

For more details about VIP authentication in ZMQ based VOLTTRON refer to VIP Authentication

Setup for two RabbitMQ VOLTTRON instances

RabbitMQ based VOLTTRON instances use x509 certificate based authentication. A forward historian that forwards
data from one RMQ instance to another RMQ instance would need a x509 certificate that is signed by the destination
volttron instance’s root certificate for authentication. To obtain a signed certificate, on start, the forward historian
creates a certificate signing request (CSR) and sends it to destination’s instance for approval. An admin on the destina-
tion end, needs to login into the admin web interface and approve the request. On approval a certificate signed by the
destination CA is returned to the forward historian and the forward historian can use this certificate for communication.

See also:

For more details about CSR approval process see Agent communication to Remote RabbitMQ instance For an example
CSR approval process see VOLTTRON Central Multi-Platform Multi-Bus Demo

Forwarder Configuration

Since destination instance would have web enabled to approve the incoming CSR requests, forward historian can
be configured with just the destination instance web address similar to ref:Minimum configuration: Option 2<con-
fig_option_2>

{
"destination-address": "https://centvolttron2:8443"

}

On start, the forwarder makes Certificate signing request and retries periodically till the certificate is approved.

Testing Forward Historian

Once forward historian is configured and installed and the destination is configured to accept incoming connection
from the forwarder (either by adding to destination’s auth.json as in the case of ZMQ or after CSR is approved in
case of RMQ) forwarder can forward any message published to the configured set of topics and re-publish on the
destination’s messagebus.

Testing with custom topic

1. Configure Forward historian to forward the topic heartbeat by adding the following to the forward historian’s
configuration

"custom_topic_list": ["heartbeat"],

2. If forwarder is not already running start the forwarder agent. If it is already running the configuration change
should get picked up automatically in a few seconds.

3. If there are no other agent in the source volttron instance, install a listener agent that periodically publishes to
the topic ‘heartbeat’

vctl install examples/ListenerAgent

2.23. Historian Framework 341

VOLTTRON Documentation, Release 8.1.3

Note: As of VOLTTRON 8.0, all agents by default publish a heartbeat message periodically unless the agent
explicitly opted out of it. So if you already have other installed agents that publish heartbeat message you don’t
have to add the listener agent

4. On the destination instance install a listener agent and tail the volttron log file. You should be able to see the
listener or any other source agent’s heartbeat message on the destination volttron’s log file

Testing with default topics

Forward historian by default forwards the default topics a historian subscribes to - devices, analysis, log, and record.
On the source instance, we can install a platform driver and configure it with a fake device to publish data to the
devices topic. Once the platform driver is started and data gets published to the devices topic, forwarder can re-publish
these to the destination message bus

1. Configure and install forward historian as explained in the sections above

2. Configure destination to accept incoming connection as explained in the above sections

3. Shutdown source volttron instance

vctl shutdown --platform

4. On source install platform driver using the below vcfg command. When prompted, choose to configure a fake
device for the platform driver

vcfg --agent platform_driver

Below is an example command with prompts

(volttron) [volttron@centvolttron1 myvolttron]$ vcfg --agent platform_driver

Your VOLTTRON_HOME currently set to: /home/volttron/vhomes/rmq_instance1

Is this the volttron you are attempting to setup? [Y]:
Configuring /home/volttron/git/myvolttron/services/core/PlatformDriverAgent.
['volttron', '-vv', '-l', '/home/volttron/vhomes/rmq_instance1/volttron.cfg.log']
Would you like to install a fake device on the platform driver? [N]: y
Should the agent autostart? [N]: n

5. Start source volttron instance

./start-volttron

6. Start platform driver and forwarder on source volttron instance

7. On the destination volttron instance install a listener agent and tail the volttron log. You should see the devices
data periodically getting logged in the destination volttron instance.

342 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

2.24 Web Framework

This document describes the interaction between web enabled agents and the Platform Web Service agent.

The web framework enables agent developers to expose JSON, static, and websocket endpoints.

2.24.1 Web SubSystem

Enabling

The web subsystem is not enabled by default as it is only required by a small subset of agents. To enable the web
subsystem the platform instance must have an enabled the web server and the agent must pass enable_web=True to
the agent constructor.

class WebAgent(Agent):
def __init__(self, **kwargs):

super(WebAgent, self).__init__(enable_web=True,**kwargs)

MANIFEST File

The MANIFEST.in file is used to package additional files needed for your web enabled agent. Please read the python
packaging documentation on the MANIFEST.in file. For most cases, i.e. when you only need to include a webroot
directory for html and javascript, the manifest file only needs to include the recursive-include command. For example,
the entirety of the VolttronCentral MANIFEST.in file is:

recursive-include volttroncentral/webroot *

The MANIFEST.in file should be located in the root directory of the agent. All pathing for the MANIFEST.in file
commands are relative to this root directory.

Routes

The web subsystem allows an agent to register three different types of routes; file paths, endpoints, and websockets.

Note: For all routes the first match wins. Therefore ordering which routes are registered first becomes important.

File Path

A path-based route that allows the agent to specify a prefix and a static path on the file system to serve static files. The
prefix can be a regular expression.

Note: The static path should point to a location within the installed agent’s agent-data directory. You MUST have
read access to the directory.

The below example is based on the registered route in VolttronCentral.

2.24. Web Framework 343

https://packaging.python.org/guides/using-manifest-in/

VOLTTRON Documentation, Release 8.1.3

@Core.receiver('onstart')
def onstart(self, sender, **kwargs):

"""
Allow serving of static content from 'webroot'
"""
Sets WEB_ROOT to be the path to the webroot directory
in the agent-data directory of the installed agent..
WEB_ROOT = os.path.abspath(p.abspath(p.join(p.dirname(__file__), 'webroot/')))
Serves the static content from 'webroot' directory
self.vip.web.register_path(r'^/vc/.*', WEB_ROOT)

Endpoint

JSON endpoints allows an agent to serve data responses to specific queries from a web client’s non-static responses.
The agent will pass a callback to the subsystem which will be called when the endpoint is triggered.

def jsonrpc(env, data):
"""
The main entry point for jsonrpc data
"""

return {'dyamic': 'data'}

@Core.receiver('onstart')
def onstart(self, sender, **kwargs):
"""
Register the /vc/jsonrpc endpoint for doing json-rpc based methods
"""

self.vip.web.register_endpoint(r'/vc/jsonrpc', self.jsonrpc)

Websocket

Websocket endpoints allow bi-directional communication between the client and the server. Client connections can be
authenticated during the opening of a websocket through the response of an open callback.

def _ws_opened(self, fromip, endpoint):
_log.debug("OPENED ip: {} endpoint: {}".format(fromip, endpoint))

def _ws_closed(self, endpoint):
_log.debug("CLOSED endpoint: {}".format(endpoint))

def _ws_received(self, endpoint, message):
_log.debug("RECEIVED endpoint: {} message: {}".format(endpoint,

message))

@Core.receiver('onstart')
def onstart(self, sender, **kwargs):

self.vip.web.register_websocket(r'/vc/ws', self._ws_opened, self._ws_closed, self.
→˓_ws_received)

344 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

2.25 Simulation Integration Framework

This framework provides a way to integrate different types of simulation platforms with VOLTTRON. Integration with
specific simulation platforms are all built upon the BaseSimIntegration class which provides common APIs needed to
interface with different types of simulation platforms. Each of the concrete simulation class extends the BaseSimInte-
gration class and is responsible for interfacing with a particular simulation platform. Using these concrete simulation
objects, agents will be able to use the APIs provided by them to participate in a simulation, send inputs to the simu-
lation and receive outputs from the simulation and act on them. Currently, we have implementations for integrating
with HELICS, GridAPPSD and EnergyPlus. If one wants to integrate with a new simulation platform, then one
has to extend the BaseSimIntegration class and provide concrete implementation for each of the APIs provided by
the BaseSimIntegration class. For details on the BaseSimIntegration class, please refer to volttron/platform/
agent/base_simulation_integration/base_sim_integration.py

2.25.1 Specification For Simplifying Integration With Simulation Platforms

There are several simulation platforms that can be integrated with VOLTTRON to run as a single cohesive simulated
environment for different type of applications. Some of the platforms are FNCS, HELICS, GridAPPS-D and Ener-
gyPlus. They all have unique application areas and differ in the type of simulations they run, inputs they accept and
outputs they produce. There are some similarities in the some of the basic steps of integrating with VOLTTRON such
as:

1. Start simulation

2. Subscribe to outputs from the simulation

3. Publish outputs from simulation to VOLTTRON

4. Subscribe to topics from VOLTTRON

5. Send inputs to simulation

6. Advance simulation time step

7. Pause simulation

8. Resume simulation

9. Stop simulation

Currently, VOLTTRON has individual implementations for integrating with many of the above simulation
platforms. For example, an example of integrating with GridAPPSD can be found in examples/GridAPPS-
D/gridappsd_example/agent.py. EnergyPlus agent can be found in examples/EnergyPlusAgent/energyplus/agent.py.
These implementations will still be available for users. Instead, in this specification we are proposing a base sim-
ulation integration class that will provide common APIs and concrete simulation integration classes that will have
implementation of the these APIs as per the needs of the individual simulation platforms. Users can use appropriate
simulation classes based on which simulation platform they want to integrate with.

2.25. Simulation Integration Framework 345

VOLTTRON Documentation, Release 8.1.3

Features

1. Start simulation

This will start the simulation or register itself to be participant in the simulation.

2. Register for inputs from simulation

A list of points need to be made available in a config file. The inputs are then read from the config
file and registered with simulation platform. Whenever there is any change in those particular points,
they are made available to this class to process. The agent using this class object can process it or
publish it over VOLTTRON message bus to be consumed by other agents.

3. Send inputs to simulation

Send inputs such as set points (for example, charge_EV5), data points etc to the simulation. The
simulation would then act on these inputs.

4. Receive outputs from simulation Receive outputs generated by the simulation (for example, OutdoorAirTem-
perature for a energyPlus simulation). The agent can then act on these output values. If the config file has
an associated topic, the output value will be republished on the VOLTTRON message bus.

5. Simulation time management

Typically, in a simulation environment, one can run applications in real time mode or in fast execution
mode. All the participants in the simulation have to be in sync with respect to time for simulation
to be correct. There is typically a central unit which acts as a global timekeeper. This timekeeper
can possibly be configured to use periodic time keeping, which means it periodically advances in
time (based on pre-configured time period) or based on time advancement message. After each
advancement, it would send out all the output messages to the registered participants. Another way
of advancing the simulation would be based on concept of time request-time grant. Each of the
participants would request for certain time after it is done with its work and get blocked until that is
granted. The global time keeper would grant time (and hence advance in simulation) that is lowest
among the list of time requests and all participants would advance to that time.

6. Pause the simulation

Some simulation platforms can pause the simulation if needed. We need provide wrapper API to call
simulation specific pause API.

7. Resume the simulation

Some simulation platforms can resume the simulation if needed. We need provide API to call simu-
lation specific resume API.

8. Stop the simulation

This will unregister itself from the simulation and stop the simulation.

APIs

1. start_simulation()

• Connect to the simulation platform.

• Register with the platform as a participant

2. register_inputs(config=None, callback=None)

• Register the config containing inputs and outputs with the simulation platform.

• If agent provides a callback method, this will be called when new output values is received from simulation

346 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

3. publish_to_simulation(topic, message)

• Send message to simulation

4. make_time_request(time_steps)

• Make request to simulation to advance to next time delta

5. pause_simulation()

• Pause simulation

6. resume_simulation()

• Resume simulation

7. stop_simulation()

• Stops the simulation

8. is_sim_installed()

• Flag indicating if simulation is installed

2.25.2 Configuration for Integrating With Simulation Platforms

Configurations for interfacing with simulation platforms will vary depending on the specifications of that platform but
there may be few common configuration options that we can group together as separate sections such as:

• Config parameters that help us setup the simulation such as connection parameters (connection address), unique
name for the participant, total simulation time

• List of topics for subscribing with simulation platform

• List of topics for publishing to the simulation platform

• List of topics subscribing with VOLTTRON message bus

We have grouped these four categories of configuration into four different sections - properties, inputs, outputs and
volttron_subscriptions. The simulation integration class will read these four sections and register with simulation
platform appropriately. If an agent needs to interface with EnergyPlus or HELICS using the simulation integration
framework, then it will need to group the configurations into above four sections.

Note: GridAPPS-D can run complex power system simulations using variety of simulators such as GridLAB-D,
HELICS, MatPower etc. So the configuration for GridAPPS-D cannot follow the above format. Because of this, the
configuration for GridAPPSD is taken in the raw format and passed directly to the GridAPPS-D simulation.

Example Configuration

The configuration for interfacing with a simulation platform is described by using integration with HELICS as an
example. Each participant in a HELICS co-simulation environment is called a federate.

Below is an example HELICS config file.

Config parameters for setting up HELICS federate
properties:

name: federate1 # unique name for the federate
loglevel: 5 # log level

(continues on next page)

2.25. Simulation Integration Framework 347

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

coreType: zmq # core type
timeDelta: 1.0 # time delta (defaults to 1s)
uninterruptible: true
simulation_length: 360 # simulation length in seconds (defaults to 360s)

configuration for subscribing to HELICS simulation
outputs:

List of subscription information, typically contains
- subscription topic,
- datatype
- publication topic for VOLTTRON (optional) to republish the
message on VOLTTRON message bus
- additional/optional simulation specific configuration
- sim_topic: federate2/totalLoad
volttron_topic: helics/abc
type: complex
required: true

- sim_topic: federate2/charge_EV6
volttron_topic: helics/ev6
type: complex
required: true

configuration for publishing to HELICS simulation
inputs:

List of publication information, containing
- HELICS publication topic,
- datatype
- metadata associated with the topic (for example unit)
- subscription topic for VOLTTRON message bus (optional) which can then be
republished on HELICS with HELICS publication topic
- additional/optional publication specific configuration
- sim_topic: pub1 # HELICS publication key

type: double # datatype
unit: m # unit
info: this is an information string for use by the application #additional info
volttron_topic: pub1/all # topic to subscribe on VOLTTRON bus
global: true

- sim_topic: pub2
type: double
volttron_topic: pub2/all

volttron_subscriptions:
- feeder0_output/all

The properties section may contain the following.

• Unique name for the federate

• core type (for example, zmq, tcp, mpi)

• time step delta in seconds

• total simulation time etc

Note: The individual fields under this section may vary depending on whether the agent is interfacing with HELICS
or EnergyPlus.

348 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

In the inputs section, list of subscriptions (if any) need to be provided. Each subscription will contain the following.

• subscription topic

• data type

• VOLTTRON topic to republish the message on VOLTTRON message bus (optional)

• required flag (optional)

In the outputs section, list of publications (if any) need to be provided. Each publication will contain the following.

• publication topic

• data type

• metadata associated with the topic

• VOLTTRON topic to subscribe on the VOLTTRON message bus which will be republished on simulation bus
(optional)

• additional information (optional)

In the volttron_subscriptions, list of topics need to be subscribed on VOLTTRON bus can be provided.

2.25.3 Integrating With Simulation Platforms

An agent wanting to integrate with a simulation platform has to create an object of concrete simulation integration
class (HELICSSimIntegration). This is best described with an example agent. The example agent will interface with
HELICS co-simulation platform. For more info about HELICS, please refer to https://helics.readthedocs.io/en/latest/
installation/linux.html.

class HelicsExample(Agent):
"""
HelicsExampleAgent demonstrates how VOLTTRON agent can interact with HELICS

→˓simulation environment
"""
def __init__(self, config, **kwargs):

super(HelicsExample, self).__init__(enable_store=False, **kwargs)
self.config = config
self.helics_sim = HELICSSimIntegration(config, self.vip.pubsub)

Register With Simulation Platform

The agent has to first load the configuration file containing parameters such as connection address, simulation duration,
input and output topics etc., and register with simulation platform. The concrete simulation object will then register
the agent with simulation platform (in this case, HELICS) using appropriate APIs. The registration steps include
connecting to the simulation platform, passing the input and outputs topics to the simulation etc. In addition to that,
the agent has to provide a callback method in order for the concrete simulation object to pass the messages received
from the simulation to the agent. The best place to call the register_inputs API is within the onstart method of the
agent.

@Core.receiver("onstart")
def onstart(self, sender, **kwargs):

"""
Register config parameters with HELICS.
Start HELICS simulation.

(continues on next page)

2.25. Simulation Integration Framework 349

https://helics.readthedocs.io/en/latest/installation/linux.html
https://helics.readthedocs.io/en/latest/installation/linux.html

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"""
Register inputs with HELICS and provide callback method to receive messages

→˓from simulation
try:

self.helics_sim.register_inputs(self.config, self.do_work)
except ValueError as ex:

_log.error("Unable to register inputs with HELICS: {}".format(ex))
self.core.stop()
return

Start the Simulation Platform

After registering with the simulation platform, the agent can start the simulation.

Register inputs with HELICS and provide callback method to receive messages from
→˓simulation
try:

self.helics_sim.start_simulation()
except ValueError as ex:

_log.error("Unable to register inputs with HELICS: {}".format(ex))
self.core.stop()
return

Receive outputs from the simulation

The concrete simulation object spawns a continuous loop that waits for any incoming messages (subscription mes-
sages) from the simulation platform. On receiving a message, it passes the message to the callback method registered
by the agent during the register with simulation step. The agent can now choose to work on the incoming message
based on it’s use case. The agent can also choose to publish some message back to the simulation at this point of
time as shown in below example. This is totally optional and is based on agent’s use-case. At the end of the callback
method, the agent needs to make time request to the simulation, so that it can advance forward in the simulation. Please
note, this is a necessary step for HELICS co-simulation integration as the HELICS broker waits for time requests from
all it’s federates before advancing the simulation. If no time request is made, the broker blocks the simulation.

def do_work(self):
"""
Perform application specific work here using HELICS messages
:return:
"""
current_values = self.helics_sim.current_values
_log.debug("Doing work: {}".format(self.core.identity))
_log.debug("Current set of values from HELICS: {}".format(current_values))
Do something with HELICS messages
agent specific work!!!

for pub in self.publications:
key = pub['sim_topic']
Check if VOLTTRON topic has been configured. If no, publish dummy value for

→˓the HELICS
publication key
volttron_topic = pub.get('volttron_topic', None)
if volttron_topic is None:

value = 90.5

(continues on next page)

350 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

global_flag = pub.get('global', False)
If global flag is False, prepend federate name to the key
if not global_flag:

key = "{fed}/{key}".format(fed=self._federate_name, key=key)
value = 67.90

self.helics_sim.publish_to_simulation(key, value)

self.helics_sim.make_time_request()

Publish to the simulation

The agent can publish messages to the simulation using publish_to_simulation API. The code snippet iterates over
all the publication keys (topics) and uses publish_to_simulation API to publish a dummy value of 67.90 for every
publication key.

for pub in self.publications:
key = pub['sim_topic']
value = 67.90
self.helics_sim.publish_to_simulation(key, value)

Advance the simulation

With some simulation platforms such as HELICS, the federate can make explicit time request to advance in time
by certain number of time steps. There will be a global time keeper (in this case HELICS broker) which will be
responsible for maintaining time within the simulation. In the time request mode, each federate has to request for time
advancement after it has completed it’s work. The global time keeper grants the lowest time among all time requests.
All the federates receive the granted time and advance forward in simulation time together in a synchronized manner.
Please note, the granted time may not be the same as the requested time by the agent.

Typically, the best place to make the time request is in the callback method provided to the simulation integration
object.

self.helics_sim.make_time_request()

Pause the simulation

Some simulation platforms such as GridAPPS-D have the capability to pause the simulation. The agent can make use
of this functionality by calling the appropriate wrapper API exposed by the concrete simulation class. In the case of
HELICS, we do not have capability of pause/resume simulation, so calling the pause_simulation API will result in no
operation.

self.helics_sim.pause_simulation()

2.25. Simulation Integration Framework 351

VOLTTRON Documentation, Release 8.1.3

Resume the simulation

If the simulation platform provides the pause simulation functionality then it will also provide capability to resume the
simulation. The agent can call resume_simulation API to resume the simulation. In case of HELICS, we do not have
the capability of pause/resume simulation, so calling the resume_simulation API will result in no operation.

self.helics_sim.resume_simulation()

Stop the simulation

The agent can stop the simulation at any point of point. In the case of HELICSSimIntegration object, it will disconnect
the federate from the HELICS core and close the library. Generally, it is a good practice to call the stop_simulation
API within the onstop method of the agent. In this way, the agent stops the simulation before exiting the process.

@Core.receiver("onstop")
def onstop(self, sender, **kwargs):

"""
This method is called when the Agent is about to shutdown, but before it
disconnects from the message bus.
"""
self.helics_sim.stop_simulation()

2.26 Platform Service Standardization

Service will interact with the message bus through three topics.

• Request - The service agent will listen to incoming requests on this topic

• Response - The service agent will respond on this topic

• Error - The service will “throw” errors on this topic

Agents which are using these services agents should publish to the above Request topic and listen on the Reponse and
Error topics. Response and Errors will retain the header that was sent into the request.

Headers

• Request Headers

• Common Header Formats

• type - Unique type of request for the service agent to handle (If an agent handles more than one request type on
a specific topic)

• requesterID - Name of the requesting agent

352 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

2.26.1 Header List

• type - Unique type of request for the service agent to handle (If an agent handles more than one request type on
a specific topic)

• priority - HIGH, LOW, LOW_PREEMPT (Found in Scheduler and Activator)

• taskId - Unique task among scheduled tasks.

• window - Seconds remaining in timeslot (actuator agent)

• SourceName - used as name to publish to in smap for archiver agent.

• FROM - Same as requestor id (volttron.messaging.headers.FROM)

• CONTENT_TYPE - volttron.messaging.headers.CONTENT_TYPE.JSON, volt-
tron.messaging.headers.CONTENT_TYPE.PLAIN_TEXT Datalogger location is specified in the message
itself.

• Multibuilding

• Cookie

2.26.2 Request Formats (Content-Types)

• volttron.messaging.headers.CONTENT_TYPE.JSON

• volttron.messaging.headers.CONTENT_TYPE.PLAIN_TEXT

2.26.3 Topic List

• Actuator and Scheduling Agent

– devices/actuators/schedule/request (NEW_SCHEDULE request)

– devices/actuators/schedule/request (CANCEL_SCHEDULE request)

– devices/actuators/schedule/response

– devices/actuators/schedule/announce/[full device path]

– devices/actuators/schedule/response (Response for preempted task)

– devices/actuators/get/[full device path]/[actuation point]

– devices/actuators/set/[full device path]/[actuation point]

– devices/actuators/value/[full device path]/[actuation point]

– devices/actuators/error/[full device path]/[actuation point]

• Archiver Agent

– archiver/request/[path to the value desired/ full device path]

• Logger Agent

– datalogger/log/

– datalogger/log/[path in SMAP for the data point]

– datalogger/status (Status of the storage request)

• Mobility Agent

2.26. Platform Service Standardization 353

VOLTTRON Documentation, Release 8.1.3

– platform/move/request/[agent id]

– platform/move/reply/[agent id]

• Multi-Building Agent

– building/recv/[campus]/[building]/[topic]

– building/send/[campus]/[building]/[topic]

– building/error/[campus]/[building]/[topic]

• Weather Agent

– Weather agent topic list

• Platform Topics

– platform/shutdown

– agent/[agent]/shutdown

2.27 Acquiring Third Party Agent Code

Third party agents developed from a variety of sources are available from the volttron-applications repository (https:
//github.com/VOLTTRON/volttron-applications.git). The current best practice is to have the main volttron and the
volttron-applications repository within the same common ancestry folder.

volttron-repositories/
|
|--- volttron/
|
|--- volttron-applications/

One can clone the latest applications from the repository via the following command:

git clone https://github.com/VOLTTRON/volttron-applications.git

2.28 Driver Framework Overview

VOLTTRON drivers act as an interface between agents on the platform and a device. While running on the platform,
drivers are special purpose agents which instead of being run as a separate process, are run as a greenlet in the Platform
Driver process.

Driver instances are created by the Platform Driver when a new driver configuration is added to the configuration
store. Drivers use the following topic pattern devices/<campus>/<building>/<device id>. When a configuration file
is added to the Platform Driver’s store using this pattern, the Platform Driver creates a Driver Agent. The Driver
agent is then instantiated with an instance of the Interface class corresponding to the driver_type parameter in the
configuration file. The Interface class is responsible for implementing the communication paradigms of a device or
protocol. Once configured, the Platform Driver periodically polls the Driver Agent for data which is collected from the
interface class. Additionally, points can be requested ad-hoc via the Platform Driver’s JSON-RPC method “get_point”.
Points may be set by using JSON-RPC with the Actuator agent to set up a schedule and calling the “set_point” method.

354 Chapter 2. Features

https://github.com/VOLTTRON/volttron/wiki/WeatherAgentTopics
https://github.com/VOLTTRON/volttron-applications.git
https://github.com/VOLTTRON/volttron-applications.git

VOLTTRON Documentation, Release 8.1.3

2.28.1 Driver Conventions

• Drivers are polled by the Platform Driver agent and values can be set using the Actuator Agent.

• Drivers should have a 1-to-1 relationship with a device.

• Driver modules should be written in Python files in the services/core/PlatformDriverAgent/platform_driver/interfaces
directory in the VOLTTRON repository. The platform driver will search for a Python file in this directory
matching the name provided by the driver_type value from the driver configuration when creating the Driver
agent.

• Driver code consists of an Interface class (exactly named), supported in most cases by one or more Register
classes.

2.28.2 Agent-Driver Communication Patterns

The VOLTTRON message bus has been developed to allow agents on the platform to interact with each other, as well
as with ICS (Industrial Control Systems) and IOT (Internet of Things) devices via the VOLTTRON driver framework.
Agents and drivers have the ability to publish data to the message bus and to subscribe to message bus topics to read
in data as it is published. Additionally, agents may implement JSONRPC calls and expose JSONRPC endpoints to
communicate more directly with other agents. The following diagram demonstrates typical platform communication
patterns for a single platform deployment.

Typical Single Platform Behavior

The diagram features several entities that comprise the platform and its connected components:

• The VOLTTRON message bus - The message bus is the means of transmission of information in VOLTTRON.
The VOLTTRON message bus is built around existing message bus software; currently VOLTTRON supports
RabbitMQ and ZeroMQ. The VOLTTRON integration includes Pub/Sub and JSON RPC interfaces for agent
and driver communication.

• VOLTTRON Platform Agents and Subsystems - These agents and subsystems are installed on the platform to
manage the platform. They provide many user facing functions, aid in communication, and manage other agents
and drivers.

• User’s Agents - These agents are either agents included in the core repository but installed by a user or built by
an end-user’s agent modules. They may perform a huge variety of user specified tasks, including data collection,
device control, simulation, etc.

• Platform Driver Agent - This agent facilitates communication with drivers. Agents should not communicate
directly with drivers. The platform driver implements several features for communicating with drivers to ensure
smooth operation and consistent driver behavior.

• Actuator agent - This agent provides scheduling capability for controlling drivers. The Platform Driver does not
include protections for race conditions, etc. It is always recommended to use the Actuator agent to set values on
a device.

• Device Driver - Drivers are special purpose agents which provide an interface between the platform driver and
devices such as Modbus and BACnet devices. Drivers implement a specific set of features for protecting device
communication and ensure uniform behaviors across different devices.

• Device - Devices may be low level physical computers for controlling various systems such as PLCs (Pro-
grammable Logic Controller), devices which communicate on the local network (such as a Smart T.V.), or
devices which are accessed via a remote web API (other smart devices).

2.28. Driver Framework Overview 355

VOLTTRON Documentation, Release 8.1.3

Lines of Communication

Connectivity of the platform follows the following paradigm:

• Platform agents (including the Platform Driver and Actuator), subsystems, and user agents communicate with
the message bus via a publish/subscribe system.

• Agents can communicate “directly” to each other via JSONRPC (RPC). A JSONRPC call uses the VOLTTRON
message bus router to “direct” messages to an intended recipient. RPC calls from an agent specify a function for
the recipient to perform including input parameters; the response to the sender should contain the value output
by the specified function.

• The Platform Driver will periodically poll device drivers. This functionality is intentionally not user-facing. The
Platform Driver iterates over the configured drivers and calls their respective “scrape_all” methods. This will
trigger the drivers to collect point values.

• The Driver will communicate with its configured end devices to collect data points which it then returns to the
driver. The driver then publishes the point data to the bus under the <campus>/<building>/<device id>/all
topic.

• To get an individual device point, the user agent should send an RPC call to the Platform Driver for “get_point”,
providing the point’s corresponding topic. After the Platform Driver processes the request, communication
happens very similarly to polling, but rather than an “all” publish, the data is returned via the Platform Driver to
the user agent.

• To set a point on a device, it is recommended to use an Actuator Agent. The user agent sends an RPC request
to the Actuator to schedule time for the agent to control the device. During that scheduled time the user agent
may send it a set point request. If the schedule has been created, the actuator will then forward that request to
the Platform Driver, at which point the communication happens similarly to a “get_point” request.

The general paradigm for the device-driver relationship as specified by the VOLTTRON driver framework is a 1-to-1
relationship. Each end device should be interacted with via a single device driver configured on one platform. To
distribute device data, the DataPuller and forwarder agents can be used at the platform level. Multiple platforms are
not intended to collect data or share control of a single device.

The below diagram demonstrates driver communication on the platform in a typical case.

356 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

1. Platform agents and agents developed and/or installed by users communicate with the platform via pub/sub or
JSON-RPC. Agents share data for a number of reasons including querying historians for data to use in control
algorithms, fetching data from remote web APIs and monitoring.

2. A user agent which wants to request data ad-hoc sends a JSON-RPC request to the Platform Driver to get_point,
asking the driver to fetch the most up-to-date point data for the point topic provided.

Note: For periodic scrape_all data publishes, step 2 is not required. The Platform Driver is config-
ured to automatically collect all point data for a device on a regular interval and publish the data to
the bus.

3. A user agent sends a request to the actuator to establish a schedule for sending device control signals, and during
the scheduled time sends a set_point request to the Actuator. Given that the control signal arrives during the
scheduled period, the Actuator forwards the request to the Platform Driver. If the control signal arrives outside
the scheduled period or without an existing schedule, a LockError exception will be thrown.

4. The Platform Driver issues a get_point/set_point call to the Driver corresponding to the request it was sent.

5. The device driver uses the interface class it is configured for to send a data request or control signal to the device

2.28. Driver Framework Overview 357

VOLTTRON Documentation, Release 8.1.3

(i.e. the BACnet driver issues a readProperty request to the device).

6. The device returns a response indicating the current state.

7. The the response is forwarded to the requesting device. In the case of a scrape_all, the device data is published
to the message bus.

Special Case Drivers

Some drivers require a different communication paradigm. One common alternative is shown in the diagram below:

This example describes an alternative pattern wherein BACnet drivers communicate via a BACnet proxy agent to com-
municate with end devices. This behavior is derived from the networking requirements of the BACnet specification.
BACnet communication in the network layer requires that only one path exist between BACnet devices on a network.

358 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

In this case, the BACnet proxy acts as a virtual BACnet device, and device drivers forward their requests to this agent
which then implements the BACnet communication (whereas the typical pattern would have devices communicate di-
rectly with the corresponding device). There are many other situations which may require this paradigm to be adopted
(such as working with remote APIs with request limits), and it is up to the party implementing the driver to determine
if this pattern or another pattern may be the most appropriate implementation pattern for their respective use case.

Note: Other requirements for driver communication patterns may exist, but on an individual basis. Please refer to the
documentation for the driver of interest for more about any atypical pattern that must be adhered to.

2.28.3 Installing the Fake Driver

The Fake Driver is included as a way to quickly see data published to the message bus in a format that mimics what a
real driver would produce. This is a simple implementation of the VOLTTRON driver framework.

See instructions for installing the fake driver

To view data being published from the fake driver on the message bus, one can install the Listener Agent and read the
VOLTTRON log file:

cd <root volttron directory>
tail -f volttron.log

2.29 Platform Driver

The Platform Driver agent is a special purpose agent a user can install on the platform to manage communication of
the platform with devices. The Platform driver features a number of endpoints for collecting data and sending control
signals using the message bus and automatically publishes data to the bus on a specified interval.

2.29.1 How does it work?

The Platform Driver creates a number of driver instances based on the contents of its config store; for each combination
of driver configuration, registry configuration and other referenced config files, a driver instance is created by the
Platform Driver. When configuration files are removed, the corresponding driver instance is removed by the Platform
Driver.

Drivers are special-purpose agents for device communication, and unlike most agents, run as separate threads under the
Platform Driver (typically agents are spawned as their own process). While running, the driver periodically “scrapes”
device data and publishes the scrape to the message bus, as well as handling ad-hoc data collection and control
signalling commands issued from the Platform Driver. The actual commands are issued to devices by the driver’s
“Interface” class.

An Interface class is a Python class which serves as the interface between the driver and the device. The Interface
does this by implementing a set of well-defined actions using the communication paradigms and protocols used by the
device. For devices such as BACnet and Modbus devices, interfaces wrap certain protocol functions in Python code to
be used by the driver. In other cases, interfaces interact with web-API’s, etc.

2.29. Platform Driver 359

VOLTTRON Documentation, Release 8.1.3

Device/Driver Communication

Device communication with the Platform Driver typically occurs using the following steps:

1. Platform agents and the user’s agents communicate between themselves and the message bus using pub-
lish/subscribe or JSON-RPC

2. The user’s agent sends a JSON-RPC request to the Platform Driver to get_point

3. And/Or the user’s agent sends a JSON-RPC request to the Actuator to set_point

4. The Platform Driver forwards the request to the driver instance specified in the request

5. The device driver communicates with the end device

6. The end device returns a response to the driver indicating its current status

7. The driver publishes the device’s response to the message bus using a publish

For more in-depth descriptions and coverage of atypical scenarios, read up on the driver communication patterns.

2.29.2 Configuration and Installation

Configuration for each device consists of 3 parts:

• Platform Driver Agent configuration file - lists all driver configuration files to load

• Driver configuration file - contains the general driver configuration and device settings

• Device Register configuration file - contains the settings for each individual data point on the device

For each device, you must create a driver configuration file, device register configuration file, and an entry in the
Platform Driver Agent configuration file.

Once configured, the Platform Driver Agent is configured and deployed in a manner similar to any other agent:

python scripts/install-agent.py -s services/core/PlatformDriverAgent -c <platform
→˓driver config file>

Requirements

VOLTTRON drivers operated by the platform driver may have additional requirements for installation. Required
libraries:

BACnet driver - bacpypes
Modbus driver - pymodbus
Modbus_TK driver - modbus-tk
DNP3 and IEEE 2030.5 drivers - pydnp3

The easiest way to install the requirements for drivers included in the VOLTTRON repository is to use bootstrap.
py (see platform installation for more detail)

360 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

2.29.3 Platform Driver Configuration

The Platform Driver Agent configuration consists of general settings for all devices. The default values of the Platform
Driver should be sufficient for most users. The user may optionally change the interval between device scrapes with
the driver_scrape_interval.

The following example sets the driver_scrape_interval to 0.05 seconds or 20 devices per second:

{
"driver_scrape_interval": 0.05,
"publish_breadth_first_all": false,
"publish_depth_first": false,
"publish_breadth_first": false,
"publish_depth_first_all": true,
"group_offset_interval": 0.0

}

• driver_scrape_interval - Sets the interval between devices scrapes. Defaults to 0.02 or 50 devices per second.
Useful for when the platform scrapes too many devices at once resulting in failed scrapes.

• group_offset_interval - Sets the interval between when groups of devices are scraped. Has no effect if all
devices are in the same group.

In order to improve the scalability of the platform unneeded device state publishes for all devices can be turned off.
All of the following setting are optional and default to True.

• publish_depth_first_all - Enable “depth first” publish of all points to a single topic for all devices.

• publish_breadth_first_all - Enable “breadth first” publish of all points to a single topic for all devices.

• publish_depth_first - Enable “depth first” device state publishes for each register on the device for all devices.

• publish_breadth_first - Enable “breadth first” device state publishes for each register on the device for all
devices.

An example platform driver configuration file can be found in the VOLTTRON repository in
services/core/PlatformDriverAgent/platform-driver.agent.

Driver Configuration File

Note: The terms register and point are used interchangeably in the documentation and in the configuration setting
names. They have the same meaning in the context of VOLTTRON drivers.

Each device configuration has the following form:

{
"driver_config": {"device_address": "10.1.1.5",

"device_id": 500},
"driver_type": "bacnet",
"registry_config":"config://registry_configs/vav.csv",
"interval": 60,
"heart_beat_point": "heartbeat",
"group": 0

}

The following settings are required for all device configurations:

• driver_config - Driver specific setting go here. See below for driver specific settings.

2.29. Platform Driver 361

VOLTTRON Documentation, Release 8.1.3

• driver_type - Type of driver to use for this device: bacnet, modbus, fake, etc.

• registry_config - Reference to a configuration file in the configuration store for registers on the device. See the
Registry-Configuration-File section below and/or the Adding Device Configurations to the Configuration Store
section in the driver framework docs.

These settings are optional:

• interval - Period to scrape the device and publish the results in seconds. Defaults to 60 seconds.

• heart_beat_point - A Point which to toggle to indicate a heartbeat to the device. A point with this Volttron
Point Name must exist in the registry. If this setting is missing the driver will not send a heart beat signal to
the device. Heart beats are triggered by the Actuator Agent which must be running to use this feature.

• group - Group this device belongs to. Defaults to 0

These settings are used to create the topic that this device will be referenced by following the VOLTTRON convention
of {campus}/{building}/{unit}. This will also be the topic published on, when the device is periodically
scraped for its current state.

The topic used to reference the device is derived from the name of the device configuration in the store. See the Adding
Device Configurations to the Configuration Store section of the driver framework docs.

Device Grouping

Devices may be placed into groups to separate them logically when they are scraped. This is done by setting the group
in the device configuration. group is a number greater than or equal to 0. Only number of devices in the same group
and the group_offset_interval are considered when determining when to scrape a device.

This is useful in two cases:

• If you need to ensure that certain devices are scraped in close proximity to each other you can put them in their
own group. If this causes devices to be scraped too quickly the groups can be separated out time wise using the
group_offset_interval setting.

• You may scrape devices on different networks in parallel for performance. For instance BACnet devices behind
a single MSTP router need to be scraped slowly and serially, but devices behind different routers may be scraped
in parallel. Grouping devices by router will do this automatically.

The group_offset_interval is applied by multiplying it by the group number. If you intend to use group_offset_interval
only use consecutive group values that start with 0.

Registry Configuration File

Registry configuration files setup each individual point on a device. Typically this file will be in CSV format, but the
exact format is driver specific. See the section for a particular driver for the registry configuration format.

The following is a simple example of a Modbus registry configuration file:

362 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Table 14: Catalyst 371
Refer-
ence Point
Name

Volttron
Point
Name

Units Units
Details

Modbus
Register

WritablePoint
Ad-
dress

De-
fault
Value

Notes

CO2Sensor Retur-
nAirCO2

PPM 0.00-
2000.00

>f FALSE1001 CO2 Reading 0.00-
2000.0 ppm

CO2Stpt Retur-
nAirCO2Stpt

PPM 1000.00
(default)

>f TRUE 1011 1000 Setpoint to enable de-
mand control ventila-
tion

HeatCall2 HeatCall2 On /
Off

on/off BOOL FALSE1114 Status indicator of
heating stage 2 need

Adding Device Configurations to the Configuration Store

Configurations are added to the Configuration Store using the command line:

volttron-ctl config store platform.driver <name> <file name> <file type>

• name - The name used to refer to the file from the store.

• file name - A file containing the contents of the configuration.

• file type - --raw, --json, or --csv. Indicates the type of the file. Defaults to --json.

The main configuration must have the name config

Device configuration but not registry configurations must have a name prefixed with devices/. Scripts that automate
the process will prefix registry configurations with registry_configs/, but that is not a requirement for registry
files.

The name of the device’s configuration in the store is used to create the topic used to reference the device. For
instance, a configuration named devices/PNNL/ISB1/vav1 will publish scrape results to devices/PNNL/ISB1/vav1 and
is accessible with the Actuator Agent via PNNL/ISB1/vav1.

The name of a registry configuration must match the name used to refer to it in the driver configuration. The reference
is not case sensitive.

If the Platform Driver Agent is running, any changes to the configuration store will immediately affect the running
devices according to the changes.

Example

Consider the following three configuration files: A platform driver configuration called platform-driver.agent, a Mod-
bus device configuration file called modbus_driver.config and corresponding Modbus registry configuration file called
modbus_registry.csv

To store the platform driver configuration run the command:

volttron-ctl config store platform.driver config platform-driver.agent

To store the registry configuration run the command (note the --csv option):

volttron-ctl config store platform.driver registry_configs/modbus_registry.csv modbus_
→˓registry.csv --csv

2.29. Platform Driver 363

VOLTTRON Documentation, Release 8.1.3

Note: The registry_configs/modbus_registry.csv argument in the above command must match the reference to the
registry_config found in modbus_driver.config.

To store the driver configuration run the command:

volttron-ctl config store platform.driver devices/my_campus/my_building/my_device
→˓modbus_config.config

Converting Old Style Configuration

The new Platform Driver no longer supports the old style of device configuration. The old device_list setting is ignored.

To simplify updating to the new format, scripts/update_platform_driver_config.py is provided to automatically update
to the new configuration format.

With the platform running run:

python scripts/update_platform_driver_config.py <old configuration> <output>

old_configuration is the main configuration file in the old format. The script automatically modifies the driver files to
create references to CSV files and adds the CSV files with the appropriate name.

output is the target output directory.

If the --keep-old switch is used, the old configurations in the output directory (if any) will not be deleted before
new configurations are created. Matching names will still be overwritten.

The output from scripts/update_platform_driver_config.py can be automatically added to the configuration store for
the Platform Driver agent with scripts/install_platform_driver_configs.py.

Creating and naming configuration files in the form needed by scripts/install_platform_driver_configs.py can speed
up the process of changing and updating a large number of configurations. See the --help message for
scripts/install_platform_driver_configs.py for more details.

Device Scalability Settings

To improve the scalability of the platform, unneeded device state publishes for a device can be turned off. All of the
following setting are optional and will override the value set in the main platform driver configuration.

• publish_depth_first_all - Enable “depth first” publish of all points to a single topic.

• publish_breadth_first_all - Enable “breadth first” publish of all points to a single topic.

• publish_depth_first - Enable “depth first” device state publishes for each register on the device.

• publish_breadth_first - Enable “breadth first” device state publishes for each register on the device.

It is common practice to set publish_breadth_first_all, publish_depth_first, and publish_breadth_first to False unless
they are specifically needed by an agent running on the platform.

Note: All Historian Agents require publish_depth_first_all to be set to True in order to capture data.

364 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

2.29.4 Usage

After installing the Platform Driver and loading driver configs into the config store, the installed drivers begin polling
and JSON-RPC endpoints become usable.

Polling

Once running, the Platform Driver will spawn drivers using the driver_type parameter of the driver configuration and
periodically poll devices for all point data specified in the registry configuration at the interval specified by the interval
parameter of the driver configuration.

By default, the value of each register on a device is published 4 different ways when the device state is published.
Consider the following settings in a driver configuration stored under the name devices/pnnl/isb1/vav1:

{
"driver_config": {"device_address": "10.1.1.5",

"device_id": 500},

"driver_type": "bacnet",
"registry_config":"config://registry_configs/vav.csv",

}

In the vav.csv file, a register has the name temperature. For these examples the current value of the register on the
device happens to be 75.2 and the meta data is

{"units": "F"}

When the driver publishes the device state the following two things will be published for this register:

A “depth first” publish to the topic devices/pnnl/isb1/vav1/temperature with the following message:

[75.2, {"units": "F"}]

A “breadth first” publish to the topic devices/temperature/vav1/isb1/pnnl with the following message:

[75.2, {"units": "F"}]

These publishes can be turned off by setting publish_depth_first and publish_breadth_first to false respec-
tively.

Also these two publishes happen once for all registers:

A “depth first” publish to the topic devices/pnnl/isb1/vav1/all with the following message:

[{"temperature": 75.2, ...}, {"temperature":{"units": "F"}, ...}]

A “breadth first” publish to the topic devices/all/vav1/isb1/pnnl with the following message:

[{"temperature": 75.2, ...}, {"temperature":{"units": "F"}, ...}]

These publishes can be turned off by setting publish_depth_first_all and publish_breadth_first_all to
false respectively.

2.29. Platform Driver 365

VOLTTRON Documentation, Release 8.1.3

JSON-RPC Endpoints

get_point - Returns the value of specified device set point

Parameters

• path - device topic string (typical format is devices/campus/building/device)

• point_name - name of device point from registry configuration file

set_point - Set value on specified device set point. If global override is condition is set, raise OverrideError
exception.

Parameters

• path - device topic string (typical format is devices/campus/building/device)

• point_name - name of device point from registry configuration file

• value - desired value to set for point on device

Warning: It is not recommended to call the set_point method directly. It is recommended to
instead use the Actuator agent to set points on a device, using its scheduling capability.

scrape_all - Returns values for all set points on the specified device.

Parameters

• path - device topic string (typical format is devices/campus/building/device)

get_multiple_points - return values corresponding to multiple points on the same device

Parameters

• path - device topic string (typical format is devices/campus/building/device)

• point_names - iterable of device point names from registry configuration file

set_multiple_points - Set values on multiple set points at once. If global override is condition is set, raise
OverrideError exception.

Parameters

• path - device topic string (typical format is devices/campus/building/device)

• point_names_value - list of tuples consisting of (point_name, value) pairs for setting a
series of points

heart_beat - Send a heartbeat/keep-alive signal to all devices configured for Platform Driver

revert_point - Revert the set point of a device to its default state/value. If global override is condition is set,
raise OverrideError exception.

Parameters

• path - device topic string (typical format is devices/campus/building/device)

• point_name - name of device point from registry configuration file

revert_device - Revert all the set point values of the device to default state/values. If global override is
condition is set, raise OverrideError exception.

Parameters

• path - device topic string (typical format is devices/campus/building/device)

366 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

set_override_on - Turn on override condition on all the devices matching the specified pattern (override docs)

Parameters

• pattern - Override pattern to be applied. For example,

– If pattern is campus/building1/* - Override condition is applied for all the devices under
campus/building1/.

– If pattern is campus/building1/ahu1 - Override condition is applied for only cam-
pus/building1/ahu1 The pattern matching is based on bash style filename matching
semantics.

• duration - Duration in seconds for the override condition to be set on the device (default
0.0, duration <= 0.0 imply indefinite duration)

• failsafe_revert - Flag to indicate if all the devices falling under the override condition must
to be set to its default state/value immediately.

• staggered_revert -

set_override_off - Turn off override condition on all the devices matching the pattern.

Parameters

• pattern - device topic pattern for devices on which the override condition should be removed.

get_override_devices - Get a list of all the devices with override condition.

clear_overrides - Turn off override condition for all points on all devices.

get_override_patterns - Get a list of all override condition patterns currently set.

2.29.5 Driver Override Condition

By default, every user is allowed write access to the devices by the platform driver. The override feature will allow the
user (for example, building administrator) to override this default behavior and enable the user to lock the write access
on the devices for a specified duration of time or indefinitely.

Set Override On

The Platform Driver’s set_override_on RPC method can be used to set the override condition for all drivers with
topic matching the provided pattern. This can be specific devices, groups of devices, or even all configured devices.
The pattern matching is based on bash style filename matching semantics.

Parameters:

• pattern: Override pattern to be applied. For example,

– If the pattern is campus/building1/* the override condition is applied for all the devices under
campus/building1/.

– If the pattern is campus/building1/ahu1 the override condition is applied for only the cam-
pus/building1/ahu1 device. The pattern matching is based on bash style filename matching semantics.

• duration: Time duration for the override in seconds. If duration <= 0.0, it implies an indefinite duration.

• failsafe_revert: Flag to indicate if all the devices falling under the override condition has to be set to its default
state/value immediately.

• staggered_revert: If this flag is set, reverting of devices will be staggered.

Example set_override_on RPC call:

2.29. Platform Driver 367

VOLTTRON Documentation, Release 8.1.3

self.vip.rpc.call(PLATFORM_DRIVER, "set_override_on", <override pattern>, <override
→˓duration>)

Set Override Off

The override condition can also be toggled off based on a provided pattern using the Platform Driver’s
set_override_off RPC call.

Parameters:

• pattern: Override pattern to be applied. For example,

– If the pattern is campus/building1/* the override condition is removed for all the devices under
campus/building1/.

– If the pattern is campus/building1/ahu1 the override condition is removed for only for the
campus/building1/ahu1 device. The pattern matching is based on bash style filename matching se-
mantics.

Example set_override_off RPC call:

self.vip.rpc.call(PLATFORM_DRIVER, "set_override_off", <override pattern>)

Get Override Devices

A list of all overridden devices can be obtained with the Platform Driver’s get_override_devices RPC call.

This method call has no additional parameters.

Example get_override_devices RPC call:

self.vip.rpc.call(PLATFORM_DRIVER, "get_override_devices")

Get Override Patterns

A list of all patterns which have been requested for override can be obtained with the Platform Driver’s
get_override_patterns RPC call.

This method call has no additional parameters

Example “get_override_patterns” RPC call:

self.vip.rpc.call(PLATFORM_DRIVER, "get_override_patterns")

Clear Overrides

All overrides set by RPC calls described above can be toggled off at using a single clear_overrides RPC call.

This method call has no additional parameters

Example “clear_overrides” RPC call:

self.vip.rpc.call(PLATFORM_DRIVER, "clear_overrides")

For information on the global override feature specification, view the Global Override Specification doc.

368 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

2.30 Actuator Agent

This agent is used to manage write access to devices. Agents may request scheduled times, called Tasks, to interact
with one or more devices.

2.30.1 Actuator Agent Communication

Scheduling a Task

An agent can request a task schedule by publishing to the devices/actuators/schedule/request topic with the following
header:

{
'type': 'NEW_SCHEDULE',
'requesterID': <Ignored, VIP Identity used internally>
'taskID': <unique task ID>, #The desired task ID for this task. It must be unique

→˓among all other scheduled tasks.
'priority': <task priority>, #The desired task priority, must be 'HIGH', 'LOW',

→˓or 'LOW_PREEMPT'
}

with the following message:

[
["campus/building/device1", #First time slot.
"2013-12-06 16:00:00", #Start of time slot.
"2013-12-06 16:20:00"], #End of time slot.

["campus/building/device1", #Second time slot.
"2013-12-06 18:00:00", #Start of time slot.
"2013-12-06 18:20:00"], #End of time slot.

["campus/building/device2", #Third time slot.
"2013-12-06 16:00:00", #Start of time slot.
"2013-12-06 16:20:00"], #End of time slot.

#etc...
]

Warning: If time zones are not included in schedule requests then the Actuator will interpret them as being in
local time. This may cause remote interaction with the actuator to malfunction.

Points on Task Scheduling

• Everything in the header is required

• Task id and requester id (agentid) should be a non empty value of type string

• A Task schedule must have at least one time slot.

• The start and end times are parsed with dateutil’s date/time parser. The default string representation of a
python datetime object will parse without issue.

• Two Tasks are considered conflicted if at least one time slot on a device from one task overlaps the time slot of
the other on the same device.

2.30. Actuator Agent 369

http://labix.org/python-dateutil#head-c0e81a473b647dfa787dc11e8c69557ec2c3ecd2

VOLTTRON Documentation, Release 8.1.3

• The end time of one time slot can be the same as the start time of another time slot for the same device.
This will not be considered a conflict. For example, time_slot1(device0, time1, **time2**)
and time_slot2(device0, **time2**, time3) are not considered a conflict

• A request must not conflict with itself

• If something goes wrong see this failure string list for an explanation of the error.

Task Priorities

• HIGH: This Task cannot be preempted under any circumstance. This task may preempt other conflicting pre-
emptable Tasks.

• LOW: This Task cannot be preempted once it has started. A Task is considered started once the earliest time
slot on any device has been reached. This Task may not preempt other Tasks.

• LOW_PREEMPT: This Task may be preempted at any time. If the Task is preempted once it has begun running
any current time slots will be given a grace period (configurable in the ActuatorAgent configuration file, defaults
to 60 seconds) before being revoked. This Task may not preempt other Tasks.

Canceling a Task

A task may be canceled by publishing to the devices/actuators/schedule/request topic with the following header:

{
'type': 'CANCEL_SCHEDULE',
'requesterID': <Ignored, VIP Identity used internally>
'taskID': <unique task ID>, #The desired task ID for this task. It must be unique

→˓among all other scheduled tasks.
}

Points on Task Canceling

• The requesterID and taskID must match the original values from the original request header.

• After a Tasks time has passed there is no need to cancel it. Doing so will result in a
TASK_ID_DOES_NOT_EXIST error.

• If something goes wrong see this failure string list for an explanation of the error.

Actuator Agent Schedule Response

In response to a Task schedule request the ActuatorAgent will respond on the topic devices/actuators/schedule/result
with the header:

{
'type': <'NEW_SCHEDULE', 'CANCEL_SCHEDULE'>
'requesterID': <Agent VIP identity from the request>,
'taskID': <Task ID from the request>

}

And the message (after parsing the json):

370 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

{
'result': <'SUCCESS', 'FAILURE', 'PREEMPTED'>,
'info': <Failure reason, if any>,
'data': <Data about the failure or cancellation, if any>

}

The Actuator Agent may publish cancellation notices for preempted Tasks using the PREEMPTED result.

Preemption Data

Preemption data takes the form:

{
'agentID': <Agent ID of preempting task>,
'taskID': <Task ID of preempting task>

}

Failure Reasons

In many cases the Actuator Agent will try to give good feedback as to why a request failed.

General Failures

• INVALID_REQUEST_TYPE: Request type was not NEW_SCHEDULE or CANCEL_SCHEDULE.

• MISSING_TASK_ID: Failed to supply a taskID.

• MISSING_AGENT_ID: AgentID not supplied.

Task Schedule Failures

• TASK_ID_ALREADY_EXISTS: The supplied taskID already belongs to an existing task.

• MISSING_PRIORITY: Failed to supply a priority for a Task schedule request.

• INVALID_PRIORITY: Priority not one of HIGH, LOW, or LOW_PREEMPT.

• MALFORMED_REQUEST_EMPTY: Request list is missing or empty.

• REQUEST_CONFLICTS_WITH_SELF: Requested time slots on the same device overlap.

• MALFORMED_REQUEST: Reported when the request parser raises an unhandled exception. The exception
name and info are appended to this info string.

• CONFLICTS_WITH_EXISTING_SCHEDULES: This schedule conflict with an existing schedules that it cannot
preempt. The data item for the results will contain info about the conflicts in this form (after parsing json)

{
'<agentID1>':
{

'<taskID1>':
[

["campus/building/device1",
"2013-12-06 16:00:00",

(continues on next page)

2.30. Actuator Agent 371

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"2013-12-06 16:20:00"],
["campus/building/device1",
"2013-12-06 18:00:00",
"2013-12-06 18:20:00"]

]
'<taskID2>':[...]

}
'<agentID2>': {...}

}

Task Cancel Failures

• TASK_ID_DOES_NOT_EXIST: Trying to cancel a Task which does not exist. This error can also occur when
trying to cancel a finished Task.

• AGENT_ID_TASK_ID_MISMATCH: A different agent ID is being used when trying to cancel a Task.

Actuator Agent Value Request

Once an Task has been scheduled and the time slot for one or more of the devices has started an agent may interact
with the device using the get and set topics.

Both get and set are responded to the same way. See Actuator Reply below.

Getting values

While a driver for a device should always be setup to periodically broadcast the state of a device you may want an
up-to-the-moment value for an actuation point on a device.

To request a value publish a message to the following topic:

'devices/actuators/get/<full device path>/<actuation point>'

Setting Values

Value are set in a similar manner:

To set a value publish a message to the following topic:

'devices/actuators/set/<full device path>/<actuation point>'

With this header:

#python
{

'requesterID': <Ignored, VIP Identity used internally>
}

And the message contents being the new value of the actuator.

372 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Warning: The actuator agent expects all messages to be JSON and will parse them accordingly. Use publish_json
to send messages where possible. This is significant for Boolean values especially

Actuator Reply

The ActuatorAgent will reply to both get and set on the value topic for an actuator:

'devices/actuators/value/<full device path>/<actuation point>'

With this header:

{
'requesterID': <Agent VIP identity>

}

With the message containing the value encoded in JSON.

Actuator Error Reply

If something goes wrong the Actuator Agent will reply to both get and set on the error topic for an actuator:

'devices/actuators/error/<full device path>/<actuation point>'

With this header:

{
'requesterID': <Agent VIP identity>

}

The message will be in the following form:

{
'type': <Error Type or name of the exception raised by the request>
'value': <Specific info about the error>

}

Common Error Types

• LockError: Returned when a request is made when we do not have permission to use a device. (Forgot to
schedule, preempted and we did not handle the preemption message correctly, ran out of time in time slot,
etc. . .)

• ValueError: Message missing or could not be parsed as JSON

2.30. Actuator Agent 373

VOLTTRON Documentation, Release 8.1.3

Schedule State Broadcast

Periodically the ActuatorAgent will publish the state of all currently scheduled devices. For each device the Actuator-
Agent will publish to an associated topic:

'devices/actuators/schedule/announce/<full device path>'

With the following header:

{
'requesterID': <VIP identity of agent with access>,
'taskID': <Task associated with the time slot>
'window': <Seconds remaining in the time slot>

}

The frequency of the updates is configurable with the schedule_publish_interval setting.

Task Preemption

Both LOW and LOW_PREEMPT priority Tasks can be preempted. LOW priority Tasks may be preempted by a
conflicting HIGH priority Task before it starts. LOW_PREEMPT priority Tasks can be preempted by HIGH priority
Tasks even after they start.

When a Task is preempted the ActuatorAgent will publish to devices/actuators/schedule/response with the following
header:

{
'type': 'CANCEL_SCHEDULE',
'requesterID': <Agent VIP identity for the preempted Task>,
'taskID': <Task ID for the preempted Task>

}

And the message (after parsing the json):

{
'result': 'PREEMPTED',
'info': '',
'data':
{

'agentID': <Agent VIP identity of preempting task>,
'taskID': <Task ID of preempting task>

}
}

Preemption Grace Time

If a LOW_PREEMPT priority Task is preempted while it is running the Task will be given a grace period to clean up
before ending. For every device which has a current time slot the window of remaining time will be reduced to the
grace time. At the end of the grace time the Task will finish. If the Task has no currently open time slots on any devices
it will end immediately.

374 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

ActuatorAgent Configuration

• schedule_publish_interval: Interval between current schedules being published to the message bus for all de-
vices

• preempt_grace_time: Minimum time given to Tasks which have been preempted to clean up in seconds. Defaults
to 60

• schedule_state_file: File used to save and restore Task states if the ActuatorAgent restarts for any reason. File
will be created if it does not exist when it is needed

Sample configuration file

{
"schedule_publish_interval": 30,
"schedule_state_file": "actuator_state.pickle"

}

Heartbeat Signal

The ActuatorAgent can be configured to send a heartbeat message to the device to indicate the platform is running.
Ideally, if the heartbeat signal is not sent the device should take over and resume normal operation.

The configuration has two parts, the interval (in seconds) for sending the heartbeat and the specific point that should
be modified each iteration.

The heart beat interval is specified with a global heartbeat_interval setting. The ActuatorAgent will automatically set
the heartbeat point to alternating “1” and “0” values. Changes to the heartbeat point will be published like any other
value change on a device.

The heartbeat points are specified in the driver configuration file of individual devices.

Notes on Working With the ActuatorAgent

• An agent can watch the window value from device state updates to perform scheduled actions within a timeslot

– If an Agent’s Task is LOW_PREEMPT priority it can watch for device state updates where the window is
less than or equal to the grace period (default 60.0)

• When considering if to schedule long or multiple short time slots on a single device:

– Do we need to ensure the device state for the duration between slots?

* Yes: Schedule one long time slot instead

* No: Is it all part of the same Task or can we break it up in case there is a conflict with one of our time
slots?

• When considering time slots on multiple devices for a single Task:

– Is the Task really dependent on all devices or is it actually multiple Tasks?

• When considering priority:

– Does the Task have to happen on an exact day?

* Yes: Use HIGH

* No: Consider LOW and reschedule if preempted

2.30. Actuator Agent 375

VOLTTRON Documentation, Release 8.1.3

– Is it problematic to prematurely stop a Task once started?

* Yes: Consider LOW or HIGH

* No: Consider LOW_PREEMPT and watch the device state updates for a small window value

• If an agent is only observing but needs to assure that no another Task is going on while taking readings it can
schedule the time to prevent other agents from messing with a devices state. The schedule updates can be used
as a reminder as to when to start watching

• Any device, existing or not, can be scheduled. This allows for agents to schedule fake devices to create reminders
to start working later rather then setting up their own internal timers and schedules

2.31 Fake Driver

The FakeDriver is included as a way to quickly see data published to the message bus in a format that mimics what a
true Driver would produce. This is an extremely simple implementation of the VOLTTRON driver framework.

2.31.1 Fake Device Driver Configuration

This driver does not connect to any actual device and instead produces random and or pre-configured values.

Driver Config

There are no arguments for the driver_config section of the device configuration file. The driver_config entry must
still be present and should be left blank.

Here is an example device configuration file:

{
"driver_config": {},
"driver_type": "bacnet",
"registry_config":"config://registry_configs/vav.csv",
"interval": 5,
"timezone": "UTC",
"heart_beat_point": "heartbeat"

}

A sample fake device configuration file can be found in the VOLTTRON repository in exam-
ples/configurations/drivers/fake.config

Fake Device Registry Configuration File

The registry configuration file is a CSV file. Each row configures a point on the device.

The following columns are required for each row:

• Volttron Point Name - The name by which the platform and agents running on the platform will refer to this
point. For instance, if the Volttron Point Name is HeatCall1 (and using the example device configuration above)
then an agent would use pnnl/isb2/hvac1/HeatCall1 to refer to the point when using the RPC interface of the
actuator agent.

• Units - Used for meta data when creating point information on the historian.

376 Chapter 2. Features

https://en.wikipedia.org/wiki/Comma-separated_values

VOLTTRON Documentation, Release 8.1.3

• Writable - Either TRUE or FALSE. Determines if the point can be written to. Only points labeled TRUE can be
written to through the ActuatorAgent. Points labeled TRUE incorrectly will cause an error to be returned when
an agent attempts to write to the point.

The following columns are optional:

• Starting Value - Initial value for the point. If the point is reverted it will change back to this value. By default,
points will start with a random value (1-100).

• Type - Value type for the point. Defaults to “string”. Valid types are:

– string

– integer

– float

– boolean

Any additional columns will be ignored. It is common practice to include a Point Name or Reference Point Name to
include the device documentation’s name for the point and Notes and Unit Details for additional information about a
point. Please note that there is nothing in the driver that will enforce anything specified in the Unit Details column.

Table 15: BACnet
Volttron Point
Name

Units Units Details WritableStarting
Value

Type Notes

Heartbeat On/Off On/Off TRUE 0 booleanPoint for heartbeat toggle
Out-
sideAirTemper-
ature1

F -100 to 300 FALSE 50 float CO2 Reading 0.00-2000.0 ppm

Sam-
pleWritable-
Float1

PPM 10.00 (default) TRUE 10 float Setpoint to enable demand con-
trol ventilation

SampleLong1 Enu-
mera-
tion

1 through 13 FALSE 50 int Status indicator of service switch

SampleWrita-
bleShort1

% 0.00 to 100.00
(20 default)

TRUE 20 int Minimum damper position during
the standard mode

SampleBool1 On / Off on/off FALSE TRUE booleanStatus indicator of cooling stage 1
Sam-
pleWritable-
Bool1

On / Off on/off TRUE TRUE booleanStatus indicator

A sample fake registry configuration file can be found here or in the VOLTTRON repository in examples/
configurations/drivers/fake.csv

2.31.2 Installation

Installing a Fake driver in the Platform Driver Agent requires adding copies of the device configuration and registry
configuration files to the Platform Driver’s configuration store

• Create a config directory (if one doesn’t already exist) inside your Volttron repository:

mkdir config

All local config files will be worked on here.

2.31. Fake Driver 377

https://raw.githubusercontent.com/VOLTTRON/volttron/c57569bd9e71eb32afefe8687201d674651913ed/examples/configurations/drivers/fake.csv

VOLTTRON Documentation, Release 8.1.3

• Copy over the example config file and registry config file from the VOLTTRON repository:

cp examples/configurations/drivers/fake.config config/
cp examples/configurations/drivers/fake.csv config/

• Edit the driver config fake.config for the paths on your system:

{
"driver_config": {},
"registry_config": "config://fake.csv",
"interval": 5,
"timezone": "US/Pacific",
"heart_beat_point": "Heartbeat",
"driver_type": "fakedriver",
"publish_breadth_first_all": false,
"publish_depth_first": false,
"publish_breadth_first": false
}

• Create a copy of the Platform Driver config from the VOLTTRON repository:

cp examples/configurations/drivers/platform-driver.agent config/fake-platform-driver.
→˓config

• Add fake.csv and fake.config to the configuration store:

vctl config store platform.driver devices/campus/building/fake config/fake.config
vctl config store platform.driver fake.csv config/fake.csv --csv

• Edit fake-platform-driver.config to reflect paths on your system

{
"driver_scrape_interval": 0.05

}

• Use the scripts/install-agent.py script to install the Platform Driver agent:

python scripts/install-agent.py -s services/core/PlatformDriverAgent -c config/fake-
→˓platform-driver.config

• If you have a Listener Agent already installed, you should start seeing data being published to the bus.

2.32 BACnet Driver

2.32.1 BACnet Driver Configuration

Communicating with BACnet devices requires that the BACnet Proxy Agent is configured and running. All device
communication happens through this agent.

378 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Requirements

The BACnet driver requires the BACPypes package. This package can be installed in an activated environment with:

pip install bacpypes

Alternatively, running bootstrap.py with the --drivers option will install all requirements for drivers included in
the repository including BACnet.

python3 bootstrap.py --drivers

Warning: Current versions of VOLTTRON support only BACPypes version 0.16.7

Driver Config

There are nine arguments for the driver_config section of the device configuration file:

• device_address - Address of the device. If the target device is behind an IP to MS/TP router then Remote
Station addressing will probably be needed for the driver to find the device

• device_id - BACnet ID of the device. Used to establish a route to the device at startup

• min_priority - (Optional) Minimum priority value allowed for this device whether specifying the priority man-
ually or via the registry config. Violating this parameter either in the configuration or when writing to the point
will result in an error. Defaults to 8

• max_per_request - (Optional) Configure driver to manually segment read requests. The driver will only grab
up to the number of objects specified in this setting at most per request. This setting is primarily for scraping
many points off of low resource devices that do not support segmentation. Defaults to 10000

• proxy_address - (Optional) VIP address of the BACnet proxy. Defaults to platform.bacnet_proxy. See
Communicating With Multiple BACnet Networks for details. Unless your BACnet network has special needs
you should not change this value

• ping_retry_interval - (Optional) The driver will ping the device to establish a route at startup. If the BACnet
proxy is not available the driver will retry the ping at this interval until it succeeds. Defaults to 5

• use_read_multiple - (Optional) During a scrape the driver will tell the proxy to use a ReadPropertyMulti-
pleRequest to get data from the device. Otherwise the proxy will use multiple ReadPropertyRequest calls. If
the BACnet proxy is reporting a device is rejecting requests try changing this to false for that device. Be aware
that setting this to false will cause scrapes for that device to take much longer. Only change if needed. Defaults
to true

• cov_lifetime - (Optional) When a device establishes a change of value subscription for a point, this argument
will be used to determine the lifetime and renewal period for the subscription, in seconds. Defaults to 180
(Added to Platform Driver version 3.2)

Here is an example device configuration file:

{
"driver_config": {"device_address": "10.1.1.3",

"device_id": 500,
"min_priority": 10,
"max_per_request": 24
},

"driver_type": "bacnet",

(continues on next page)

2.32. BACnet Driver 379

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"registry_config":"config://registry_configs/vav.csv",
"interval": 5,
"timezone": "UTC",
"heart_beat_point": "heartbeat"

}

A sample BACnet configuration file can be found in the VOLTTRON repository at exam-
ples/configurations/drivers/bacnet1.config

BACnet Registry Configuration File

The registry configuration file is a CSV file. Each row configures a point on the device.

Most of the configuration file can be generated with the grab_bacnet_config.py utility in scripts/bacnet. See BACnet
Auto-Configuration.

Currently, the driver provides no method to access array type properties even if the members of the array are of a
supported type.

The following columns are required for each row:

• Volttron Point Name - The name by which the platform and agents running on the platform will refer to this
point. For instance, if the Volttron Point Name is HeatCall1 (and using the example device configuration above)
then an agent would use pnnl/isb2/hvac1/HeatCall1 to refer to the point when using the RPC interface of the
Actuator agent

• Units - Used for meta data when creating point information on the historian.

• BACnet Object Type - A string representing what kind of BACnet standard object the point belongs to. Exam-
ples include:

– analogInput

– analogOutput

– analogValue

– binaryInput

– binaryOutput

– binaryValue

– multiStateValue

• Property - A string representing the name of the property belonging to the object. Usually, this will be present-
Value

• Writable - Either TRUE or FALSE. Determines if the point can be written to. Only points labeled TRUE can be
written to through the Actuator Agent. Points labeled TRUE incorrectly will cause an error to be returned when
an agent attempts to write to the point

• Index - Object ID of the BACnet object

The following columns are optional:

• Write Priority - BACnet priority for writing to this point. Valid values are 1-16. Missing this column or leaving
the column blank will use the default priority of 16

• COV Flag - Either True or False. Determines if a BACnet Change-of-Value subscription should be established
for this point. Missing this column or leaving the column blank will result in no change of value subscriptions
being established. (Added to Platform Driver version 3.2)

380 Chapter 2. Features

https://raw.githubusercontent.com/VOLTTRON/volttron/c57569bd9e71eb32afefe8687201d674651913ed/examples/configurations/drivers/bacnet1.config
https://en.wikipedia.org/wiki/Comma-separated_values

VOLTTRON Documentation, Release 8.1.3

Any additional columns will be ignored. It is common practice to include a Point Name or Reference Point Name
column to include the device documentation’s name for the point and Notes and Unit Details columns for additional
information about a point.

Table 16: BACnet
Point Name Volttron Point

Name
Units Unit De-

tails
BACnet
Object
Type

Prop-
erty

WritableIn-
dex

Notes

Build-
ing/FCB.Local
Application.PH-T

PreheatTem-
perature

de-
greesFahren-
heit

-50.00 to
250.00

analogIn-
put

pre-
sent-
Value

FALSE3000119Reso-
lution:
0.1

Build-
ing/FCB.Local
Application.RA-T

ReturnAirTem-
perature

de-
greesFahren-
heit

-50.00 to
250.00

analogIn-
put

pre-
sent-
Value

FALSE3000120Reso-
lution:
0.1

Build-
ing/FCB.Local
Application.RA-H

ReturnAirHu-
midity

per-
centRel-
ativeHu-
midity

0.00 to
100.00

analogIn-
put

pre-
sent-
Value

FALSE3000124Reso-
lution:
0.1

Build-
ing/FCB.Local
Application.CLG-
O

CoolingValve-
OutputCom-
mand

percent 0.00 to
100.00
(default 0.0)

analo-
gOutput

pre-
sent-
Value

TRUE 3000107Reso-
lution:
0.1

Build-
ing/FCB.Local
Application.MAD-
O

MixedAir-
DamperOutput-
Command

percent 0.00 to
100.00
(default 0.0)

analo-
gOutput

pre-
sent-
Value

TRUE 3000110Reso-
lution:
0.1

Build-
ing/FCB.Local
Application.PH-O

PreheatValve-
OutputCom-
mand

percent 0.00 to
100.00
(default 0.0)

analo-
gOutput

pre-
sent-
Value

TRUE 3000111Reso-
lution:
0.1

Build-
ing/FCB.Local
Application.RH-O

ReheatValve-
OutputCom-
mand

percent 0.00 to
100.00
(default 0.0)

analo-
gOutput

pre-
sent-
Value

TRUE 3000112Reso-
lution:
0.1

Build-
ing/FCB.Local
Application.SF-O

Supply-
FanSpeedOut-
putCommand

percent 0.00 to
100.00
(default 0.0)

analo-
gOutput

pre-
sent-
Value

TRUE 3000113Reso-
lution:
0.1

A sample BACnet registry file can be found here or in the VOLTTRON repository in exam-
ples/configurations/drivers/bacnet.csv

2.32. BACnet Driver 381

https://raw.githubusercontent.com/VOLTTRON/volttron/c57569bd9e71eb32afefe8687201d674651913ed/examples/configurations/drivers/bacnet.csv

VOLTTRON Documentation, Release 8.1.3

BACnet Proxy Agent

Introduction

Communication with BACnet device on a network happens via a single virtual BACnet device. In VOLTTRON driver
framework, we use a separate agent specifically for communicating with BACnet devices and managing the virtual
BACnet device.

Requirements

The BACnet Proxy agent requires the BACPypes package. This package can be installed in an activated environment
with:

pip install bacpypes

Alternatively, running bootstrap.py with the –drivers option will install all requirements for drivers included in the
repository including BACnet.

python3 bootstrap.py --drivers

Warning: Current versions of VOLTTRON support only BACPypes version 0.16.7

Configuration

The agent configuration sets up the virtual BACnet device.

{
"device_address": "10.0.2.15",
"max_apdu_length": 1024,
"object_id": 599,
"object_name": "Volttron BACnet driver",
"vendor_id": 15,
"segmentation_supported": "segmentedBoth"

}

BACnet device settings

• device_address - Address bound to the network port over which BACnet communication will happen on the
computer running VOLTTRON. This is NOT the address of any target device. See BACnet Router Addressing.

• object_id - ID of the Device object of the virtual BACnet device. Defaults to 599. Only needs to be changed if
there is a conflicting BACnet device ID on your network.

These settings determine the capabilities of the virtual BACnet device. BACnet communication happens at the lowest
common denominator between two devices. For instance, if the BACnet proxy supports segmentation and the target
device does not communication will happen without segmentation support and will be subject to those limitations.
Consequently, there is little reason to change the default settings outside of the max_apdu_length (the default is not
the largest possible value).

382 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

• max_apdu_length - (From bacpypes documentation) BACnet works on lots of different types of networks,
from high-speed Ethernet to “slower” and “cheaper” ARCNET or MS/TP (a serial bus protocol used for a field
bus defined by BACnet). For devices to exchange messages they have to know the maximum size message the
device can handle. (End BACpypes docs)

This setting determines the largest APDU (Application Protocol Data Unit) accepted by the BACnet virtual
device. Valid options are 50, 128, 206, 480, 1024, and 1476. Defaults to 1024.(Optional)

• object_name - Name of the object. Defaults to “Volttron BACnet driver”. (Optional)

• vendor_id - Vendor ID of the virtual BACnet device. Defaults to 15. (Optional)

• segmentation_supported - (From bacpypes documentation) A vast majority of BACnet communications traffic
fits into one message, but there can be times when larger messages are convenient and more efficient. Segmen-
tation allows larger messages to be broken up into segments and spliced back together. It is not unusual for “low
power” field equipment to not support segmentation. (End BACpypes docs)

Possible setting are “segmentedBoth” (default), “segmentedTransmit”, “segmentedReceive”, or “noSegmenta-
tion” (Optional)

Device Addressing

In some cases, it will be needed to specify the subnet mask of the virtual device or a different port number to listen on.
The full format of the BACnet device address is:

<ADDRESS>/<NETMASK>:<PORT>

where <PORT> is the port to use and <NETMASK> is the netmask length. The most common value is 24. See
http://www.computerhope.com/jargon/n/netmask.htm

For instance, if you need to specify a subnet mask of 255.255.255.0 and the IP address bound to the network port
is 192.168.1.2 you would use the address:

192.168.1.2/24

If your BACnet network is on a different port (47809) besides the default (47808) you would use the address:

192.168.1.2:47809

If you need to do both:

192.168.1.2/24:47809

Communicating With Multiple BACnet Networks

If two BACnet devices are connected to different ports they are considered to be on different BACnet networks. In
order to communicate with both devices, you will need to run one BACnet Proxy Agent per network.

Each proxy will need to be bound to different ports appropriate for each BACnet network and will need a different
VIP identity specified. When configuring drivers you will need to specify which proxy to use by specifying the VIP
identity.

For example, a proxy connected to the default BACnet network:

{
"device_address": "192.168.1.2/24"

}

2.32. BACnet Driver 383

http://www.computerhope.com/jargon/n/netmask.htm

VOLTTRON Documentation, Release 8.1.3

and another on port 47809:

{
"device_address": "192.168.1.2/24:47809"

}

a device on the first network:

{
"driver_config": {"device_address": "1002:12",

"proxy_address": "platform.bacnet_proxy_47808",
"timeout": 10},

"driver_type": "bacnet",
"registry_config":"config://registry_configs/bacnet.csv",
"interval": 60,
"timezone": "UTC",
"heart_beat_point": "Heartbeat"

}

and a device on the second network:

{
"driver_config": {"device_address": "12000:5",

"proxy_address": "platform.bacnet_proxy_47809",
"timeout": 10},

"driver_type": "bacnet",
"registry_config":"config://registry_configs/bacnet.csv",
"interval": 60,
"timezone": "UTC",
"heart_beat_point": "Heartbeat"

}

Notice that both configs use the same registry configuration (config://registry_configs/bacnet.csv). This is perfectly
fine as long as the registry configuration is appropriate for both devices. For scraping large numbers of points from a
single BACnet device, there is an optional timeout parameter provided, to prevent the platform driver timing out while
the BACnet Proxy Agent is collecting points.

384 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

BACnet Change of Value Services

Change of Value Services added in version 0.5 of the BACnet Proxy and version 3.2 of the Platform Driver.

There are a variety of scenarios in which a user may desire data from some BACnet device point values to be published
independently of the regular scrape interval. Bacpypes provides a “ChangeOfValueServices” (hereby referred to as
‘COV’) module, which enables a device to push updates to the platform.

The BACnet COV requires that points on the device be properly configured for COV. A point on the BACnet device
can be configured with the ‘covIncrement’ property, which determines the threshold for a COV notification (note: this
property must be configured by the device operator - VOLTTRON does not provide the ability to set or modify this
property).

Based on configuration options for BACnet drivers, the driver will instruct the BACnet Proxy to establish a COV
subscription with the device. The subscription will last for an amount of time specified in the driver configuration, and
will auto-renew the subscription. If the proxy loses communication with the device or the device driver is stopped the
subscription will be removed when the lifetime expires.

While the subscription exists, the device will send (confirmed) notifications to which will be published, with the topic
based on the driver’s configured publish topics.

https://bacpypes.readthedocs.io/en/latest/modules/service/cov.html

2.32. BACnet Driver 385

https://bacpypes.readthedocs.io/en/latest/modules/service/cov.html

VOLTTRON Documentation, Release 8.1.3

BACnet Auto-Configuration

Included with the platform are two scripts for finding and configuring BACnet devices. These scripts are located in
scripts/bacnet. bacnet_scan.py will scan the network for devices. grab_bacnet_config.py creates a CSV file for the
BACnet driver that can be used as a starting point for creating your own register configuration.

Both scripts are configured with the file BACpypes.ini.

Configuring the Utilities

While running both scripts create a temporary virtual BACnet device using the bacpypes library. The virtual device
must be configured properly in order to work. This configuration is stored in scripts/bacnet/BACpypes.ini and will be
read automatically when the utility is run.

Note: The only value that (usually) needs to be changed is the address field.

Warning: This is the address bound to the port on the machine you are running the script from, NOT A TARGET
DEVICE

This value should be set to the IP address of the network interface used to communicate with the remote device. If
there is more than one network interface you must use the address of the interface connected to the network that can
reach the device.

In Linux you can usually get the addresses bound to all interfaces by running ifconfig from the command line.

If a different outgoing port other than the default 47808 must be used, it can be specified as part of the address in the
form:

<ADDRESS>:<PORT>

In some cases, the netmask of the network will be needed for proper configuration. This can be done following this
format:

<ADDRESS>/<NETMASK>:<PORT>

where <NETMASK> is the netmask length. The most common value is 24. See http://www.computerhope.com/jargon/
n/netmask.htm

In some cases, you may also need to specify a different device ID by changing the value of objectIdentifier so the
virtual BACnet device does not conflict with any devices on the network. objectIdentifier defaults to 599.

Sample BACpypes.ini

[BACpypes]
objectName: Betelgeuse
address: 10.0.2.15/24
objectIdentifier: 599
maxApduLengthAccepted: 1024
segmentationSupported: segmentedBoth
vendorIdentifier: 15

386 Chapter 2. Features

http://www.computerhope.com/jargon/n/netmask.htm
http://www.computerhope.com/jargon/n/netmask.htm

VOLTTRON Documentation, Release 8.1.3

Scanning for BACnet Devices

If the addresses for BACnet devices are unknown they can be discovered using the bacnet_scan.py utility.

To run the utility simply execute the following command:

python bacnet_scan.py

and expect output similar to this:

Device Address = <Address 192.168.1.42>
Device Id = 699
maxAPDULengthAccepted = 1024
segmentationSupported = segmentedBoth
vendorID = 15

Device Address = <RemoteStation 1002:11>
Device Id = 540011
maxAPDULengthAccepted = 480
segmentationSupported = segmentedBoth
vendorID = 5

Reading Output

The address where the device can be reached is listed on the Device Address line. The BACnet device ID is listed on
the Device Id line. The remaining lines are informational and not needed to configure the BACnet driver.

For the first example, the IP address 192.168.1.42 can be used to reach the device. The second device is behind a
BACnet router and can be reached at 1002:11. See BACnet router addressing.

BACNet Scan Options

• --address ADDRESS: Send the WhoIs request only to a specific address. Useful as a way to ping devices
on a network that blocks broadcast traffic.

• --range LOW/HIGH: Specify the device ID range for the results. Useful for filtering.

• --timeout SECONDS: Specify how long to wait for responses to the original broadcast. This defaults to 5
which should be sufficient for most networks.

• --csv-out CSV_OUT: Write the discovered devices to a CSV file. This can be used as inout for
grab_multiple_configs.py. See Scraping Multiple Devices.

Automatically Generating a BACnet Registry Configuration File

A CSV registry configuration file for the BACnet driver can be generated with the grab_bacnet_config.py
script.

Warning: This configuration will need to be edited before it can be used!

The utility is invoked with the command:

2.32. BACnet Driver 387

VOLTTRON Documentation, Release 8.1.3

python grab_bacnet_config.py <device id>

This will query the device with the matching device ID for configuration information and print the resulting CSV file
to the console.

In order to save the configuration to a file use the --registry-out-file option to specify the output file name.

Optionally the --address option can be used to specify the address of the target. In some cases, this is needed to
help establish a route to the device.

Output and Assumptions

• Attempts at determining if a point is writable proved too unreliable. Therefore all points are considered to be
read-only in the output.

• The only property for which a point is setup for an object is presentValue.

• By default, the Volttron Point Name is set to the value of the name property of the BACnet object on the device.
In most cases this name is vague. No attempt is made at choosing a better name. A duplicate of Volttron Point
Name column called Reference Point Name is created to so that once Volttron Point Name is changed a reference
remains to the actual BACnet device object name.

• Meta data from the objects on the device is used to attempt to put useful info in the Units, Unit Details, and
Notes columns. Information such as the range of valid values, defaults, the resolution or sensor input, and
enumeration or state names are scraped from the device.

With a few exceptions “Units” is pulled from the object’s “units” property and given the name used by the bacpypes
library to describe it. If a value in the Units column takes the form

UNKNOWN UNIT ENUM VALUE: <value>

then the device is using a nonstandard value for the units on that object.

Scraping Multiple Devices

The grab_multiple_configs.py script will use the CSV output of bacnet_scan.py to automatically run
grab_bacnet_config.py on every device listed in the CSV file.

The output is put in two directories. devices/ contains basic driver configurations for the scrapped devices. reg-
istry_configs/ contains the registry file generated by grab_bacnet_config.py.

grab_multiple_configs.py makes no assumptions about device names or topics, however the output is appropriate for
the install_platform_driver_configs.py script.

Grab Multiple Configs Options

• --out-directory OUT_DIRECTORY Specify the output directory.

• --use-proxy Use proxy_grab_bacnet_config.py to gather configuration data.

• --proxy-id When using -use-proxy, supply proxy-id with the VIP identity of a BACnet proxy agent.
This is useful for deployments with multiple BACnet proxies, such as on segmented networks, or in deployments
communicating with multiple BACnet networks.

388 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

BACnet Proxy Alternative Scripts

Both grab_bacnet_config.py and bacnet_scan.py have alternative versions called proxy_grab_bacnet_config.py and
proxy_bacnet_scan.py respectively. These versions require that the VOLTTRON platform is running and BACnet
Proxy agent is running. Both of these agents use the same command line arguments as their independent counterparts.

Warning: These versions of the BACnet scripts are intended as a proof of concept and have not been opti-
mized for performance. proxy_grab_bacnet_config.py takes about 10 times longer to grab a configuration than
grab_bacnet_config.py

Problems and Debugging

• Both grab_bacnet_config.py and bacnet_scan.py creates a virtual device that open up a port for communication
with devices. If the BACnet Proxy is running on the VOLTTRON platform it will cause both of these scripts to
fail at startup. Stopping the BACnet Proxy will resolve the problem.

• Typically the utility should run quickly and finish in 30 seconds or less. In our testing, we have never seen a
successful scrape take more than 15 seconds on a very slow device with many points. Many devices will scrape
in less than 3 seconds.

• If the utility has not finished after about 60 seconds it is probably having trouble communicating with the device
and should be stopped. Rerunning with debug output can help diagnose the problem.

To output debug messages to the console add the --debug switch to the end of the command line arguments.

python grab_bacnet_config.py <device ID> --out-file test.csv --debug

On a successful run you will see output similar to this:

DEBUG:<u>main</u>:initialization
DEBUG:<u>main</u>: - args: Namespace(address='10.0.2.20', buggers=False, debug=[],
→˓ini=<class 'bacpypes.consolelogging.ini'>, max_range_report=1e+20, out_file=<open
→˓file 'out.csv', mode 'wb' at 0x901b0d0>)
DEBUG:<u>main</u>.SynchronousApplication:<u>init</u> (<bacpypes.app.LocalDeviceObject
→˓object at 0x901de6c>, '10.0.2.15')
DEBUG:<u>main</u>:starting build
DEBUG:<u>main</u>:pduSource = <Address 10.0.2.20>
DEBUG:<u>main</u>:iAmDeviceIdentifier = ('device', 500)
DEBUG:<u>main</u>:maxAPDULengthAccepted = 1024
DEBUG:<u>main</u>:segmentationSupported = segmentedBoth
DEBUG:<u>main</u>:vendorID = 5
DEBUG:<u>main</u>:device_name = MS-NCE2560-0
DEBUG:<u>main</u>:description =
DEBUG:<u>main</u>:objectCount = 32
DEBUG:<u>main</u>:object name = Building/FCB.Local Application.Room Real Temp 2
DEBUG:<u>main</u>: object type = analogInput
DEBUG:<u>main</u>: object index = 3000274
DEBUG:<u>main</u>: object units = degreesFahrenheit
DEBUG:<u>main</u>: object units details = -50.00 to 250.00
DEBUG:<u>main</u>: object notes = Resolution: 0.1
DEBUG:<u>main</u>:object name = Building/FCB.Local Application.Room Real Temp 1
DEBUG:<u>main</u>: object type = analogInput
DEBUG:<u>main</u>: object index = 3000275
DEBUG:<u>main</u>: object units = degreesFahrenheit

(continues on next page)

2.32. BACnet Driver 389

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

DEBUG:<u>main</u>: object units details = -50.00 to 250.00
DEBUG:<u>main</u>: object notes = Resolution: 0.1
DEBUG:<u>main</u>:object name = Building/FCB.Local Application.OSA
DEBUG:<u>main</u>: object type = analogInput
DEBUG:<u>main</u>: object index = 3000276
DEBUG:<u>main</u>: object units = degreesFahrenheit
DEBUG:<u>main</u>: object units details = -50.00 to 250.00
DEBUG:<u>main</u>: object notes = Resolution: 0.1
...

and will finish something like this:

...
DEBUG:<u>main</u>:object name = Building/FCB.Local Application.MOTOR1-C
DEBUG:<u>main</u>: object type = binaryOutput
DEBUG:<u>main</u>: object index = 3000263
DEBUG:<u>main</u>: object units = Enum
DEBUG:<u>main</u>: object units details = 0-1 (default 0)
DEBUG:<u>main</u>: object notes = BinaryPV: 0=inactive, 1=active
DEBUG:<u>main</u>:finally

Typically if the BACnet device is unreachable for any reason (wrong IP, network down/unreachable, wrong interface
specified, device failure, etc) the scraper will stall at this message:

DEBUG:<u>main</u>:starting build

If you have not specified a valid interface in BACpypes.ini you will see the following error with a stack trace:

ERROR:<u>main</u>:an error has occurred: [Errno 99] Cannot assign requested address
<Python stack trace cut>

BACnet Router Addressing

The underlying library that Volttron uses for BACnet supports IP to MS/TP routers. Devices behind the router use a
Remote Station address in the form:

<network>:<address>

where <network> is the configured network ID of the router and <address> is the address of the device behind
the router.

For example to access the device at <address> 12 for a router configured for <network> 1002 can be accessed
with this address:

1002:12

<network> must be number from 0 to 65534 and <address> must be a number from 0 to 255.

This type of address can be used anywhere an address is required in configuration of the Volttron BACnet driver.

390 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Caveats

VOLTTRON uses a UDP broadcast mechanism to establish the route to the device. If the route cannot be established
it will fall back to a UDP broadcast for all communication with the device. If the IP network where the router is
connected blocks UDP broadcast traffic then these addresses will not work.

2.33 Chargepoint Driver

2.33.1 Chargepoint Driver Configuration

The chargepoint driver requires at least one additional python library and has its own requirements.txt. Make sure to
run:

pip install -r <chargepoint driver path>/requirements.txt

before using this driver.

driver_config

There are three arguments for the driver_config section of the device configuration file:

• stationID - Chargepoint ID of the station. This format is usually ‘1:00001’

• username - Login credentials for the Chargepoint API

• password- Login credentials for the Chargepoint API

The Chargepoint login credentials are generated in the Chargepoint web portal and require a Chargepoint account with
sufficient privileges. Station IDs are also available on the web portal.

Here is an example device configuration file:

{
"driver_config": {"stationID": "3:12345",

"username":
→˓"4b90fc0ae5fe8b6628e50af1215d4fcf5743a6f3c63ee1464012875",

"password": "ebaf1a3cdfb80baf5b274bdf831e2648"},
"driver_type": "chargepoint",
"registry_config":"config://chargepoint.csv",
"interval": 60,
"timezone": "UTC",
"heart_beat_point": "heartbeat"

}

A sample Chargepoint configuration file can be found in the VOLTTRON repository in exam-
ples/configurations/drivers/chargepoint1.config

2.33. Chargepoint Driver 391

VOLTTRON Documentation, Release 8.1.3

Chargepoint Registry Configuration File

The registry configuration file is a CSV file. Each row configures a point on the device.

The following columns are required for each row:

• Volttron Point Name - The name by which the platform and agents running on the platform will refer to this
point.

• Attribute Name - Chargepoint API attribute name. This determines the field that will be read from the API
response and must be one of the allowed values.

• Port # - If the point describes a specific port on the Chargestation, it is defined here. (Note 0 and an empty value
are equivalent.)

• Type - Python type of the point value.

• Units - Used for meta data when creating point information on the historian.

• Writable - Either “TRUE” or “FALSE”. Determines if the point can be written to. Only points labeled TRUE
can be written.

• Notes - Miscellaneous notes field.

• Register Name - A string representing how to interpret the data register. Acceptable values are:

– StationRegister

– StationStatusRegister

– LoadRegister

– AlarmRegister

– StationRightsRegister

• Starting Value - Default value for writeable points. Read-only points should not have a value in this column.

Detailed descriptions for all available Chargepoint registers may be found in the README.rst in the Chargepoint
driver directory.

A sample Chargepoint registry file can be found in the VOLTTRON repository in examples/configurations/
drivers/chargepoint.csv

Chargepoint API Driver Specification

Spec Version 1.1

ChargePoint operates the largest independently owned EV charging network in the US. It sells charge stations to
businesses and provides a web application to manage and report on these Chargestations. Chargepoint offers a Web
Services API that its customers may use to develop applications that integrate with the Chargepoint network devices.

The Chargepoint API Driver for VOLTTRON will enable real-time monitoring and control of Chargepoint EVSEs
within the VOLTTRON platform by creating a standard VOLTTRON device driver on top of the Chargepoint Web
Services API. Each port on each managed Chargestation will look like a standard VOLTTRON device, monitored and
controlled through the VOLTTRON device driver interface.

392 Chapter 2. Features

https://en.wikipedia.org/wiki/Comma-separated_values
http://www.chargepoint.com
https://na.chargepoint.com/UI/downloads/en/ChargePoint_Web_Services_API_Guide_Ver4.1_Rev4.pdf
https://na.chargepoint.com/UI/downloads/en/ChargePoint_Web_Services_API_Guide_Ver4.1_Rev4.pdf

VOLTTRON Documentation, Release 8.1.3

Driver Scope & Functions

This driver will enable VOLTTRON to support the following use cases with Chargepoint EVSEs:

• Monitoring of Chargestation status, load and energy consumption

• Demand charge reduction

• Time shifted charging

• Demand response program participation

The data and functionality to be made available through the driver interface will be implemented using the following
Chargepoint web services:

API Method Name Key Data/Function Provided
getStationStatus Port status: AVAILABLE, INUSE, UNREACHABLE, UNKNOWN
shedLoad Limit station power by percent or max load for some time period.
clearShedState Clear all shed state and allow normal charging
getLoad Port load in Kw, shedState, allowedLoad, percentShed
getAlarms Only the last alarm will be available.
clearAlarms Clear all alarms.
getStationRights Name of station rights profile, eg. ‘network_manager’
getChargingSessionData Energy used in last session, start/end timestamps
getStations Returns description/address/nameplate of chargestation.

The Chargepoint Driver will implement version 5.0 Rev 7 of the Chargepoint API. While the developer’s guide is not
yet publicly available, the WSDL Schema is.

Note: Station Reservation API has been removed from the 5.0 version of the API.*

WSDL for this API is located here:

https://webservices.chargepoint.com/cp_api_5.0.wsdl

Mapping VOLTTRON Device Interface to Chargepoint APIs

The VOLTTRON driver interface represents a single device as a list of registers accessed through a simple get_point/
set_point API. In contrast, the Chargepoint web services for real-time monitoring and control are spread across eight
distinct APIs that return hierarchical XML. The Chargepoint driver is the adaptor that will make a suite of web services
look like a single VOLTTRON device.

Device Mapping

The Chargepoint driver will map a single VOLTTRON device (a driver instance) to one Chargestation. Since a
Chargestation can have multiple ports, each with their own set of telemetry, the registry will include a port index
column on attributes that are specific to a port. This will allow deployments to use an indexing convention that has
been followed with other drivers. (See Registry Configuration for more details)

2.33. Chargepoint Driver 393

https://webservices.chargepoint.com/cp_api_5.0.wsdl

VOLTTRON Documentation, Release 8.1.3

Requirements

The Chargepoint driver requires at least one additional Python library and has its own requirements.txt. Make sure to
run

pip install -r <chargepoint driver path>/requirements.txt

before using this driver.

Driver Configuration

Each device must be configured with its own driver configuration file. The driver configuration must reference the
registry configuration file, defining the set of points that will be available from the device. For Chargestation devices,
the driver_config entry of the driver Configuration file will need to contain all parameters required by the web service
API:

Parameter Purpose
username Credentials established through Chargepoint account
password
stationID Unique station ID assigned by chargepoint

The driver_type must be chargepoint

A sample driver configuration file for a single device, looks like this:

{
"driver_config": {

"username" : "1b905c936af141b98f9b0f816087f3605a30c1df1d07f146281b151",
"password" : "**Put your chargepoint API passqword here**",
"stationID" : "1:34003",

},
"driver_type": "chargepoint",
"registry_config":"config://chargepoint.csv",
"interval": 60,
"heart_beat_point": "heartbeat"

}

API Plans & Access Rights

Chargepoint offers API plans that vary in available features and access rights. Some of the API calls to be implemented
here are not available across all plans. Furthermore, the attributes returned in response to an API call may be limited
by the API plan and access rights associated with the userid. Runtime exceptions related to plans and access rights
will generate DriverInterfaceError exceptions. These can be avoided by using a registry configuration that does not
include APIs or attributes that are not available to the <username>.

394 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Registry Configuration

The registry file defines the individual points that will be exposed by the Chargepoint driver. It should only reference
points that will actually be used since each point is potentially an additional web service call. The driver will be smart
and limit API calls to those that are required to satisfy the points found in the CSV.

Naming of points will conform to the conventions established by the Chargepoint web services API whenever possible.
Note that Chargepoint naming conventions are camel-cased with no spaces or hyphens. Multi-word names start with
a lowercase letter. Single word names start uppercase.

The available registry entries for each API method name are shown below along with a description of any notable
behavior associated with that register. Following that is a sample of the associated XML returned by the API.

getStationStatus

The getStationStatus query returns information for all ports on the Chargestation.

Note: In all the registry entries shown below, the Attribute Name column defines the unique name within the
Chargepoint driver that must be used to reference this particular attribute and associated API. The VOLTTRON point
name usually matches the Attribute Name in these examples but may be changed during deployment.

Table 17: getStationStatus
Volttron
Point
Name

At-
tribute
Name

Register
Name

Port
#

Type Units Start-
ing
Value

WritableNotes

Status Status Station-
Status-
Register

1 string FALSEAVAILABLE, INUSE, UNREACH-
ABLE, UNKNOWN

Sta-
tus.TimeStamp

TimeS-
tamp

Station-
Status-
Register

1 date-
time

FALSETimestamp of the last communica-
tion between the station and Charge-
Point

Sample XML returned by getStationStatus.

<ns1:getStationStatusResponse xmlns:ns1="urn:dictionary:com.chargepoint.webservices">
<responseCode>100</responseCode>
<responseText>API input request executed successfully.</responseText>
<stationData>

<stationID>1:33923</stationID>
<Port>

<portNumber>1</portNumber>
<Status>AVAILABLE</Status>
<TimeStamp>2016-11-07T19:19:19Z</TimeStamp>

</Port>
<Port>

<portNumber>2</portNumber>
<Status>INUSE</Status>
<TimeStamp>2016-11-07T19:19:19Z</TimeStamp>

</Port>
</stationData>
<moreFlag>0</moreFlag>

</ns1:getStationStatusResponse>

2.33. Chargepoint Driver 395

VOLTTRON Documentation, Release 8.1.3

getLoad, shedLoad, clearShedState

Reading any of these values will return the result of a call to getLoad. Writing shedState=True will call shedLoad
and pass the last written value of allowedLoad or percentShed. The API allows only one of these two values to be
provided. Writing to allowedLoad will simultaneously set percentShed to None and vice versa.

Table 18: getLoad, shedLoad, clearShedState
Volttron
Point Name

Attribute
Name

Register
Name

Port
#

Type Units Starting
Value

WritableNotes

shedState shedState Load-
Register

1 in-
te-
ger

0 or
1

0 TRUE True when load shed limits
are in place

portLoad portLoad Load-
Register

1 float kw FALSE Load in kw

allowedLoad allowed-
Load

Load-
Register

1 float kw TRUE Allowed load in kw when
shedState is True

percentShed per-
centShed

Load-
Register

1 in-
te-
ger

per-
cent

TRUE Percent of max power shed
when shedState is True

Sample XML returned by getLoad

<ns1:getLoadResponse xmlns:ns1="urn:dictionary:com.chargepoint.webservices">
<responseCode>100</responseCode>
<responseText>API input request executed successfully.</responseText>
<numStations></numStations>
<groupName></groupName>
<sgLoad></sgLoad>
<stationData>

<stationID>1:33923</stationID>
<stationName>ALCOGARSTATIONS / ALCOPARK 8 -005</stationName><Address>165 13th

→˓St, Oakland, California, 94612, United States</Address>
<stationLoad>3.314</stationLoad>
<Port>

<portNumber>1</portNumber>
<userID></userID>
<credentialID></credentialID>
<shedState>0</shedState>
<portLoad>0.000</portLoad>
<allowedLoad>0.000</allowedLoad>
<percentShed>0</percentShed>

</Port>
<Port>

<portNumber>2</portNumber>
<userID>664719</userID>
<credentialID>CNCP0000481668</credentialID>
<shedState>0</shedState>
<portLoad>3.314</portLoad>
<allowedLoad>0.000</allowedLoad>
<percentShed>0</percentShed>

</Port>
</stationData>

</ns1:getLoadResponse>

Sample shedLoad XML query to set the allowed load on a port to 3.0kw.

396 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

<ns1:shedLoad>
<shedQuery>

<shedStation>
<stationID>1:123456</stationID>
<Ports>

<Port>
<portNumber>1</portNumber>
<allowedLoadPerPort>3.0</allowedLoadPerPort>

</Port>
</Ports>

</shedStation>
<timeInterval/>

</shedQuery>
</ns1:shedLoad>

getAlarms, clearAlarms

The getAlarms query returns a list of all alarms since last cleared. The driver interface will only return data for the
most recent alarm, if present. While the getAlarm query provides various station identifying attributes, these will be
made available through registers associated with the getStations API. If an alarm is not specific to a particular port, it
will be associated with all Chargestation ports and available through any of its device instances.

Write True to clearAlarms to submit the clearAlarms query to the chargestation. It will clear alarms across all ports
on that Chargestation.

Table 19: getAlarms, clearAlarms
Volttron
Point Name

Attribute
Name

Register
Name

Port
#

Type Units Starting
Value

WritableNotes

alarmType alarm-
Type

Alarm-
Register

string FALSE eg. ‘GFCI Trip’

alarmTime alarm-
Time

Alarm-
Register

date-
time

FALSE

clearAlarms clear-
Alarms

Alarm-
Register

int 0 TRUE Sends the clearAlarms
query when set to True

<Alarms>
<stationID>1:33973</stationID>
<stationName>ALCOGARSTATIONS / ALCOPARK 8 -003</stationName>
<stationModel>CT2100-HD-CCR</stationModel>
<orgID>1:ORG07225</orgID>
<organizationName>Alameda County</organizationName>
<stationManufacturer></stationManufacturer>
<stationSerialNum>115110013418</stationSerialNum>
<portNumber></portNumber>
<alarmType>Reachable</alarmType>
<alarmTime>2016-09-26T12:19:16Z</alarmTime>
<recordNumber>1</recordNumber>

</Alarms>

2.33. Chargepoint Driver 397

VOLTTRON Documentation, Release 8.1.3

getStationRights

Returns the name of the stations rights profile. A station may have multiple station rights profiles, each associated with
a different station group ID. For this reason, the stationRightsProfile register will return a dictionary of (sgID, name)
pairs. Since this is a Chargestation level attribute, it will be returned for all ports.

Table 20: getStationRights
Volttron
Point Name

Attribute
Name

Register
Name

Port
#

Type Units Starting
Value

WritableNotes

stationRight-
sProfile

station-
RightsPro-
file

Station-
RightsReg-
ister

dic-
tio-
nary

FALSE Dictionary of sgID,
rights name tuples.

<rightsData>
<sgID>39491</sgID>
<sgName>AlcoPark 8</sgName>
<stationRightsProfile>network_manager</stationRightsProfile>
<stationData>

<stationID>1:34003</stationID>
<stationName>ALCOGARSTATIONS / ALCOPARK 8 -004</stationName>
<stationSerialNum>115110013369</stationSerialNum>
<stationMacAddr>000D:6F00:0154:F1FC</stationMacAddr>

</stationData>
</rightsData>
<rightsData>

<sgID>58279</sgID>
<sgName>AlcoGarageStations</sgName>
<stationRightsProfile>network_manager</stationRightsProfile>
<stationData>

<stationID>1:34003</stationID>
<stationName>ALCOGARSTATIONS / ALCOPARK 8 -004</stationName>
<stationSerialNum>115110013369</stationSerialNum>
<stationMacAddr>000D:6F00:0154:F1FC</stationMacAddr>

</stationData>
</rightsData>

getChargingSessionData

Like getAlarms, this query returns a list of session data. The driver interface implementation will make the last session
data available.

398 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Table 21: getChargingSessionData
Volttron Point
Name

Attribute
Name

Register Name Port
#

Type Units Starting
Value

Writable Notes

sessionID sessionID ChargingSession-
Register

1 string FALSE

startTime startTime ChargingSession-
Register

1 date-
time

FALSE

endTime endTime ChargingSession-
Register

1 date-
time

FALSE

Energy Energy ChargingSession-
Register

1 float FALSE

rfidSerialNum-
ber

rfidSerialNum-
ber

ChargingSession-
Register

1 string FALSE

driverAccount-
Number

driverAccount-
Number

ChargingSession-
Register

1 string FALSE

driverName driverName ChargingSession-
Register

1 string FALSE

<ChargingSessionData>
<stationID>1:34003</stationID>
<stationName>ALCOGARSTATIONS / ALCOPARK 8 -004</stationName>
<portNumber>2</portNumber>
<Address>165 13th St, Oakland, California, 94612, United States</Address>
<City>Oakland</City>
<State>California</State>
<Country>United States</Country>
<postalCode>94612</postalCode>
<sessionID>53068029</sessionID>
<Energy>12.120572</Energy>
<startTime>2016-10-25T15:53:35Z</startTime>
<endTime>2016-10-25T20:14:46Z</endTime>
<userID>452777</userID>
<recordNumber>1</recordNumber>
<credentialID>490178743</credentialID>

</ChargingSessionData>

getStations

This API call returns a complete description of the Chargestation in 40 fields. This information is essentially static
and will change infrequently. It should not be scraped on a regular basis. The list of attributes will be included in the
registry CSV but are only listed here:

stationID, stationManufacturer, stationModel, portNUmber, stationName, stationMacAddr,
→˓ stationSerialNum, Address, City,
State, Country, postalCode, Lat, Long, Reservable, Level, Mode, Connector, Voltage,
→˓Current, Power, numPorts, Type,
startTime, endTime, minPrice, maxPrice, unitPricePerHour, unitPricePerSession,
→˓unitPricePerKWh, unitPricePerHourThereafter,
sessionTime, Description, mainPhone, orgID, organizationName, sgID, sgName,
→˓currencyCode

2.33. Chargepoint Driver 399

VOLTTRON Documentation, Release 8.1.3

Engineering Discussion

Questions

• Allowed python-type - We propose a register with a python-type of dictionary. Is this OK?

• Scrape Interval - Scrape all should not return all registers defined in the CSV, we propose fine grained control
with a scrape-interval on each register. Response: ok to add extra settings to registry but don’t worry about
publishing static data with every scrape

• Data currency - Since devices are likely to share api calls, at least across ports, we need to think about the
currency of the data and possibly allowing this to be a configurable parameter or derived from the scrape interval
. Response: add to CSV with default values if not present

Performance

Web service calls across the internet will be significantly slower than typical VOLTTRON Bacnet or Modbus devices.
It may be prohibitively expensive for each Chargepoint sub-agent instance to make individual requests on behalf of its
own EVSE+port. We will need to examine the possibility of making a single request for all active Chargestations and
sharing that information across driver instances. This could be done through a separate agent that regularly queries the
Chargepoint network and makes the data available to each sub-agent via an RPC call.

3rd Party Library Dependencies

The Chargepoint driver implementation will depend on one additional 3rd part library that is not part of a standard
VOLTTRON installation:

https://bitbucket.org/jurko/suds

Is there a mechanism for drivers to specify their own requirements.txt ?

Driver installation and configuration documentation can reference requirement.txt

2.34 DNP3 Driver

VOLTTRON’s DNP3 driver enables the use of DNP3 (Distributed Network Protocol) communications, reading and
writing points via a DNP3 Outstation.

In order to use a DNP3 driver to read and write point data, VOLTTRON’s DNP3 Agent must also be configured and
running. All communication between the VOLTTRON Outstation and a DNP3 Master happens through the DNP3
Agent.

For information about the DNP3 Agent, please see the DNP3 Platform Specification.

400 Chapter 2. Features

https://bitbucket.org/jurko/suds
https://en.wikipedia.org/wiki/DNP3

VOLTTRON Documentation, Release 8.1.3

2.34.1 Requirements

The DNP3 driver requires the PyDNP3 package. This package can be installed in an activated environment with:

pip install pydnp3

2.34.2 Driver Configuration

There is one argument for the “driver_config” section of the DNP3 driver configuration file:

• dnp3_agent_id - ID of VOLTTRON’s DNP3Agent.

Here is a sample DNP3 driver configuration file:

{
"driver_config": {

"dnp3_agent_id": "dnp3agent"
},
"campus": "campus",
"building": "building",
"unit": "dnp3",
"driver_type": "dnp3",
"registry_config": "config://dnp3.csv",
"interval": 15,
"timezone": "US/Pacific",
"heart_beat_point": "Heartbeat"

}

A sample DNP3 driver configuration file can be found in the VOLTTRON repository in services/core/
PlatformDriverAgent/example_configurations/test_dnp3.config.

2.34.3 DNP3 Registry Configuration File

The driver’s registry configuration file, a CSV file, specifies which DNP3 points the driver will read and/or write. Each
row configures a single DNP3 point.

The following columns are required for each row:

• Volttron Point Name - The name used by the VOLTTRON platform and agents to refer to the point.

• Group - The point’s DNP3 group number.

• Index - The point’s index number within its DNP3 data type (which is derived from its DNP3 group number).

• Scaling - A factor by which to multiply point values.

• Units - Point value units.

• Writable - TRUE or FALSE, indicating whether the point can be written by the driver (FALSE = read-only).

Consult the DNP3 data dictionary for a point’s Group and Index values. Point definitions in the data dictionary are
by agreement between the DNP3 Outstation and Master. The VOLTTRON DNP3Agent loads the data dictionary of
point definitions from the JSON file at “point_definitions_path” in the DNP3Agent’s config file.

A sample data dictionary is available in services/core/DNP3Agent/dnp3/mesa_points.config.

Point definitions in the DNP3 driver’s registry should look something like this:

2.34. DNP3 Driver 401

https://en.wikipedia.org/wiki/Comma-separated_values

VOLTTRON Documentation, Release 8.1.3

Table 22: DNP3
Volttron Point Name Group Index Scaling Units Writable
DCHD.WTgt 41 65 1.0 NA FALSE
DCHD.WTgt-In 30 90 1.0 NA TRUE
DCHD.WinTms 41 66 1.0 NA FALSE
DCHD.RmpTms 41 67 1.0 NA FALSE

A sample DNP3 driver registry configuration file is available in services/core/PlatformDriverAgent/
example_configurations/dnp3.csv.

2.35 Ecobee Driver

The Ecobee driver is an implementation of a VOLTTRON driver framework Interface. In this case, the Platform Driver
issues commands to the Ecobee driver to collect data from and send control signals to Ecobee’s remote web API

Note: Reading the driver framework and driver configuration documentation prior to following this guide will help
the user to understand drivers, driver communication, and driver configuration files.

This guide covers:

• Creating an Ecobee application via the web interface

• Creating an Ecobee driver configuration file, including finding the user’s Ecobee API key and Ecobee thermostat
serial number

• Creating an Ecobee registry configuration file

• Installing the Platform Driver and loading Ecobee driver and registry configurations

• Starting the driver and viewing Ecobee data publishes

402 Chapter 2. Features

https://www.ecobee.com/home/developer/api/introduction/index.shtml

VOLTTRON Documentation, Release 8.1.3

2.35.1 Ecobee Application

Connecting the Ecobee driver to the Ecobee API requires configuring your account with an Ecobee application.

1. Log into the Ecobee site

2. Click on the “hamburger” icon on the right to open the account menu, then click “Developer”

3. On the bottom-left corner of the screen that appears, click “Create New”

4. Fill out the name, summary, and description forms as desired. Click “Authorization Method” and from the
drop-down that appears, select “ecobee PIN” (this will enable an extra layer of authentication to protect your
account)

5. Record the API key for the Application from the Developer menu

2.35. Ecobee Driver 403

https://ecobee.com/

VOLTTRON Documentation, Release 8.1.3

Fig. 1: From Ecobee authenication docs

2.35.2 Configuration Files

The Ecobee driver uses two configuration files, a driver configuration which sets the parameters of the behavior of the
driver, and registry configuration which instructs the driver on how to interact with each point.

This is an example driver configuration:

{
"driver_config": {

"API_KEY": "abc123",
"DEVICE_ID": 8675309

},
"driver_type": "ecobee",
"registry_config":"config://campus/building/ecobee.csv",
"interval": 180,
"timezone": "UTC"

}

The driver configuration works as follows:

404 Chapter 2. Features

https://www.ecobee.com/home/developer/api/examples/ex1.shtml

VOLTTRON Documentation, Release 8.1.3

Table 23: Driver Configuration Description
Con-
fig
Field

Description

driver_configThis section specifies values used by the driver agent during operation
API_KEYThis is the User’s API key. This must be obtained by the user from the Ecobee web UI and provided in this

part of the configuration. Notes on how to do this will be provided below
DE-
VICE_ID

This is the device number of the Ecobee thermostat the driver is responsible for operating. This must be
obtained by the user from the Ecobee web UI. Notes on how to do this will be provided below

driver_typeThis value should match the name of the python file which contains the interface class implementation for
the Ecobee driver and should not change

reg-
istry_config

This should a user specified path of the form “config://<path>. It is recommended to use the device topic
string following “devices” with the file extension (“config://<campus>/<building?/ecobee.csv”) to help the
user keep track of configuration pairs in the store. This value must be used when storing the config (see
installation step below)

in-
ter-
val

This should specify the time in seconds between publishes to the message bus by the Platform Driver for
the Ecobee driver (Note: the user can specify an interval for the Ecobee driver which is shorter than 180
seconds, however Ecobee API data is only updated at 180 second intervals, so old data will be published if
a scrape occurs between updates.)

time-
zone

Timezone to use for publishing timestamps. This value should match the timezone from the Ecobee device

Note: Values for API_KEY and DEVICE_ID must be obtained by the user. DEVICE_ID should be added as an
integer representation of the thermostat’s serial number.

Getting API Key

Ecobee API keys require configuring an application using the Ecobee web UI. For more information on configuring
an application and obtaining the API key, please refer to the Ecobee Application heading in this documentation.

Finding Device Identifier

To find your Ecobee thermostat’s device identifier:

1. Log into the Ecobee customer portal

2. From the Home screen click “About My Ecobee”

3. The thermostat identifier is the serial number listed on the About screen

Registry Configuration

This file specifies how data is read from Ecobee API response data as well as how points are set via the Platform Driver
and actuator.

It is likely that more points may be added to obtain additional data, but barring implementation changes by Ecobee it
is unlikely that the values in this configuration will need to change substantially, as most thermostats provide the same
range of data in a similar format.

This is an example registry configuration:

2.35. Ecobee Driver 405

https://bit.ly/2Bvnols
https://www.ecobee.com/consumerportal/index.html

VOLTTRON Documentation, Release 8.1.3

Table 24: Registry Configuration Example
Point Name Volttron Point

Name
Units Type Write-

able
Read-
ble

Default
Value

Notes

fanMinOnTime fanMinOnTime sec-
onds

set-
ting

True True

hvacMode hvacMode sec-
onds

set-
ting

True True

humidity humidity % set-
ting

False True

coolHoldTemp coolHoldTemp degF hold True False
heatHoldTemp heatHoldTemp degf hold True False
actualTempera-
ture

ActualTemperature degF hold False True

This configuration works as follows:

Table 25: Registry Configuration Description
Con-
fig
Field

Description

Point
Name

Name of a point as it appears in Ecobee response data (example below)

Volt-
tron
Point
Name

Name of a point as a user would like it to be displayed in data publishes to the message bus

Units Unit of measurement specified by remote API
Type The Ecobee driver registry configuration supports ‘setting’ and ‘hold’ register types, based on how the

data is represented in Ecobee response data (example below)
Writable Whether or not the point is able to be written to. This may be determined by what Ecobee allows, and by

the operation of Ecobee’s API (to set an Ecobee cool/heat hold, cool/HoldTemp is used, but to read other
data points are used and therefore are not writable; this is a quirk of Ecobee’s API)

Read-
able

Whether or not the point is able to be read as specified. This may be determined by what Ecobee allows,
and by the operation of Ecobee’s API (to set an Ecobee cool/heat hold, cool/HoldTemp is used, however
the requested hold values are represented as desiredCool/Heat in Ecobee’s response data; this is a quirk
of Ecobee’s API)

De-
fault
Value

Used to send device defaults to the Ecobee API, this is optional

Notes Any user specified notes, this is optional

An example registry configuration containing all points from the development device is available in the exam-
ples/configurations/drivers/ecobee.csv file in the VOLTTRON repository.

For additional explanation on the quirks of Ecobee’s readable/writable points, visit: https://www.ecobee.com/home/
developer/api/documentation/v1/functions/SetHold.shtml

406 Chapter 2. Features

https://www.ecobee.com/home/developer/api/documentation/v1/functions/SetHold.shtml
https://www.ecobee.com/home/developer/api/documentation/v1/functions/SetHold.shtml

VOLTTRON Documentation, Release 8.1.3

2.35.3 Installation

The following instructions make up the minimal steps required to set up an instance of the Ecobee driver on the
VOLTTRON platform and connect it to the Ecobee remote API:

1. Create a directory using the path $VOLTTRON_ROOT/configs and create two files, ecobee.csv and
ecobee.config. Copy the registry config to the ecobee.csv file and the driver config to the ecobee.config file.
Modify the API_KEY and DEVICE_ID fields from the driver config with your own API key and device serial
number.

2. If the platform has not been started:

./start-volttron

3. Be sure that the environment has been activated - you should see (volttron) next to <user>@<host> in your
terminal window. To activate an environment, use the following command.

source env/bin/activate

4. Install a Platform Driver if one is not yet installed

python scripts/install-agent.py --agent-source services/core/
→˓PlatformDriverAgent --config \
examples/configurations/drivers/platform-driver.agent --tag platform.
→˓driver

5. Load the driver configuration into the configuration store (“vctl config list platform.driver” can be used to show
installed configurations)

vctl config store platform.driver devices/campus/building/ecobee
→˓$VOLTTRON_ROOT/configs/ecobee.config

6. Load the driver’s registry configuration into the configuration store

vctl config store platform.driver campus/building/ecobee.csv $VOLTTRON_
→˓ROOT/configs/ecobee.csv --csv

7. Start the platform driver

vctl start platform.driver

At this point, the platform driver will start, configure the driver agent, and data should start to publish on the publish
interval.

Note: If starting the driver for the first time, or if the authorization which is managed by the driver is out of date,
the driver will perform some additional setup internally to authenticate the driver with the Ecobee API. This stage will
require the user enter a pin provided in the volttron.log file to the Ecobee web UI. The Ecobee driver has a wait period
of 60 seconds to allow users to enter the pin code into the Ecobee UI. Instructions for pin verification follow.

2.35. Ecobee Driver 407

VOLTTRON Documentation, Release 8.1.3

PIN Verification steps:

1. Obtain the pin from the VOLTTRON logs. The pin is a 4 character long string in the logs flanked by 2 rows of
asterisks

2. Log into the Ecobee UI . After logging in, the customer dashboard will be brought up, which features a series
of panels (where the serial number was found for device configuration) and a “hamburger” menu.

3. Add the application: Click the “hamburger” icon which will display a list of items in a panel that becomes
visible on the right. Click “My Apps”, then “Add application”. A text form will appear, enter the pin provided
in VOLTTRON logs here, then click “validate” and “add application.

This will complete the pin verification step.

408 Chapter 2. Features

https://www.ecobee.com/consumerportal/index.html#/login

VOLTTRON Documentation, Release 8.1.3

2.35.4 Ecobee Driver Usage

At the configured interval, the platform driver will publish a JSON object with data obtained from Ecobee based on
the provided configuration files.

To view the publishes in the volttron.log file, install and start a ListenerAgent:

python scripts/install-agent.py -s examples/ListenerAgent

The following is an example publish:

'Status': [''],
'Vacations': [{'coolHoldTemp': 780,

'coolRelativeTemp': 0,
'drRampUpTemp': 0,
'drRampUpTime': 3600,
'dutyCyclePercentage': 255,
'endDate': '2020-03-29',
'endTime': '08:00:00',
'fan': 'auto',
'fanMinOnTime': 0,
'heatHoldTemp': 660,
'heatRelativeTemp': 0,
'holdClimateRef': '',
'isCoolOff': False,
'isHeatOff': False,
'isOccupied': False,
'isOptional': True,
'isTemperatureAbsolute': True,
'isTemperatureRelative': False,
'linkRef': '',
'name': 'Skiing',
'occupiedSensorActive': False,
'running': False,
'startDate': '2020-03-15',
'startTime': '20:00:00',
'type': 'vacation',
'unoccupiedSensorActive': False,
'vent': 'off',
'ventilatorMinOnTime': 5}],

'actualTemperature': 720,
'desiredCool': 734,
'desiredHeat': 707,
'fanMinOnTime': 0,
'humidity': '36',
'hvacMode': 'off'},

{'Programs': {'type': 'custom', 'tz': 'UTC', 'units': None},
'Status': {'type': 'list', 'tz': 'UTC', 'units': None},
'Vacations': {'type': 'custom', 'tz': 'UTC', 'units': None},
'actualTemperature': {'type': 'integer', 'tz': 'UTC', 'units': 'degF'},
'coolHoldTemp': {'type': 'integer', 'tz': 'UTC', 'units': 'degF'},
'desiredCool': {'type': 'integer', 'tz': 'UTC', 'units': 'degF'},
'desiredHeat': {'type': 'integer',S 'tz': 'UTC', 'units': 'degF'},
'fanMinOnTime': {'type': 'integer', 'tz': 'UTC', 'units': 'seconds'},
'heatHoldTemp': {'type': 'integer', 'tz': 'UTC', 'units': 'degF'},
'humidity': {'type': 'integer', 'tz': 'UTC', 'units': '%'},
'hvacMode': {'type': 'bool', 'tz': 'UTC', 'units': 'seconds'}}]

Individual points can be obtained via JSON RPC on the VOLTTRON Platform. In an agent:

2.35. Ecobee Driver 409

VOLTTRON Documentation, Release 8.1.3

self.vip.rpc.call("platform.driver", "get_point", <device topic>, <kwargs>)

Set_point Conventions

Note: Examples from this section are from Ecobee’s documentation.

The Ecobee Web API requires a variety of objects to be supplied for the various functionalities: setting a hold, adding
a vacation and adding a program require creating a JSON object. Each object is described in its corresponding section
below.

To set points using the Ecobee driver, it is recommended to use the actuator agent. If you are not familiar with the Actu-
ator, read the documentation and check out the example agent code at examples/CSVDriver/CsvDriverAgent/agent.py
in the VOLTTRON repository.

Setting an Ecobee “Setting”

Ecobee “Settings” points are simple points which are similar to a typical set point. Many settings are boolean values
for basic Ecobee configuration settings (such as whether the temperature should be in degrees Celsius or Fahrenheit).
Setting a “Setting” point is as simple as making an RPC request to the Actuator’s set_point method with a supplied
point name and desired setting. Consider a “setting” point useCelsius; use the following code to send a set_point RPC
request:

self.vip.rpc.call('platform.actuator', 'devices/campus/building/ecobee/useCelsius',
→˓True)

Setting a Hold

Setting a Hold requires creating a params JSON object for the hold, many holds require setting more than one value
each. For example, setting a temperature hold requires setting the upper (coolHoldTemp) and lower (heatHoldTemp)
bounds desired. Create a Hold params object and send it as the contents of a set_point RPC call to the Actuator.

Example Hold params object:

{
"holdType":"nextTransition",
"heatHoldTemp":680,
"coolHoldTemp":720

}

Body of the HTTP request sent by the driver to Ecobee’s Web API:

{
"selection": {

"selectionType": "thermostats",
"selectionMatch": "<ecobee id>"

},
"functions": [

{
"type": "setHold",
"params": {

(continues on next page)

410 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

user-specified params object
}

}
]

}

Note: In a heat/coolHoldTemp hold, holdType, heatHoldTemp, and coolHoldTemp values are all required
by the Ecobee web API. In this case, the holdType describes how the hold should be applied, the heatHoldTemp is the
lower temperature bound for the hold, and the coolHoldTemp is the upper temperature bound.

RPC request to the actuator:

self.vip.rpc.call('platform.actuator', 'devices/campus/building/ecobee/heatHoldTemp',
→˓True)

Note: In Ecobee data, a Hold set by the user is sometimes denoted as “desired<point>” and the sensor reading for
the held value as “actual<point>”. For example, a Hold set by a user called heatHoldTemp can be found in Ecobee
publishes as desiredHeat and the actual temperature reading as actualTemperature.

Ecobee’s documentation on Hold objects can be found here:

Adding and Deleting a Vacation

To add a vacation, call the set_point JSON-RPC method of the Actuator, providing the vacation parameters object
required by Ecobee along with the Vacation point. The params object is sent inside a create vacation object sent to the
web API:

{
"selection": {

"selectionType":"registered",
"selectionMatch":""

},
"functions": [

{
"type":"createVacation",
"params":{

user-specified params object
}

}
]

}

It is possible to supply complex objects including values for fans, vents, occupation status, etc. but a basic vacation
requires only a name, cool and heat hold temperatures, start and end dates with start and end times. Example:

{
"name": "Skiing",
"coolHoldTemp": 780,
"heatHoldTemp": 660,
"startDate": "2016-03-15",
"startTime": "20:00:00",

(continues on next page)

2.35. Ecobee Driver 411

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"endDate": "2016-03-29",
"endTime": "08:00:00"

}

Providing a params object which does not contain these required values will result in the driver throwing an error.

Example set_point RPC call for Vacation:

self.vip.rpc.call('platform.actuator', 'set_point', 'devices/campus/building/ecobee/
→˓Vacation', params)

It is also possible to delete a stored vacation object. To do so, supply the vacation name specified in the params object
with the delete keyword set to True.

self.vip.rpc.call('platform.actuator', 'set_point',
'devices/campus/building/ecobee/Vacation', "Skiing", True)

A more in-depth example of using the Ecobee web API endpoint for setting a vacation can be found here: https:
//www.ecobee.com/home/developer/api/examples/ex9.shtml

Adding a Program

Programs can also be added using the Ecobee driver. To add a program, the user should supply an Ecobee program
object in the set_point JSON-RPC request:

{
"selection": {

"selectionType":"registered",
"selectionMatch":""

},
"thermostat": {

"program": {
<program object here>

}
}

}

Program objects consist of a list of “climate” objects and “schedule” objects. Climate objects specify the climate
settings which correspond to a climate name (for example, a “Warm” climate may be set for a high heat and cool
hold temp). Schedule objects list the desired climate settings for every half hour of the day (48 total) for 7 days, each
referring to a climate name.

Example climate:

{
"name": "Warm",
"isOccupied": true,
"isOptimized": false,
"coolFan": "auto",
"heatFan": "auto",
"vent": "off",
"ventilatorMinOnTime": 20,
"owner": "system",
"type": "program",
"coolTemp": 752,

(continues on next page)

412 Chapter 2. Features

https://www.ecobee.com/home/developer/api/examples/ex9.shtml
https://www.ecobee.com/home/developer/api/examples/ex9.shtml

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"heatTemp": 740
}

Example Schedule:

[
[

"sleep",
"sleep",
"sleep",
"sleep",
"home",
"home",
"home",
...

],
...

]

Program Body:

{
"schedule": [

[
"sleep",
"sleep",
...
"home",
"sleep"

],
...

],
"climates": [

{
"name": "Sleep",
"climateRef": "sleep",
"isOccupied": true,
"isOptimized": false,
"coolFan": "auto",
"heatFan": "auto",
"vent": "off",
"ventilatorMinOnTime": 20,
"owner": "system",
"type": "program",
"colour": 2179683,
"coolTemp": 752,
"heatTemp": 662

},
...

]
}

Example set_point RPC call for Program:

self.vip.rpc.call('platform.actuator', 'set_point', 'devices/campus/building/ecobee/
→˓Vacation', program_body)

2.35. Ecobee Driver 413

VOLTTRON Documentation, Release 8.1.3

If the user would like to resume the existing program instead, it is possible to specify None for the program body with
the keyword resume_all set to True.

Example set_point RPC call to resume the Program:

self.vip.rpc.call('platform.actuator', 'set_point',
'devices/campus/building/ecobee/Vacation', None, True)

A more in-depth example describing the objects required by the Ecobee web API endpoint for setting a program can
be found here: https://www.ecobee.com/home/developer/api/examples/ex11.shtml

Status

The Status point is a read-only register supplying the running status of the HVAC systems the thermostat is interfacing
with. set_point is not available for this point; set_point RPC calls for this point will raise a NotImplementedError
exception.

Versioning

The Ecobee driver has been tested using the May 2019 API release as well as device firmware version 4.5.73.24

2.36 IEEE 2030.5 (SEP 2.0) Driver

Communicating with IEEE 2030.5 devices requires that the IEEE 2030.5 Agent is configured and running. All device
communication happens through this agent. For information about the IEEE 2030.5 Agent, please see IEEE 2030.5
Agent docs.

2.36.1 Driver Config

There are two arguments for the driver_config section of the IEEE 2030.5 device configuration file:

• sfdi - Short-form device ID of the IEEE 2030.5 device.

• ieee2030_5_agent_id - ID of VOLTTRON’s IEEE 2030.5 agent.

Here is a sample IEEE 2030.5 device configuration file:

{
"driver_config": {

"sfdi": "097935300833",
"IEEE2030_5_agent_id": "iee2030_5agent"

},
"campus": "campus",
"building": "building",
"unit": "IEEE2030_5",
"driver_type": "ieee2030_5",
"registry_config": "config://ieee2030_5.csv",
"interval": 15,
"timezone": "US/Pacific",
"heart_beat_point": "Heartbeat"

}

A sample IEEE 2030.5 driver configuration file can be found in the VOLTTRON repository in services/core/
PlatformDriverAgent/example_configurations/test_ieee2030_5_1.config.

414 Chapter 2. Features

https://www.ecobee.com/home/developer/api/examples/ex11.shtml

VOLTTRON Documentation, Release 8.1.3

2.36.2 Registry Configuration

For a description of IEEE 2030.5 registry values, see IEEE 2030.5 DER Agent.

A sample IEEE 2030.5 registry configuration file can be found in the VOLTTRON repository in services/core/
PlatformDriverAgent/example_configurations/ieee2030_5.csv.

View the IEEE 2030.5 agent specification document to learn more about IEEE 2030.5 and the IEEE 2030.5 agent and
driver.

2.37 Modbus Driver

VOLTTRON’s modbus driver supports the Modbus over TCP/IP protocol only. For Modbus RTU support, see VOLT-
TRON’s Modbus-TK driver <Modbus-TK-Driver>.

About Modbus protocol

2.37.1 Modbus Driver Configuration

Requirements

The Modbus driver requires the pymodbus package. This package can be installed in an activated environment with:

pip install pymodbus

Alternatively this requirement can be installed using bootstrap.py with the --drivers option:

python3 bootstrap.py --drivers

Driver Configuration

There are three arguments for the driver_config section of the device configuration file:

• device_address - IP Address of the device.

• port - Port the device is listening on. Defaults to 502 which is the standard port for Modbus devices.

• slave_id - Slave ID of the device. Defaults to 0. Use 0 for no slave.

The remaining values are as follows:

Here is an example device configuration file:

{
"driver_config": {"device_address": "10.1.1.2",

"port": 502,
"slave_id": 5},

"driver_type": "modbus",
"registry_config":"config://registry_configs/hvac.csv",
"interval": 60,
"timezone": "UTC",
"heart_beat_point": "heartbeat"

}

A sample MODBUS configuration file can be found in the VOLTTRON repository in exam-
ples/configurations/drivers/modbus.config

2.37. Modbus Driver 415

https://en.wikipedia.org/wiki/Modbus

VOLTTRON Documentation, Release 8.1.3

Modbus Registry Configuration File

The registry configuration file is a CSV file. Each row configures a point on the device.

The following columns are required for each row:

• Volttron Point Name - The name by which the platform and agents running on the platform will refer to this
point. For instance, if the Volttron Point Name is HeatCall1 (and using the example device configuration above)
then an agent would use pnnl/isb2/hvac1/HeatCall1 to refer to the point when using the RPC interface of the
actuator agent.

• Units - Used for meta data when creating point information on the historian.

• Modbus Register - A string representing how to interpret the data register and how to read it from the device.
The string takes two forms:

– “BOOL” for coils and discrete inputs.

– A format string for the Python struct module. See the Python3 Struct docs for full documentation. The
supplied format string must only represent one value. See the documentation of your device to determine
how to interpret the registers. Some Examples:

* “>f” - A big endian 32-bit floating point number.

* “<H” - A little endian 16-bit unsigned integer.

* “>l” - A big endian 32-bit integer.

• Writable - Either TRUE or FALSE. Determines if the point can be written to. Only points labeled TRUE can
be written to through the ActuatorAgent.

• Point Address - Modbus address of the point. Cannot include any offset value, it must be the exact value of the
address.

• Mixed Endian - (Optional) Either TRUE or FALSE. For mixed endian values. This will reverse the order of the
Modbus registers that make up this point before parsing the value or writing it out to the device. Has no effect
on bit values.

The following column is optional:

• Default Value - The default value for the point. When the point is reverted by an agent it will change back to
this value. If this value is missing it will revert to the last known value not set by an agent.

Any additional columns will be ignored. It is common practice to include a Point Name or Reference Point Name to
include the device documentation’s name for the point and Notes and Unit Details for additional information about a
point.

The following is an example of a Modbus registry configuration file:

416 Chapter 2. Features

https://en.wikipedia.org/wiki/Comma-separated_values
http://docs.python.org/3/library/struct.html

VOLTTRON Documentation, Release 8.1.3

Table 26: Catalyst 371
Refer-
ence
Point
Name

Volttron
Point
Name

Units Units De-
tails

Mod-
bus
Regis-
ter

WritablePoint
Ad-
dress

De-
fault
Value

Notes

CO2Sensor Retur-
nAirCO2

PPM 0.00-
2000.00

>f FALSE1001 CO2 Reading 0.00-
2000.0 ppm

CO2Stpt Retur-
nAirCO2Stpt

PPM 1000.00
(default)

>f TRUE 1011 1000 Setpoint to enable de-
mand control ventilation

Cool1Spd Cool-
Supply-
FanSpeed1

% 0.00 to
100.00 (75
default)

>f TRUE 1005 75 Fan speed on cool 1 call

Cool2Spd Cool-
Supply-
FanSpeed2

% 0.00 to
100.00 (90
default)

>f TRUE 1007 90 Fan speed on Cool2 Call

Damper DamperSig-
nal

% 0.00 -
100.00

>f FALSE1023 Output to the economizer
damper

DaTemp Dis-
chargeAirTem-
perature

F (-)39.99 to
248.00

>f FALSE1009 Discharge air reading

ESME-
conMin

ESM-
Damper-
MinPosi-
tion

% 0.00 to
100.00 (5
default)

>f TRUE 1013 5 Minimum damper posi-
tion during the energy
savings mode

FanPower Supply-
FanPower

kW 0.00 to
100.00

>f FALSE1015 Fan power from drive

FanSpeed Supply-
FanSpeed

% 0.00 to
100.00

>f FALSE1003 Fan speed from drive

HeatCall1 HeatCall1 On
/
Off

on/off BOOL FALSE1113 Status indicator of heating
stage 1 need

HeartBeat heartbeat On
/
Off

on/off BOOL FALSE1114 Status indicator of heating
stage 2 need

A sample Modbus registry file can be found here or in the VOLTTRON repository in exam-
ples/configurations/drivers/catalyst371.csv

2.38 Modbus TK Driver

VOLTTRON’s Modbus-TK driver, built on the Python Modbus-TK library, is an alternative to the original VOLT-
TRON modbus driver. Unlike the original modbus driver, the Modbus-TK driver supports Modbus RTU as well as
Modbus over TCP/IP.

About Modbus protocol

The Modbus-TK driver introduces a map library and configuration builder, intended as a way to streamline configura-
tion file creation and maintenance.

2.38. Modbus TK Driver 417

https://raw.githubusercontent.com/VOLTTRON/volttron/c57569bd9e71eb32afefe8687201d674651913ed/examples/configurations/drivers/catalyst371.csv
https://en.wikipedia.org/wiki/Modbus

VOLTTRON Documentation, Release 8.1.3

Warning: Currently the modbus_tk library is not able to make connections from 2 Modbus masters on one host
to 2 slaves on one host - this will will prevent a single platform from being able to communicate to 2 slaves on IP
as each instance of a Modbus_Tk driver creates a new Modbus master. Issue on Modbus_Tk Github.

2.38.1 Modbus-TK Driver Configuration

The Modbus-TK driver is mostly backward-compatible with the parameter definitions in the original Modbus driver’s
configuration (.config and .csv files). If the config file’s parameter names use the Modbus driver’s name conventions,
they are translated to the Modbus-TK name conventions, e.g. a Modbus CSV file’s Point Address is interpreted
as a Modbus-TK “Address”. Backward-compatibility exceptions are:

• If the config file has no port, the default is 0, not 502.

• If the config file has no slave_id, the default is 1, not 0.

Requirements

The Modbus-TK driver requires the modbus-tk package. This package can be installed in an activated environment
with:

pip install modbus-tk

Alternatively this requirement can be installed using bootstrap.py with the --drivers option:

python3 bootstrap.py --drivers

Driver Configuration

The driver_config section of a Modbus-TK device configuration file supports a variety of parameter definitions,
but only device_address is required:

• name (Optional) - Name of the device. Defaults to “UNKNOWN”.

• device_type (Optional) - Name of the device type. Defaults to “UNKNOWN”.

• device_address (Required) - IP Address of the device.

• port (Optional) - Port the device is listening on. Defaults to 0 (no port). Use port 0 for RTU transport.

• slave_id (Optional) - Slave ID of the device. Defaults to 1. Use ID 0 for no slave.

• baudrate (Optional) - Serial (RTU) baud rate. Defaults to 9600.

• bytesize (Optional) - Serial (RTU) byte size: 5, 6, 7, or 8. Defaults to 8.

• parity (Optional) - Serial (RTU) parity: none, even, odd, mark, or space. Defaults to none.

• stopbits (Optional) - Serial (RTU) stop bits: 1, 1.5, or 2. Defaults to 1.

• xonxoff (Optional) - Serial (RTU) flow control: 0 or 1. Defaults to 0.

• addressing (Optional) - Data address table: offset, offset_plus, or address. Defaults to offset.

– address: The exact value of the address without any offset value.

– offset: The value of the address plus the offset value.

– offset_plus: The value of the address plus the offset value plus one.

418 Chapter 2. Features

https://github.com/ljean/modbus-tk/issues/124

VOLTTRON Documentation, Release 8.1.3

– : If an offset value is to be added, it is determined based on a point’s properties in the CSV file:

* Type=bool, Writable=TRUE: 0

* Type=bool, Writable=FALSE: 10000

* Type!=bool, Writable=TRUE: 30000

* Type!=bool, Writable=FALSE: 40000

• endian (Optional) - Byte order: big or little. Defaults to big.

• write_multiple_registers (Optional) - Write multiple coils or registers at a time. Defaults to true.

– If write_multiple_registers is set to false, only register types unsigned short (uint16) and boolean (bool)
are supported. The exception raised during the configure process.

• register_map (Optional) - Register map csv of unchanged register variables. Defaults to registry_config
csv.

Sample Modbus-TK configuration files are checked into the VOLTTRON repository in services/core/
PlatformDriverAgent/platform_driver/interfaces/modbus_tk/maps.

Here is a sample TCP/IP Modbus-TK device configuration:

{
"driver_config": {

"device_address": "10.1.1.2",
"port": "5020",
"register_map": "config://modbus_tk_test_map.csv"

},
"driver_type": "modbus_tk",
"registry_config": "config://modbus_tk_test.csv",
"interval": 60,
"timezone": "UTC",
"heart_beat_point": "heartbeat"

}

Here is a sample RTU Modbus-TK device configuration, using all default settings:

{
"driver_config": {

"device_address": "/dev/tty.usbserial-AL00IEEY",
"register_map": "config://modbus_tk_test_map.csv"

},
"driver_type": "modbus_tk",
"registry_config":"config://modbus_tk_test.csv",
"interval": 60,
"timezone": "UTC",
"heart_beat_point": "heartbeat"

}

Here is a sample RTU Modbus-TK device configuration, with completely-specified settings:

{
"driver_config": {

"device_address": "/dev/tty.usbserial-AL00IEEY",
"port": 0,
"slave_id": 2,
"name": "watts_on",
"baudrate": 115200,

(continues on next page)

2.38. Modbus TK Driver 419

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"bytesize": 8,
"parity": "none",
"stopbits": 1,
"xonxoff": 0,
"addressing": "offset",
"endian": "big",
"write_multiple_registers": true,
"register_map": "config://watts_on_map.csv"

},
"driver_type": "modbus_tk",
"registry_config": "config://watts_on.csv",
"interval": 120,
"timezone": "UTC"

}

2.38.2 Modbus-TK Register Map CSV File

Modbus TK requires an additional registry configuration file compared to the paradigm of most other drivers. The
registry map file is an analogue to the typical registry configuration file. The registry configuration file is a simple file
which maps device point names to user specified point names.

The registry map file is a CSV file. Each row configures a register definition on the device.

• Register Name (Required) - The field name in the modbus client. This field is distinct and unchangeable.

• Address (Required) - The point’s modbus address. The addressing option in the driver configuration
controls whether this is interpreted as an exact address or an offset.

• Type (Required) - The point’s data type: bool, string[length], float, int16, int32, int64, uint16, uint32, or uint64.

• Units (Optional) - Used for metadata when creating point information on a historian. Default is an empty
string.

• Writable (Optional) - TRUE/FALSE. Only points for which Writable=TRUE can be updated by a VOLT-
TRON agent. Default is FALSE.

• Default Value (Optional) - The point’s default value. If it is reverted by an agent, it changes back to this
value. If this value is missing, it will revert to the last known value not set by an agent.

• Transform (Optional) - Scaling algorithm: scale(multiplier), scale_int(multiplier), scale_reg(register_name),
scale_reg_power10(register_name), scale_decimal_int_signed(multiplier), mod10k(reverse),
mod10k64(reverse), mod10k48(reveres) or none. Default is an empty string.

• Table (Optional) - Standard modbus table name defining how information is stored in slave device. There are
4 different tables:

– discrete_output_coils: read/write coil numbers 1-9999

– discrete_input_contacts: read only coil numbers 10001-19999

– analog_input_registers: read only register numbers 30001-39999

– analog_output_holding_registers: read/write register numbers 40001-49999

If this field is empty, the modbus table will be defined by type and writable fields. By that, when user sets read
only for read/write coils/registers or sets read/write for read only coils/registers, it will select wrong table, and
therefore raise exception.

420 Chapter 2. Features

https://en.wikipedia.org/wiki/Comma-separated_values

VOLTTRON Documentation, Release 8.1.3

• Mixed Endian (Optional) - TRUE/FALSE. If Mixed Endian is set to TRUE, the order of the Modbus registers
will be reversed before parsing the value or writing it out to the device. By setting mixed endian, transform must
be None (no op). Defaults to FALSE.

• Description (Optional) - Additional information about the point. Default is an empty string.

Any additional columns are ignored.

Sample Modbus-TK registry map CSV files are checked into the VOLTTRON repository in services/core/
PlatformDriverAgent/platform_driver/interfaces/modbus_tk/maps.

Here is a sample Modbus-TK registry map:

Register
Name

Ad-
dress

Type Units Writable Default
Value

Trans-
form

Table

un-
signed_short

0 uint16 None TRUE 0 scale(10) ana-
log_output_holding_registers

unsigned_int 1 uint32 None TRUE 0 scale(10) ana-
log_output_holding_registers

un-
signed_long

3 uint64 None TRUE 0 scale(10) ana-
log_output_holding_registers

sample_short 7 int16 None TRUE 0 scale(10) ana-
log_output_holding_registers

sample_int 8 int32 None TRUE 0 scale(10) ana-
log_output_holding_registers

sample_float 10 float None TRUE 0.0 scale(10) ana-
log_output_holding_registers

sample_long 12 int64 None TRUE 0 scale(10) ana-
log_output_holding_registers

sample_bool 16 bool None TRUE False ana-
log_output_holding_registers

sample_str 17 string[12] None TRUE hello world! ana-
log_output_holding_registers

2.38.3 Modbus-TK Registry Configuration

The registry configuration file is a CSV file. Each row configures a point on the device.

• Volttron Point Name (Required) - The name by which the platform and agents refer to the point. For in-
stance, if the Volttron Point Name is HeatCall1, then an agent would use my_campus/building2/hvac1/
HeatCall1 to refer to the point when using the RPC interface of the actuator agent.

• Register Name (Required) - The field name in the modbus client. It must be matched with the field name
from register_map.

Any additional columns will override the existed fields from register_map.

Sample Modbus-TK registry CSV files are checked into the VOLTTRON repository in services/core/
PlatformDriverAgent/platform_driver/interfaces/modbus_tk/maps.

Here is a sample Modbus-TK registry configuration with defined register_map:

2.38. Modbus TK Driver 421

https://en.wikipedia.org/wiki/Comma-separated_values

VOLTTRON Documentation, Release 8.1.3

Volttron Point Name Register Name
unsigned short unsigned_short
unsigned int unsigned_int
unsigned long unsigned_long
sample short sample_short
sample int sample_int
sample float sample_float
sample long sample_long
sample bool sample_bool
sample str sample_str

2.38.4 Modbus-TK Driver Maps Repository

To help facilitate the creation of VOLTTRON device configuration entries (.config files) for Modbus-TK de-
vices, a library of device type definitions is now maintained in services/core/PlatformDriverAgent/
platform_driver/interfaces/modbus_tk/maps/maps.yaml. A command-line tool (described below
under MODBUS TK Config Command Tool) uses the contents of maps.yaml while generating .config
files.

Each device type definition in maps.yaml consists of the following properties:

• name (Required) - Name of the device type (see the driver_config parameters).

• file (Required) - The name of the CSV file that defines all of the device type’s supported points, e.g.
watts_on.csv.

• description (Optional) - A description of the device type.

• addressing (Optional) - Data address type: offset, offset_plus, or address (see the driver_config parameters).

• endian (Optional) - Byte order: big or little (see the driver_config parameters).

• write_multiple_registers (Optional) - Write multiple registers at a time. Defaults to true.

A device type definition is a template for a device configuration. Some additional data must be supplied when a
specific device’s configuration is generated. In particular, the device_address must be supplied.

A sample maps.yml file is checked into the VOLTTRON repository in services/core/
PlatformDriverAgent/platform_driver/interfaces/modbus_tk/maps/maps.yaml.

Here is a sample maps.yaml file:

- name: modbus_tk_test
description: Example of reading selected points for Modbus-TK driver testing
file: modbus_tk_test_map.csv
addressing: offset
endian: little
write_multiple_registers: true

- name: watts_on
description: Read selected points from Elkor WattsOn meter
file: watts_on_map.csv
addressing: offset

- name: ion6200
description: ION 6200 meter
file: ion6200_map.csv

- name: ion8600
description: ION 8600 meter
file: ion8600_map.csv

422 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

2.38.5 Modbus-TK Config Command Tool

config_cmd.py is a command-line tool for creating and maintaining VOLTTRON driver configurations. The tool
runs from the command line:

$ cd services/core/PlatformDriverAgent/platform_driver/interfaces/modbus_tk/maps
$ python config_cmd.py

config_cmd.py supports the following commands:

• help - List all commands.

• quit - Quit the command-line tool.

• list_directories - List all setup directories, with an option to edit their paths.

– By default, all directories are in the VOLTTRON repository in services/core/
PlatformDriverAgent/platform_driver/interfaces/modbus_tk/maps.

– It is important to use the correct directories when adding/editing device types and driver configs, and when
loading configurations into VOLTTRON.

* map_dir: directory in which maps.yaml is stored.

* config_dir: directory in which driver config files are stored.

* csv_dir: directory in which registry config CSV files are stored.

• edit_directories - Add/Edit map directory, driver config directory, and/or CSV config directory. Press
<Enter> if no change is needed. Exits if the directory does not exist.

• list_device_type_description - List all device type descriptions in maps.yaml. Option to edit
device type descriptions.

• list_all_device_types - List all device type information in maps.yaml. Option to add more device
types.

• device_type - List information for a selected device type. Option to select another device type.

• add_device_type - Add a device type to maps.yaml. Option to add more than one device type. Each
device type includes its name, CSV file, description, addressing, and endian, as explained in MODBUS-TK
Driver Maps. If an invalid value is entered for addressing or endian, the default value is used instead.

• edit_device_type - Edit an existing device type. If an invalid value is entered for addressing or endian,
the previous value is left unchanged.

• list_drivers - List all driver config names in config_dir.

• driver_config <driver_name> - Get a driver config from config_dir. Option to select the driver
if no driver is found with that name.

• add_driver_config <driver_name> - Add/Edit <config_dir>/<driver name>.config.
Option to select the driver if no driver is found with that name. Press <Enter> to exit.

• load_volttron - Load a driver config and CSV into VOLTTRON. Option to add the config or CSV file to
config_dir or to csv_dir. VOLTTRON must be running when this command is used.

• delete_volttron_config - Delete a driver config from VOLTTRON. VOLTTRON must be running
when this command is used.

• delete_volttron_csv - Delete a registry csv config from VOLTTRON. VOLTTRON must be running
when this command is used.

The config_cmd.py module is checked into the VOLTTRON repository as services/core/
PlatformDriverAgent/platform_driver/interfaces/modbus_tk/config_cmd.py.

2.38. Modbus TK Driver 423

VOLTTRON Documentation, Release 8.1.3

2.39 Obix Driver

2.39.1 Obix Driver Configuration

VOLTTRON’s uses Obix’s restful interface to facilitate communication.

This driver does not handle reading data from the history section of the interface. If the user wants data published
from the management systems historical data use the Obix History agent.

Driver Configuration

There are three arguments for the driver_config section of the device configuration file:

• url - URL of the Obix remote API interface

• username - User’s username for the Obix remote API

• password - Users’ password corresponding to the username

Here is an example device configuration file:

{
"driver_config": {"url": "http://example.com/obix/config/Drivers/Obix/exports/",

"username": "username",
"password": "password"},

"driver_type": "obix",
"registry_config":"config://registry_configs/obix.csv",
"interval": 30,
"timezone": "UTC"

}

A sample Obix configuration file can be found in the VOLTTRON repository in exam-
ples/configurations/drivers/obix.config

Obix Registry Configuration File

The registry configuration file is a CSV file. Each row configures a point on the device.

The following columns are required for each row:

• Volttron Point Name - The name by which the platform and agents running on the platform will refer to this
point. For instance, if the Volttron Point Name is HeatCall1 then an agent would use <device topic>/HeatCall1
to refer to the point when using the RPC interface of the actuator agent.

• Obix Point Name - Name of the point on the Obix interface. Escaping of spaces and dashes for use with the
interface is handled internally.

• Obix Type - One of bool, int, or real

• Units - Used for meta data when creating point information on the historian.

• Writable - Either TRUE or FALSE. Determines if the point can be written to. Only points labeled TRUE can
be written to through the ActuatorAgent. This can be used to protect points that should not be accessed by the
platform.

The following column is optional:

• Default Value - The default value for the point. When the point is reverted by an agent it will change back to
this value. If this value is missing it will revert to the last known value not set by an agent.

424 Chapter 2. Features

https://en.wikipedia.org/wiki/Comma-separated_values

VOLTTRON Documentation, Release 8.1.3

Any additional columns will be ignored. It is common practice to include a Point Name or Reference Point Name to
include the device documentation’s name for the point and Notes and Unit Details for additional information about a
point.

The following is an example of a Obix registry configuration file:

Table 27: Obix
Volttron Point Name Obix Point Name Obix

Type
Units Writable Notes

CostEL CostEL real dollar FALSE Precision: 2
CostELBB CostELBB real dollar FALSE Precision: 2
CDHEnergyHeartbeat CDHEnergyHeartbeat real null FALSE
ThermalFollowing ThermalFollowing bool FALSE
CDHTestThermFollow CDHTestThermFollow bool FALSE
CollegeModeFromCDH CollegeModeFromCDH real null FALSE Precision: 0, Min: 3.0,

Max: 3.0
HospitalModeFromCDH HospitalModeFrom-

CDH
real null FALSE Precision: 0, Min: 3.0,

Max: 3.0
HomeModeFromCDH HomeModeFromCDH real null FALSE Precision: 0, Min: 3.0,

Max: 3.0
CostNG CostNG real null FALSE Precision: 2
CollegeBaseload-
SPFromCDH

CollegeBaseload-
SPFromCDH

real kilo-
watt

FALSE Precision: 0

CollegeImportSPFrom-
CDH

CollegeImportSPFrom-
CDH

real kilo-
watt

FALSE Precision: 0

HospitalImportSPFrom-
CDH

HospitalImportSPFrom-
CDH

real kilo-
watt

FALSE Precision: 0

HospitalBaseload-
SPFromCDH

HospitalBaseload-
SPFromCDH

real kilo-
watt

FALSE Precision: 0

HomeImportSPFrom-
CDH

HomeImportSPFrom-
CDH

real kilo-
watt

FALSE Precision: 0

ThermalFol-
lowingAlarm

ThermalFol-
lowingAlarm

bool FALSE

A sample Obix configuration can be found in the VOLTTRON repository in examples/configurations/drivers/obix.csv

Automatic Obix Configuration File Creation

A script that will automatically create both a device and register configuration file for a site is located in the repository
at scripts/obix/get_obix_driver_config.py.

The utility is invoked with the command:

python get_obix_driver_config.py <url> <registry_file> <driver_file> -u <username> -p
→˓<password>

If either the registry_file or driver_file is omitted the script will output those files to stdout.

If either the username or password arguments are left out the script will ask for them on the command line before
proceeding.

The registry file produced by this script assumes that the Volttron Point Name and the Obix Point Name have the same
value. Also, it is assumed that all points should be read only. Users are expected to fix this as appropriate.

2.39. Obix Driver 425

VOLTTRON Documentation, Release 8.1.3

2.40 The Energy Detective Meter Driver

The TED-Pro is an energy monitoring system that can measure energy consumption of multiple mains and supports
sub-metering of individual circuits. This driver connects to a TED Pro Energy Control Center (ECC) and can collect
information from multiple Measuring Transmitting Units (MTUs) and Spyder sub-metering devices connected to the
ECC.

2.40.1 Configuration

The TED Pro device interface is configured as follows. You’ll need the ip address or hostname of the ECC on a
network segment accessible from the VOLTTRON instance, if configured to use a port other than 80, you can provide
it as shown below, following a colon after the host address.

{
"driver_type": "ted_meter",
"driver_config": {

"device_address": "192.168.1.100:8080",
"username": "username",
"password": "password",
"scrape_spyder": true,
"track_totalizers": true

}
}

Parameters

• username - Username if the TED Pro is configured with Basic Authentication

• password - Password if the TED Pro is configured with Basic Authentication

• device_address - Hostname or IP address of the TED Pro ECC, a non-standard port can be included if needed

• scrape_spyder - Default true, enables or disables collection of the sub-metering data from spyder devices
connected to the TED Pro

• track_totalizers - Default true, enables or disables tracking of lifetime totals in the VOLTTRON Driver

Note: The TED Pro does not expose its internal lifetime “totalized” metering, instead offering month to date (MTD)
and daily totals (TDY). Using the “track_totalizers” setting, the ted-meter driver will attempt to maintain mono-
tonically increasing lifetime totalizers. To do so, it must retain state regarding the running total and the last read
value. The driver makes use of the VOLTTRON Config subsystem to store this state. To reset these totals, delete the
1state/ted_meter/<device_path>1 config from the platform driver config store and restart the platform driver.

Note: This driver does not make use of the registry config. Because it is able to determine the configuration of the
TED Pro Device via the API, it simply creates registers for each data source on the TED Pro

Note: This driver is internally aware of the appropriate HayStack Tags for its registers, however, the Platform Driver
makes no provision for publishing those tags during a scrape. Therefore, integration of the tagging data is left to the
end user.

426 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Examples

The above configuration in the TED will result in the following scrape from the ted-meter driver on the message bus:

[
{

'mtu-1/load_kva': 0.271,
'mtu-1/load_kw': 0.203,
'mtu-1/phase_angle': 195,
'mtu-1/phase_current-a': '0',
'mtu-1/phase_current-b': '0',
'mtu-1/phase_current-c': '0',
'mtu-1/phase_voltage-a': '0',
'mtu-1/phase_voltage-b': '0',
'mtu-1/phase_voltage-c': '0',
'mtu-1/power_factor': 0.749,
'mtu-1/voltage': 121.30000000000001,
'spyder-1/AHU/load': 0.0,
'spyder-1/AHU/mtd': 0.0,
'spyder-1/AHU/mtd_totalized': 0.0,
'spyder-1/C/U/load': 0.0,
'spyder-1/C/U/mtd': 0.0,
'spyder-1/C/U/mtd_totalized': 0.0,
'spyder-1/Fridge/load': 0.0,

(continues on next page)

2.40. The Energy Detective Meter Driver 427

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

'spyder-1/Fridge/mtd': 0.056,
'spyder-1/Fridge/mtd_totalized': 0.056,
'spyder-1/HW/load': 0.0,
'spyder-1/HW/mtd': 0.14400000000000002,
'spyder-1/HW/mtd_totalized': 0.14400000000000002,
'spyder-1/Toaster/load': 0.0,
'spyder-1/Toaster/mtd': 0.24,
'spyder-1/Toaster/mtd_totalized': 0.24,
'system/mtd': 0.652,
'system/mtd_totalized': 0.652

},
{

'mtu-1/load_kva': {'type': 'integer', 'tz': u'', 'units': 'kVA'},
'mtu-1/load_kw': {'type': 'integer', 'tz': u'', 'units': 'kW'},
'mtu-1/phase_angle': {'type': 'integer', 'tz': u'', 'units': 'degrees'},
'mtu-1/phase_current-a': {'type': 'integer', 'tz': u'', 'units': 'Amps'},
'mtu-1/phase_current-b': {'type': 'integer', 'tz': u'', 'units': 'Amps'},
'mtu-1/phase_current-c': {'type': 'integer', 'tz': u'', 'units': 'Amps'},
'mtu-1/phase_voltage-a': {'type': 'integer', 'tz': u'', 'units': 'Volts'},
'mtu-1/phase_voltage-b': {'type': 'integer', 'tz': u'', 'units': 'Volts'},
'mtu-1/phase_voltage-c': {'type': 'integer', 'tz': u'', 'units': 'Volts'},
'mtu-1/power_factor': {'type': 'integer', 'tz': u'', 'units': 'ratio'},
'mtu-1/voltage': {'type': 'integer', 'tz': u'', 'units': 'Volts'},
'spyder-1/AHU/load': {'type': 'integer', 'tz': u'', 'units': 'kW'},
'spyder-1/AHU/mtd': {'type': 'integer', 'tz': u'', 'units': 'kWh'},
'spyder-1/AHU/mtd_totalized': {'type': 'integer', 'tz': u'', 'units': 'kWh'},
'spyder-1/C/U/load': {'type': 'integer', 'tz': u'', 'units': 'kW'},
'spyder-1/C/U/mtd': {'type': 'integer', 'tz': u'', 'units': 'kWh'},
'spyder-1/C/U/mtd_totalized': {'type': 'integer', 'tz': u'', 'units': 'kWh'},
'spyder-1/Fridge/load': {'type': 'integer', 'tz': u'', 'units': 'kW'},
'spyder-1/Fridge/mtd': {'type': 'integer', 'tz': u'', 'units': 'kWh'},
'spyder-1/Fridge/mtd_totalized': {'type': 'integer', 'tz': u'', 'units': 'kWh

→˓'},
'spyder-1/HW/load': {'type': 'integer', 'tz': u'', 'units': 'kW'},
'spyder-1/HW/mtd': {'type': 'integer', 'tz': u'', 'units': 'kWh'},
'spyder-1/HW/mtd_totalized': {'type': 'integer', 'tz': u'', 'units': 'kWh'},
'spyder-1/Toaster/load': {'type': 'integer', 'tz': u'', 'units': 'kW'},
'spyder-1/Toaster/mtd': {'type': 'integer', 'tz': u'', 'units': 'kWh'},
'spyder-1/Toaster/mtd_totalized': {'type': 'integer', 'tz': u'', 'units': 'kWh

→˓'},
'system/mtd': {'type': 'integer', 'tz': u'', 'units': 'kWh'},
'system/mtd_totalized': {'type': 'integer', 'tz': u'', 'units': 'kWh'}

}
]

2.41 Message Bus

The VOLTTRON message bus is the mechanism responsible for enabling communication between agents, drivers,
and platform instances. The message bus supports communication using the Publish/Subscribe Paradigm and JSON
RPC. Currently VOLTTRON may be configured to use either Zero MQ or RabbitMQ messaging software to perform
messaging.

To standardize message bus communication, VOLTTRON implements VIP - VOLTTRON Interconnect Protocol. VIP
defines patterns for pub/sub communication as well as JSON-RPC, and allows for the creation of agent communication
subsystems.

428 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

For more information on messaging, VIP, multi-platform communication and more, please explore the message bus
documentation linked below:

2.41.1 Messaging and Topics

Introduction

Agents in VOLTTRON™ communicate with each other using a publish/subscribe mechanism built on the Zero MQ
or RabbitMQ Python libraries. This allows for great flexibility as topics can be created dynamically and the messages
sent can be any format as long as the sender and receiver understand it. An agent with data to share publishes to a
topic, then any agents interested in that data subscribe to that topic.

While this flexibility is powerful, it also could also lead to confusion if some standard is not followed. The current
conventions for communicating in the VOLTTRON are:

• Topics and subtopics follow the format: topic/subtopic/subtopic

• Subscribers can subscribe to any and all levels. Subscriptions to topic will include messages for the base topic
and all subtopics. Subscriptions to topic/subtopic1 will only receive messages for that subtopic and any
children subtopics. Subscriptions to empty string (“”) will receive ALL messages. This is not recommended.

Agents should set the From header. This will allow agents to filter on the To message sent back.

Topics

In VOLTTRON

• alerts - Base topic for alerts published by agents and subsystems, such as agent health alerts

• analysis - Base topic for analytics being used with building data

• config - Base topic for managing agent configuration

• devices - Base topic for data being published by drivers

• datalogger - Base topic for agents wishing to record time series data

• heartbeat - Topic for publishing periodic “heartbeat” or “keep-alive”

• market - Base topics for market agent communication

• record - Base topic for agents to record data in an arbitrary format

• weather - Base topic for polling publishes of weather service agents

Note: Other more specific topics may exist for specific agents or purposes. Please review the documentation for the
specific feature for more information.

2.41. Message Bus 429

VOLTTRON Documentation, Release 8.1.3

Controller Agent Topics

See the documentation for the Actuator Agent.

2.41.2 VOLTTRON™ Interconnect Protocol

This document specifies VIP, the VOLTTRON™ Interconnect Protocol. The use case for VIP is to provide commu-
nications between agents, controllers, services, and the supervisory platform in an abstract fashion so that additional
protocols can be built and used above VIP. VIP defines how peers connect to the router and the messages they ex-
change.

• Name: github.com/VOLTTRON/volttron/wiki/VOLTTRON-Interconnect-Protocol

• Editor: Brandon Carpenter <brandon (dot) carpenter (at) pnnl (dot) gov>

• State: draft

• See also: ZeroMQ, ZMTP, CurveZMQ, ZAP

Remote Procedure Calls

Remote procedure calls (RPC) is a feature of VOLTTRON Interconnect Protocol VIP. VIP includes the ability to
create new point-to-point protocols, called subsystems, enabling the implementation of JSON-RPC 2.0. This provides
a simple method for agent authors to write methods and expose or export them to other agents, making request-reply
or notify communications patterns as simple as writing and calling methods.

Exporting Methods

The export() method, defined on the RPC subsystem class, is used to mark a method as remotely accessible. This
export() method has a dual use:

• The class method can be used as a decorator to statically mark methods when the agent class is defined.

• The instance method dynamically exports methods, and can be used with methods not defined on the agent class.

Each take an optional export name argument, which defaults to the method name. Here are the two export method
signatures:

Instance method:

RPC.export(method, name=None)

Class method:

RPC.export(name=None)

And here is an example agent definition using both methods:

from volttron.platform.vip import Agent, Core, RPC

def add(a, b):
'''Add two numbers and return the result'''
return a + b

class ExampleAgent(Agent):
(continues on next page)

430 Chapter 2. Features

http://zeromq.org
http://rfc.zeromq.org/spec:23/ZMTP
http://rfc.zeromq.org/spec:26/CURVEZMQ
http://rfc.zeromq.org/spec:27/ZAP.
http://www.jsonrpc.org/specification

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

@RPC.export
def say_hello(self, name):

'''Build and return a hello string'''
return 'Hello, %s!' % (name,)

@RPC.export('say_bye')
def bye(self, name):

'''Build and return a goodbye string'''
return 'Goodbye, %s.' % (name,)

@Core.receiver('setup')
def onsetup(self, sender, **kwargs):

self.vip.rpc.export('add')

Calling exported methods

The RPC subsystem provides three methods for calling exported RPC methods:

RPC.call(peer, method, *args, **kwargs)

Call the remote method exported by peer with the given arguments. Returns a gevent AsyncResult object.

RPC.batch(peer, requests)

Batch call remote methods exported by peer. requests must be an iterable of 4-tuples (notify, method, args,
kwargs), where notify is a boolean indicating whether this is a notification or standard call, method is the method
name, args is a list and kwargs is a dictionary. Returns a list of AsyncResult objects for any standard calls. Returns
None if all requests were notifications.

RPC.notify(peer, method, *args, **kwargs)

Send a one-way notification message to peer by calling method without returning a result.

Here are some examples:

self.vip.rpc.call(peer, 'say_hello', 'Bob').get()
results = self.vip.rpc.batch(peer, [(False, 'say_bye', 'Alice', {}), (True, 'later',
→˓[], {})])
self.vip.rpc.notify(peer, 'ready')

Inspection

A list of methods is available by calling the inspect method. Additional information can be returned for any method
by appending .inspect to the method name. Here are a couple examples:

self.vip.rpc.call(peer, 'inspect') # Returns a list of exported methods
self.vip.rpc.call(peer, 'say_hello.inspect') # Return metadata on say_hello method

2.41. Message Bus 431

VOLTTRON Documentation, Release 8.1.3

VCTL RPC Commands

There are two rpc subcommands available through vctl, list and code.

The list subcommand displays all of the agents that have a peer connection to the instance and which methods are
available from each of these agents.

vctl rpc list
config.store

delete_config
get_configs
manage_delete_config
manage_delete_store
manage_get
manage_get_metadata
manage_list_configs
manage_list_stores
manage_store
set_config

.

.

.

platform.historian
get_aggregate_topics
get_topic_list
get_topics_by_pattern
get_topics_metadata
get_version
insert
query

volttron.central
get_publickey
is_registered

If a single agent is specified, it will list all methods available for that agent.

vctl rpc list platform.historian
platform.historian

get_aggregate_topics
get_topic_list
get_topics_by_pattern
get_topics_metadata
get_version
insert
query

If the -v option is selected, all agent subsystem rpc methods will be displayed for each selected agent as well.

vctl rpc list -v platform.historian
platform.historian

get_aggregate_topics
get_topic_list
get_topics_by_pattern
get_topics_metadata
get_version
insert
query

(continues on next page)

432 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

agent.version
health.set_status
health.get_status
health.get_status_json
health.send_alert
heartbeat.start
heartbeat.start_with_period
heartbeat.stop
heartbeat.restart
heartbeat.set_period
config.update
config.initial_update
auth.update

If an agent is specified, and then a method (or methods) are specified, all parameters associated with the method(s)
will be output.

vctl rpc list platform.historian get_version query
platform.historian

get_version
Parameters:
query
Parameters:

topic:
{'kind': 'POSITIONAL_OR_KEYWORD', 'default': None}

start:
{'kind': 'POSITIONAL_OR_KEYWORD', 'default': None}

end:
{'kind': 'POSITIONAL_OR_KEYWORD', 'default': None}

agg_type:
{'kind': 'POSITIONAL_OR_KEYWORD', 'default': None}

agg_period:
{'kind': 'POSITIONAL_OR_KEYWORD', 'default': None}

skip:
{'kind': 'POSITIONAL_OR_KEYWORD', 'default': 0}

count:
{'kind': 'POSITIONAL_OR_KEYWORD', 'default': None}

order:
{'kind': 'POSITIONAL_OR_KEYWORD', 'default': 'FIRST_TO_LAST'}

By adding the ‘-v’ option to this stage, the doc-string description of the method will be displayed along with the
method and parameters if available.

vctl rpc list -v platform.historian get_version
platform.historian

get_version
Documentation:

RPC call to get the version of the historian

:return: version number of the historian used
:rtype: string

Parameters:

vctl rpc code
vctl rpc list <peer identity>

(continues on next page)

2.41. Message Bus 433

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

vctl rpc list <peer identity> <method>
vctl rpc list -v <peer identity>
vctl rpc list -v <peer identity> <method>
vctl rpc code -v
vctl rpc code <peer identity>
vctl rpc code <peer identity> <method>

The code subcommand functions similarly to list, except that it will output the code to be used in an agent when
writing an rpc call. Any available parameters are included as a list in the line of code where the parameters will need
to be provided. These will need to be modified based on the use case.

vctl rpc code
self.vip.rpc.call(config.store, delete_config, ['config_name', 'trigger_callback',

→˓ 'send_update']).get()
self.vip.rpc.call(config.store, get_configs).get()
self.vip.rpc.call(config.store, manage_delete_config, ['args', 'kwargs']).get()
self.vip.rpc.call(config.store, manage_delete_store, ['args', 'kwargs']).get()
self.vip.rpc.call(config.store, manage_get, ['identity', 'config_name', 'raw']).

→˓get()
self.vip.rpc.call(config.store, manage_get_metadata, ['identity', 'config_name']).

→˓get()
self.vip.rpc.call(config.store, manage_list_configs, ['identity']).get()
self.vip.rpc.call(config.store, manage_list_stores).get()
self.vip.rpc.call(config.store, manage_store, ['args', 'kwargs']).get()
self.vip.rpc.call(config.store, set_config, ['config_name', 'contents', 'trigger_

→˓callback', 'send_update']).get()
.
.
.
self.vip.rpc.call(platform.historian, get_aggregate_topics).get()
self.vip.rpc.call(platform.historian, get_topic_list).get()
self.vip.rpc.call(platform.historian, get_topics_by_pattern, ['topic_pattern']).

→˓get()
self.vip.rpc.call(platform.historian, get_topics_metadata, ['topics']).get()
self.vip.rpc.call(platform.historian, get_version).get()
self.vip.rpc.call(platform.historian, insert, ['records']).get()
self.vip.rpc.call(platform.historian, query, ['topic', 'start', 'end', 'agg_type',

→˓ 'agg_period', 'skip', 'count', 'order']).get()
self.vip.rpc.call(volttron.central, get_publickey).get()
self.vip.rpc.call(volttron.central, is_registered, ['address_hash', 'address']).

→˓get()

As with rpc list, the code subcommand can be filtered based on the :term`VIP identity` and/or the method(s).

vctl rpc code platform.historian
self.vip.rpc.call(platform.historian, get_aggregate_topics).get()
self.vip.rpc.call(platform.historian, get_topic_list).get()
self.vip.rpc.call(platform.historian, get_topics_by_pattern, ['topic_pattern']).

→˓get()
self.vip.rpc.call(platform.historian, get_topics_metadata, ['topics']).get()
self.vip.rpc.call(platform.historian, get_version).get()
self.vip.rpc.call(platform.historian, insert, ['records']).get()
self.vip.rpc.call(platform.historian, query, ['topic', 'start', 'end', 'agg_type',

→˓ 'agg_period', 'skip', 'count', 'order']).get()

vctl rpc code platform.historian query

(continues on next page)

434 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

self.vip.rpc.call(platform.historian, query, ['topic', 'start', 'end', 'agg_type',
→˓ 'agg_period', 'skip', 'count', 'order']).get()

Implementation

See the RPC module for implementation details.

Also see Multi-Platform RPC Communication and RPC in RabbitMQ for additional resources.

VIP Known Identities

It is critical for systems to have known locations for receiving resources and services from in a networked environment.
The following table details the vip identities that are reserved for VOLTTRON specific usage.

2.41. Message Bus 435

https://github.com/VOLTTRON/volttron/blob/develop/volttron/platform/vip/agent/subsystems/rpc.py

VOLTTRON Documentation, Release 8.1.3

Table 28: Known Identities
VIP
Identity

Agent/FeatureNotes

platform
plat-
form.agent

Platform
Agent

Used to allow the VolttronCentralAgent to control and individual platform

plat-
form.auth

Platform
Auth

The identity of VolttronCentralAgent

volt-
tron.central

VOLT-
TRON
Central

The identity of VolttronCentralAgent

plat-
form.historian

User-
Selected
Historian

An individual platform may have many historians available to it, however this is one
available through Volttron Central. Note that this does not require a specific type of
historian, just that it’s VIP Identity

plat-
form.topic_watcher

Top-
icWatcher

Agent which publishes alerts for topics based on timing thresholds

plat-
form.sysmon

Sysmon Agent which publishes System Monitoring statistics

plat-
form.emailer

Emailer Agent used by other agents on the platform to send email notifications

plat-
form.health

Platform
Health

Agent health service

plat-
form.market

Market
Services

The default identity for Market Service agents

control Platform
Control

Control service facilitates the starting, stopping, removal, and installation of the agents
on an instance. This agent is executing within the main volttron process

con-
trol.connection

Platform
Control

Short lived identity used by all of the volttron-ctl (vctl) commands

pubsub Pub/Sub
Router

Pub/Sub subsystem router. Allows backward compatibility with version 4.1

plat-
form_web

Platform
Web
Service

Facilitates HTTP/HTTPS requests from browsers and routes them to the corresponding
agent for processing (will be renamed to platform.web in future update)

keydis-
covery

Server
Key
Discovery

Agent that enables discovery of server keys of remote platforms in a multi-platform
setup

plat-
form.actuator

Actuator Agent which coordinates sending control commands to devices

con-
fig.store

Config-
uration
Store

The configuration subsystem service agent on the platform. Includes scheduling

plat-
form.driver

Platform
Driver

The default identity for the Platform Driver Agent (will be renamed Platform Driver
Agent) which is responsible for coordinating device communication

zmq.proxy.routerZero MQ
Proxy

ZeroMQ’s proxy service for Pub/Sub subsystem router. Allows backward compatibility
between rmq and zmq instances of VOLTTRON

436 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

VIP Authentication

VIP (VOLTTRON Interconnect Protocol) authentication is implemented in the auth module and extends the Ze-
roMQ Authentication Protocol ZAP to VIP by including the ZAP User-Id in the VIP payload, thus allowing peers to
authorize access based on ZAP credentials. This document does not cover ZAP in any detail, but its understanding
is fundamental to securely configuring ZeroMQ. While this document will attempt to instruct on securely configuring
VOLTTRON for use on the Internet, it is recommended that the ZAP documentation also be consulted.

Default Encryption

By default, ZeroMQ operates in plain-text mode, without any sort of encryption. While this is okay for in-process and
interprocess communications, via UNIX domain sockets, it is insecure for any kind of inter-network communications,
especially when traffic must traverse the Internet. Therefore, VOLTTRON automatically generates an encryption key
and enables CurveMQ by default on all TCP connections.

To see VOLTTRON’s public key run the vctl auth serverkey command. For example:

(volttron)[user@home]$ volttron-ctl auth serverkey
FSG7LHhy3v8tdNz3gK35G6-oxUcyln54pYRKu5fBJzU

Peer Authentication

ZAP defines a method for verifying credentials exchanged when a connection is initially established. The authentica-
tion mechanism provides three main pieces of information useful for authentication:

• domain: a name assigned to a locally bound address (to which peers connect)

• address: the remote address of the peer

• credentials: includes the authentication method and any associated credentials

During authentication, VOLTTRON checks these pieces against a list of accepted peers defined in a file, called the
“auth file” in this document. This JSON-formatted file is located at $VOLTTRON_HOME/auth.json and must have
a matching entry in the allow list for remote connections to be accepted.

The auth file should not be modified directly. To change the auth file, use vctl auth subcommands: add, list,
remove, and update. (Run vctl auth --help for more details and see the authentication commands docu-
mentation.)

Here are some example entries:

(volttron)[user@home]$ vctl auth list

INDEX: 0
{

"domain": null,
"user_id": "platform",
"roles": [],
"enabled": true,
"mechanism": "CURVE",
"capabilities": [],
"groups": [],
"address": null,
"credentials": "k1C9-FPRAVjL-cH1iQqAJaCHUNVXaAlkVc7EqK0u9mI",
"comments": "Automatically added by platform on start"

}

(continues on next page)

2.41. Message Bus 437

http://rfc.zeromq.org/spec:27
http://rfc.zeromq.org/spec:26

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

INDEX: 2
{

"domain": null,
"user_id": "platform.sysmon",
"roles": [],
"enabled": true,
"mechanism": "CURVE",
"capabilities": [],
"groups": [],
"address": null,
"credentials": "5UD_GTk5dM2g4pk8d1-wM-BYgt4RAKiHf4SnT_YU6jY",
"comments": "Automatically added on agent install"

}

Note: If using regular expressions in the “address” portion, denote this with “/”. Backslashes must be escaped “\”.

This is a valid regular expression: "/192\\.168\\.1\\..*/"

These are invalid: "/192\.168\.1\..*/", "/192\.168\.1\..*", "192\\.168\\.1\\..*"

When authenticating, the credentials are checked. If they don’t exist or don’t match, authentication fails. Otherwise,
if domain and address are not present (or are null), authentication succeeds. If address and/or domain exist, they must
match as well for authentication to succeed.

CURVE credentials include the remote peer’s public key. Watching the INFO level log output of the auth module can
help determine the required values for a specific peer.

Configuring Agents

A remote agent must know the platform’s public key (also called the server key) to successfully authenticate. This
server key can be passed to the agent’s __init__ method in the serverkey parameter, but in most scenarios it is
preferable to add the server key to the known-hosts file.

URL-style Parameters

VOLTTRON extends ZeroMQ’s address scheme by supporting URL-style parameters for configuration. The following
parameters are supported when connecting:

• serverkey: encoded public key of remote server

• secretkey: agent’s own private/secret key

• publickey: agent’s own public key

• ipv6: instructs ZeroMQ to attempt to use IPv6

Note: Although these parameters are still supported they should rarely need to be specified in the VIP-
address URL. Agent key stores and the known-hosts file are automatically used when possible.

438 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Platform Configuration

By default, the platform only listens on the local IPC VIP socket. Additional addresses may be bound using the
--vip-address option, which can be provided multiple times to bind multiple addresses. Each VIP address
should follow the standard ZeroMQ convention of prefixing with the socket type (ipc:// or tcp://) and may include any
of the following additional URL parameters:

• domain: domain name to associate with this endpoint (defaults to “vip”)

• secretkey: alternate private/secret key (defaults to generated key for tcp://)

• ipv6: instructs ZeroMQ to attempt to use IPv6

Example Setup

Suppose agent A needs to connect to a remote platform B. First, agent A must know platform B’s public key (the server
key) and platform B’s IP address (including port). Also, platform B needs to know agent A’s public key (let’s say it is
HOVXfTspZWcpHQcYT_xGcqypBHzQHTgqEzVb4iXrcDg).

Given these values, a user on agent A’s platform adds platform B’s information to the known-hosts file.

At this point agent A has all the infomration needed to connect to platform B, but platform B still needs to add an
authentication entry for agent A.

If agent A tried to connect to platform B at this point both parties would see an error. Agent A would see an error
similar to:

No response to hello message after 10 seconds.
A common reason for this is a conflicting VIP IDENTITY.
Shutting down agent.

Platform B (if started with -v or -vv) will show an error:

2016-10-19 14:21:20,934 () volttron.platform.auth INFO: authentication failure:
→˓domain='vip', address='127.0.0.1', mechanism='CURVE', credentials=[
→˓'HOVXfTspZWcpHQcYT_xGcqypBHzQHTgqEzVb4iXrcDg']

Agent A failed to authenticat to platform B because the platform didn’t have agent A’s public in the authentication list.

To add agent A’s public key, a user on platform B runs:

(volttron)[user@platform-b]$ volttron-ctl auth add
domain []:
address []:
user_id []: Agent-A
capabilities (delimit multiple entries with comma) []:
roles (delimit multiple entries with comma) []:
groups (delimit multiple entries with comma) []:
mechanism [CURVE]:
credentials []: HOVXfTspZWcpHQcYT_xGcqypBHzQHTgqEzVb4iXrcDg
comments []:
enabled [True]:

Now if agent A can successfully connect to platform B, and platform B’s log will show:

2016-10-19 14:26:16,446 () volttron.platform.auth INFO: authentication success:
→˓domain='vip', address='127.0.0.1', mechanism='CURVE', credentials=[
→˓'HOVXfTspZWcpHQcYT_xGcqypBHzQHTgqEzVb4iXrcDg'], user_id='Agent-A'

2.41. Message Bus 439

VOLTTRON Documentation, Release 8.1.3

For a more details see the authentication walk-through.

VIP Authorization

VIP authentication and authorization go hand in hand. When an agent authenticates to a VOLTTRON platform that
agent proves its identity to the platform. Once authenticated, an agent is allowed to connect to the message bus. VIP
authorization is about giving a platform owner the ability to limit the capabilities of authenticated agents.

There are two parts to authorization:

1. Required capabilities (specified in agent’s code)

2. Authorization entries (specified via volttron-ctl auth commands)

The following example will walk through how to specify required capabilities and grant those capabilities in autho-
rization entries.

Single Capability

For this example suppose there is a temperature agent that can read and set the temperature of a particular room. The
agent author anticipates that building managers will want to limit which agents can set the temperature.

In the temperature agent, a required capability is specified by using the RPC.allow decorator:

@RPC.export
def get_temperature():

...

@RPC.allow('CAP_SET_TEMP')
@RPC.export
def set_temperature(temp):

...

In the code above, any agent can call the get_temperature method, but only agents with the CAP_SET_TEMP
capability can call set_temperature.

Note: Capabilities are arbitrary strings. This example follows the general style used for Linux capabilities, but it is
up to the agent author.

Now that a required capability has been specified, suppose a VOLTTRON platform owner wants to allow a specific
agent, say Alice Agent, to set the temperature.

The platform owner runs vctl auth add to add new authorization entries or vctl auth update to update an
existing entry. If Alice Agent is installed on the platform, then it already has an authorization entry. Running vctl
auth list shows the existing entries:

...
INDEX: 3
{

"domain": null,
"user_id": "AliceAgent",
"roles": [],
"enabled": true,
"mechanism": "CURVE",
"capabilities": [],

(continues on next page)

440 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"groups": [],
"address": null,
"credentials": "JydrFRRv-kdSejL6Ldxy978pOf8HkWC9fRHUWKmJfxc",
"comments": null

}
...

Currently AliceAgent cannot set the temperature because it does not have the CAP_SET_TEMP capability. To grant
this capability the platform owner runs vctl auth update 3:

(For any field type "clear" to clear the value.)
domain []:
address []:
user_id [AliceAgent]:
capabilities (delimit multiple entries with comma) []: CAP_SET_TEMP
roles (delimit multiple entries with comma) []:
groups (delimit multiple entries with comma) []:
mechanism [CURVE]:
credentials [JydrFRRv-kdSejL6Ldxy978pOf8HkWC9fRHUWKmJfxc]:
comments []:
enabled [True]:
updated entry at index 3

Now Alice Agent can call set_temperature via RPC. If other agents try to call that method they will get the
following exception:

error: method "set_temperature" requires capabilities set(['CAP_SET_TEMP']),
but capability list [] was provided

Multiple Capabilities

Expanding on the temperature-agent example, the set_temperature method can require agents to have multiple
capabilities:

@RPC.allow(['CAP_SET_TEMP', 'CAP_FOO_BAR'])
@RPC.export
def set_temperature():

...

This requires an agent to have both the CAP_SET_TEMP and the CAP_FOO_BAR capabilities. Multiple capabilities
can also be specified by using multiple RPC.allow decorators:

@RPC.allow('CAP_SET_TEMP')
@RPC.allow('CAN_FOO_BAR')
@RPC.export
def temperature():

...

2.41. Message Bus 441

VOLTTRON Documentation, Release 8.1.3

Capability with parameter restriction

Capabilities can also be used to restrict access to a rpc method only with certain parameter values. For example, if
Agent A exposes a method bar which accepts parameter x.

AgentA’s capability enabled exported RPC method:

@RPC.export
@RPC.allow('can_call_bar')
def bar(self, x):

return 'If you can see this, then you have the required capabilities'

You can restrict access to Agent A’s bar method to Agent B with x=1. To add this auth entry use the vctl auth
add command as show below:

vctl auth add --capabilities '{"test1_cap2":{"x":1}}' --user_id AgentB --credential
→˓vELQORgWOUcXo69DsSmHiCCLesJPa4-CtVfvoNHwIR0

The auth.json file entry for the above command would be:

{
"domain": null,
"user_id": "AgentB",
"roles": [],
"enabled": true,
"mechanism": "CURVE",
"capabilities": {
"test1_cap2": {
"x": 1

}
},
"groups": [],
"address": null,
"credentials": "vELQORgWOUcXo69DsSmHiCCLesJPa4-CtVfvoNHwIR0",
"comments": null

}

Parameter values can also be regular expressions:

(volttron)volttron@volttron1:~/git/myvolttron$ vctl auth add
domain []:
address []:
user_id []:
capabilities (delimit multiple entries with comma) []: {'test1_cap2':{'x':'/.*'}}
roles (delimit multiple entries with comma) []:
groups (delimit multiple entries with comma) []:
mechanism [CURVE]:
credentials []: vELQORgWOUcXo69DsSmHiCCLesJPa4-CtVfvoNHwIR0
comments []:
enabled [True]:
added entry domain=None, address=None, mechanism='CURVE', credentials=u
→˓'vELQORgWOUcXo69DsSmHiCCLesJPa4-CtVfvoNHwIR0', user_id='b22e041d-ec21-4f78-b32e-
→˓ab7138c22373'

The auth.json file entry for the above command would be:

{
"domain": null,

(continues on next page)

442 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"user_id": "90f8ef35-4407-49d8-8863-4220e95974c7",
"roles": [],
"enabled": true,
"mechanism": "CURVE",
"capabilities": {
"test1_cap2": {
"x": "/.*"

}
},
"groups": [],
"address": null,
"credentials": "vELQORgWOUcXo69DsSmHiCCLesJPa4-CtVfvoNHwIR0",
"comments": null

}

Protecting Pub/Sub Topics

VIP authorization enables VOLTTRON platform owners to protect pub/sub topics. More specifically, a platform
owner can limit who can publish to a given topic. This protects subscribers on that platform from receiving messages
(on the protected topic) from unauthorized agents.

Example

To protect a topic, add the topic name to $VOLTTRON_HOME/protected_topics.json. For example, the
following protected-topics file declares that the topic foo is protected:

{
"write-protect": [

{"topic": "foo", "capabilities": ["can_publish_to_foo"]}
]

}

Note: The capability name can_publish_to_foo is not special; It can be any string, but it is easier to manage
capabilities with meaningful names.

Now only agents with the capability can_publish_to_foo can publish to the topic foo. To add this capability to
authenticated agents, run vctl auth update (or volttron-ctl auth add for new authentication entries),
and enter can_publish_to_foo in the capabilities field:

capabilities (delimit multiple entries with comma) []: can_publish_to_foo

Agents that have the can_publish_to_foo capabilities can publish to topic foo. That is, such agents can call:

self.vip.pubsub.publish('pubsub', 'foo', message='Here is a message')

If unauthorized agents try to publish to topic foo they will get an exception:

to publish to topic "foo" requires capabilities ['can_publish_to_foo'], but
→˓capability list [] was provided

2.41. Message Bus 443

VOLTTRON Documentation, Release 8.1.3

Regular Expressions

Topic names in $VOLTTRON_HOME/protected_topics.json can be specified as regular expressions. In order
to use a regular expression, the topic name must begin and end with a “/”. For example:

{
"write-protect": [

{"topic": "/foo/*.*/", "capabilities": ["can_publish_to_foo"]}
]

}

This protects topics such as foo/bar and foo/anything.

VIP Enhancements

When creating VIP for VOLTTRON 3.0 we wanted to address two security concerns and one user request:

• Security Concern 1: Agents can spoof each other on the VOLTTRON message bus and fake messages.

• Security Concern 2: Agents can subscribe to topics that they are not authorized to subscribe to.

• User Request 1: Several users requested means to transfer large amounts of data between agents without using
the message bus.

VOLTTRON Interconnect Protocol (VIP) was created to address these issues but unfortunately, it broke the easy to
use pub-sub messaging model of VOLTTRON. Additionally to use the security features of VOLTTRON in 3.0 code
has become an ordeal especially when multiple platforms are concerned. Finally, VIP has introduced the requirement
for knowledge of specific other platforms to agents written by users in order to be able to communicate. The rest of
this memo focuses on defining the way VOLTTRON message bus will work going forward indefinitely and should be
used as the guiding principles for any future work on VIP and VOLTTRON.

VOLTTRON Message Bus Guiding Principles:

1. All communications between two or more different VOLTTRON platforms MUST go through the VIP Router.
Said another way, a user agent (application) should have NO capability to reach out to an agent on a different
VOLTTRON platform directly.

All communications between two or more VOLTTRON platforms must be in the form of topics on the message
bus. Agents MUST not use a distinct platform address or name to communicate via a direct connection
between two platforms.

2. VOLTTRON will use two TCP ports. One port is used to extend VIP across platforms. A second port is used
for the VOLTTRON discovery protocol (more on this to come on a different document). VIP will establish
bi-directional communication via a single TCP port.

3. In order to solve the bootstrapping problem that CurveMQ has punted on, we will modify VIP to operate similar
(behaviorally) to SSH.

A. On a single VOLTTRON platform, the platform’s public key will be made available via an API so that all agents
will be able to communicate with the platform. Additionally, the behavior of the platform will be changed so
that agents on the same platform will automatically be added to the auth.json file. No more need for user to add
the agents manually to the file. The desired behavior is similar to how SSH handles known_hosts.

444 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Note: This behavior still addresses the security request 1 & 2.

B. When connecting VOLTTRON platforms, VOLTTRON Discovery Protocol (VDP) will be used to discover the
other platforms public key to establish the router to router connection. Note that since we BANNED agent to
agent communication between two platforms, we have prevented an “O(N^2)” communication pattern and key
bootstrapping problem.

C. Authorization determines what agents are allowed to access what topics. Authorization MUST be managed
by the VOLTTRON Central platform on a per organization basis. It is not recommended to have different
authorization profiles on different VOLTTRON instances belonging to the same organization.

D. VOLTTRON message bus uses topics such as and will adopt an information model agreed upon by the VOLT-
TRON community going forward. Our initial information model is based on the OpenEIS schema going for-
ward. A different document will describe the information model we have adopted going forward. All agents are
free to create their own topics but the VOLTTRON team (going forward) will support the common VOLTTRON
information model and all agents developed by PNNL will be converted to use the new information model.

E. Two connected VOLTTRON systems will exchange a list of available topics via the message router. This will
allow each VIP router to know what topics are available at what VOLTTRON platform.

F. Even though each VOLTTRON platform will have knowledge of what topics are available around itself, no ac-
tual messages will be forwarded between VOLTTRON platforms until an agent on a specific platform subscribes
to a topic. When an agent subscribes to a topic that has a publisher on a different VOLTTRON platform, the VIP
router will send a request to its peer routers so that the messages sent to that topic will be forwarded. There will
be cases (such as clean energy transactive project) where the publisher to a topic may be multiple hops away. In
this case, the subscribe request will be sent towards the publisher through other VIP routers. In order to find the
most efficient path, we may need to keep track of the total number of hops (in terms of number of VIP routers).

G. The model described in steps 5/6/7 applies to data collection. For control applications, VOLTTRON team only
allows control actions to be originated from the VOLTTRON instance that is directly connected to that controlled
device. This decision is made to increase the robustness of the control agent and to encourage truly distributed
applications to be developed.

H. Direct agent to agent communication will be supported by creation of an ephemeral topic under the topic hier-
archy. Our measurements have shown repeatedly that the overhead of using the ZeroMQ message pub/sub is
minimal and has zero impact on communications throughput.

In summary, by making small changes to the way VIP operates, I believe that we can significantly increase the usability
of the platform and also correct the mixing of two communication platforms into VIP. VOLTTRON message bus will
return to being a pub/sub messaging system going forward. Direct agent to agent communication will be supported
through the message bus.

2.41. Message Bus 445

VOLTTRON Documentation, Release 8.1.3

Agent VIP IDENTITY Assignment Specification

This document explains how an agent obtains it’s VIP IDENTITY , how the platform sets an agent’s VIP IDENTITY
at startup, and what mechanisms are available to the user to set the VIP IDENTITY for any agent.

What is a VIP IDENTITY

A VIP IDENTITY is a platform instance unique identifier for agents. The IDENTITY is used to route messages from
one Agent through the VOLTTRON router to the recipient Agent. The VIP IDENTITY provides a consistent, user
defined, and human readable character set to build a VIP IDENTITY. VIP IDENTITIES should be composed of both
upper and lowercase letters, numbers and the following special characters.

Runtime

The primary interface for obtaining a VIP IDENTITY at runtime is via the runtime environment of the agent. At
startup the utility function vip_main shall check for the environment variable AGENT_VIP_IDENTITY. If the
AGENT_VIP_IDENTITY environment variable is not set then the vip_main function will fall back to a supplied
identity argument. vip_main will pass the appropriate identity argument to the agent constructor. If no identity is set
the Agent class will create a random VIP IDENTITY using python’s uuid4 function.

An agent that inherits from the platform’s base Agent class can get it’s current VIP IDENTITY by retrieving the value
of self.core.identity.

The primary use of the ‘identity’ argument to vip_main is for agent development. For development it allows agents
to specify a default VIP IDENTITY when run outside the platform. As platform Agents are not started via vip_main
they will simply receive their VIP IDENTITY via the identity argument when they are instantiated. Using the identity
argument of the Agent constructor to set the VIP IDENTITY via agent configuration is no longer supported.

At runtime the platform will set the environment variable AGENT_VIP_IDENTITY to the value set at installation
time.

Agents not based on the platform’s base Agent should set their VIP IDENTITY by setting the identity of the ZMQ
socket before the socket connects to the platform. If the agent fails to set it’s VIP IDENTITY via the ZMQ socket it
will be selected automatically by the platform. This platform chosen ID is currently not discoverable to the agent.

Agent Implementation

If an Agent has a preferred VIP IDENTITY (for example the Platform Driver Agent prefers to use “platform.driver”)
it may specify this as a default packed value. This is done by including a file named IDENTITY containing only the
desired VIP IDENTITY in ASCII plain text in the same directory at the setup.py file for the Agent. This will cause
the packaged agent wheel to include an instruction to set the VIP IDENTITY at installation time.

This value may be overridden at packaging or installation time.

446 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Packaging

An Agent may have it’s VIP IDENTITY configured when it is packaged. The packaged value may be used by the
platform to set the AGENT_VIP_IDENTITY environment variable for the agent process.

The packaged VIP IDENTITY may be overridden at installation time. This overrides any preferred VIP IDENTITY of
the agent. This will cause the packaged agent wheel to include an instruction to set the VIP IDENTITY at installation
time.

To specify the VIP IDENTITY when packaging use the --vip-identity option when running volttron-pkg pack-
age.

Installation

An agent may have it’s VIP IDENTITY configured when it is installed. This overrides any VIP IDENTITY specified
when the agent was packaged.

To specify the VIP IDENTITY when packaging use the --vip-identity option when running volttron-ctl install.

Installation Default VIP IDENTITY

If no VIP IDENTITY has been specified by installation time the platform will assign one automatically.

The platform uses the following template to generate a VIP IDENTITY:

"{agent_name}_{n}"

{agent_name} is substituted with the name of the actual agent such as listeneragent-0.1

{n} is a number to make VIP IDENTITY unique. {n} is set to the first unused number (starting from 1) for all
installed instances of an agent. e.g. If there are 2 listener agents installed and the first (VIP IDENTITY listeneragent-
0.1_1) is uninstalled leaving the second (VIP IDENTITY “listeneragent-0.1_2”), a new listener agent will receive the
VIP IDENTITY “listeneragent-0.1_1” when installed. The next installed listener will receive a VIP IDENTITY of
“listeneragent-0.1_3”.

The # sign is used to prevent confusing the agent version number with the installed instance number.

If an agent is repackaged with a new version number it is treated as a new agent and the number will start again from
1.

VIP IDENTITY Conflicts During Installation

If an agent is assigned a VIP IDENTITY besides the default value given to it by the platform it is possible for VIP
IDENTITY conflicts to exist between installed agents. In this case the platform rejects the installation of an agent with
a conflicting VIP IDENTITY and reports an error to the user.

2.41. Message Bus 447

VOLTTRON Documentation, Release 8.1.3

VIP IDENTITY Conflicts During Runtime

In the case where agents are not started through the platform (usually during development or when running standalone
agents) it is possible to encounter a VIP IDENTITY conflict during runtime. In this case the first agent to use a
VIP IDENTITY will function as normal. Subsequent agents will still connect to the ZMQ socket but will be silently
rejected by the platform router. The router will not route any message to that Agent. Agents using the platforms base
Agent will detect this automatically during the initial handshake with the platform. This condition will shutdown the
Agent with an error indicating a VIP IDENTITY conflict as the most likely cause of the problem.

Auto Numbering With Non-Default VIP IDENTITYs

It is possible to use the auto numbering mechanism that the default VIP IDENTITY scheme uses. Simply include the
string {n} somewhere in the requested VIP IDENTITY and it will be replaced with a number in the same manner as
the default VIP IDENTITY is. Python string.format() escaping rules apply. See this question on StackOverflow.

Script Features

The scripts/install-agent.py script supports specifying the desired VIP IDENTITY using the -i (or
--vip-identity) <identity> option

Security/Privacy

Currently, much like the TAG file in an installed agent, there is nothing to stop someone from modifying the IDENTITY
file in the installed agent.

Constraints and Limitations

Currently there is no way for an agent based on the platform base Agent class to recover from a VIP IDENTITY
conflict. This case only affects developers and a very tiny minority of users and is reported via an error message, there
are currently no plans to fix it.

Design Overview

What Problems does VIP Address?

When VOLTTRON agents, controllers, or other entities needed to exchange data, they previously used the first gener-
ation pub/sub messaging mechanism and ad-hoc methods to set up direct connections. While the pub/sub messaging
is easy to implement and use, it suffers from several limitations:

• It requires opening two listening sockets: one each for publishing and subscribing.

• There is no trivial way to prevent message spoofing.

• There is no trivial way to enable private messaging

• It is not ideal for peer-to-peer communications.

These limitations have severe security implications. For improved security in VOLTTRON, the communications
protocol must provide a method for secure data exchange that is intuitive and simple to implement and use.

Many messaging platforms already provides many of the building blocks to implement encrypted and authenticated
communications over a shared socket. They include a socket type implementing the router pattern. What remains is

448 Chapter 2. Features

http://stackoverflow.com/questions/5466451/how-can-i-print-a-literal-characters-in-python-string-and-also-use-format

VOLTTRON Documentation, Release 8.1.3

a protocol built on the ZeroMQ and/or RabbitMQ to provide a single connection point, secure message passing, and
retain the ability for entities to come and go as they please.

VIP is VOLTTRON protocol implementation targeting the limitations above.

ZeroMQ

Why ZeroMQ?

Rather than reinvent the wheel, VIP makes use of many features already implemented in ZeroMQ, including ZAP
and CurveMQ. While VIP doesn’t require the use of ZAP or CurveMQ, their use substantially improves security by
encrypting traffic over public networks and limiting connections to authenticated peers.

ZeroMQ also provides reliable transports with built-in framing, automatic reconnection, in-process zero-copy message
passing, abstractions for underlying protocols, and so much more. While some of these features create other pain
points, they are minimal compared with the effort of either reimplementing or cobbling together libraries.

VIP is a routing protocol

VIP uses the ZeroMQ router pattern. Specifically, the router binds a ROUTER socket and peers connect using a
DEALER or ROUTER socket. Unless the peer is connecting a single socket to multiple routers, using the DEALER
socket is easiest, but there are instances where using a ROUTER is more appropriate. One must just exercise care to
include the proper address envelope to ensure proper routing.

Extensible Security

VIP makes no assumptions about the security mechanisms used. It works equally well over encrypted or unencrypted
channels. Any connection-level authentication and encryption is handled by ZAP. Message-level authentication can
be implemented in the protocols and services using VIP or by utilizing message properties set in ZAP replies.

ZeroMQ Compatibility

For enhanced security, VOLTTRON recommends libzmq version 4.1 or greater, however, most features of VIP are
available with older versions. The following is an incomplete list of core features available with recent versions of
libzmq.

• Version 3.2:

– Basic, unauthenticated, unencrypted routing

– Use ZMQ_ROUTER_BEHAVIOR socket option instead of ZMQ_ROUTER_MANDATORY

• Version 4.0:

– Adds authentication and encryption via ZAP

• Version 4.1:

– Adds message properties allowing correlating authentication tokens to messages

2.41. Message Bus 449

VOLTTRON Documentation, Release 8.1.3

Message Format and Version Detection

VIP uses a simple, multi-frame format for its messages. The first one (for peers) or two (for router) frames contain the
delivery address(es) and are follow immediately by the VIP signature VIP1. The first characters of the signature are
used to match the protocol and the last character digit indicates the protocol version, which will be incremented as the
protocol is revised. This allows for fail-fast behavior and backward compatibility while being simple to implement in
any language supported by ZeroMQ.

Formal Specification

Architecture

VIP defines a message-based dialog between a router that transfers data between peers. The router and peers SHALL
communicate using the following socket types and transports:

• The router SHALL use a ROUTER socket.

• Peers SHALL use a DEALER or ROUTER socket.

• The router SHALL bind to one or more endpoints using inproc, tcp, or ipc address types.

• Peers SHALL connect to these endpoints.

• There MAY be any number of peers.

Message Format

A routing exchange SHALL consist of a peer sending a message to the router followed by the router receiving the
message and sending it to the destination peer.

Messages sent to the router by peers SHALL consist of the following message frames:

• The recipient, which SHALL contain the socket identity of the destination peer.

• The protocol signature, which SHALL contain the four octets “VIP1”.

• The user id, which SHALL be an implementation-defined value.

• The request id, which SHALL contain an opaque binary blob.

• The subsystem, which SHALL contain a string.

• The data, which SHALL be zero or more subsystem-specific opaque frames.

Messages received from a peer by the router will automatically have a sender frame prepended to the message by
the ROUTER socket. When the router forwards the message, the sender and recipient fields are swapped so that the
recipient is in the first frame and the sender is in the second frame. The recipient frame is automatically stripped by
the ROUTER socket during delivery. Peers using ROUTER sockets must prepend the message with an intermediary
frame, which SHALL contain the identity of a router socket.

Messages received from the router by peers SHALL consist of the following message frames:

• The sender, which SHALL contain the socket identity of the source peer.

• The protocol signature, which SHALL contain the four octets “VIP1”.

• The user id, which MAY contain a UTF-8 encoded string.

• The request id, which SHALL contain an opaque binary blob.

• The subsystem, which SHALL contain a non-empty string.

450 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

• The data, which SHALL be zero or more subsystem-specific opaque frames.

The various fields have these meanings:

• sender: the ZeroMQ DEALER or ROUTER identity of the sending (source) peer.

• recipient: the ZeroMQ DEALER or ROUTER identity of the recipient (destination) peer.

• intermediary: the ZeroMQ ROUTER identity of the intermediary router.

• user id: VIP authentication metadata set in the authenticator. See the discussion below for more information on
this value.

• request id: the meaning of this field is defined by the sending peer. Replies SHALL echo the request id without
modifying it.

• subsystem: this specifies the peer subsystem the data is intended for. The length of a subsystem name SHALL
NOT exceed 255 characters and MUST only contain ASCII characters.

• data: provides the data for the given subsystem. The number of frames required is defined by each subsystem.

User ID

The value in the user id frame depends on the implementation and the version of ZeroMQ. If ZAP is used with libzmq
4.1.0 or newer, peers should send an empty string for the user id and the ZAP authenticator will replace it with an
authentication token which receiving peers may use to authorize access. If ZAP is not used or a version of libzmq is
used which lacks support for retrieving the user id metadata, an authentication subsystem may be used to authenticate
peers. The authentication subsystem SHALL provide peers with private tokens that must be sent with each message
in the user id frame and which the router will substitute with a public token before forwarding. If the message cannot
be authenticated, the user id received by peers SHALL be a zero-length string.

Socket Types

Peers communicating via the router will typically use DEALER sockets and should not require additional handling.
However, a DEALER peer may only connect to a single router. Peers may use ROUTER sockets to connect to multiple
endpoints, but must prepend the routing ID of the destination.

When using a DEALER socket:

• A peer SHALL not send in intermediary address.

• A peer SHALL connect to a single endpoint.

When using a ROUTER socket:

• A peer SHALL prepend the intermediary routing ID of to the message frames.

• A peer MAY connect to multiple endpoints.

2.41. Message Bus 451

VOLTTRON Documentation, Release 8.1.3

Routing Identities

Routing identities are set on a socket using the ZMQ_IDENTITY socket option and MUST be set on both ROUTER
and DEALER sockets. The following additional requirements are placed on the use of peer identities:

• Peers SHALL set a valid identity rather than rely on automatic identity generation.

• The router MAY drop messages with automatically generated identities, which begin with the zero byte (’0’).

A zero length identity is invalid for peers and is, therefore, unroutable. It is used instead to address the router itself.

• Peers SHALL use a zero length recipient to address the router.

• Messages sent from the router SHALL have a zero length sender address.

Error Handling

The documented default behavior of ZeroMQ ROUTER sockets when entering the mute state (when the send buffer
is full) is to silently discard messages without blocking. This behavior, however, is not consistently observed. Quietly
discarding messages is not the desired behavior anyway because it prevents peers from taking appropriate action to
the error condition.

• Routers SHALL set the ZMQ_SNDTIMEO socket option to 0.

• Routers SHALL forward EAGAIN errors to sending peers.

It is also the default behavior of ROUTER sockets to silently drop messages addressed to unknown peers.

• Routers SHALL set the ZMQ_ROUTER_MANDATORY socket option.

• Routers SHALL forward EHOSTUNREACH errors to sending peers, unless the recipient address matches the
sender.

Most subsystems are optional and some way of communicating unsupported subsystems to peers is needed.

• The error code 93, EPROTONOSUPPORT, SHALL be returned to peers to indicate unsupported or unimple-
mented subsystems.

The errors above are reported via the error subsystem. Other errors MAY be reported via the error subsystem, but
subsystems SHOULD provide mechanisms for reporting subsystem-specific errors whenever possible.

An error message must contain the following:

• The recipient frame SHALL contain the socket identity of the original sender of the message.

• The sender frame SHALL contain the socket identity of the reporting entity, usually the router.

• The request ID SHALL be copied from the from the message which triggered the error.

• The subsystem frame SHALL be the 5 octets ‘error’.

• The first data frame SHALL be a string representation of the error number.

• The second data frame SHALL contain a UTF-8 string describing the error.

• The third data frame SHALL contain the identity of the original recipient, as it may differ from the reporter.

• The fourth data frame SHALL contain the subsystem copied from the subsystem field of the offending message.

452 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Subsystems

Peers may support any number of communications protocols or subsystems. For instance, there may be a remote
procedure call (RPC) subsystem which defines its own protocol. These subsystems are outside the scope of VIP and
this document with the exception of the hello and ping subsystems.

• A router SHALL implement the hello subsystem.

• All peers and routers SHALL implement the ping subsystem.

The hello Subsystem

The hello subsystem provides one simple RPC-style routine for peers to probe the router for version and identity
information.

A peer hello request message must contain the following:

• The recipient frame SHALL have a zero length value.

• The request id MAY have an opaque binary value.

• The subsystem SHALL be the 5 characters “hello”.

• The first data frame SHALL be the five octets ‘hello’ indicating the operation.

A peer hello reply message must contain the following:

• The sender frame SHALL have a zero length value.

• The request id SHALL be copied unchanged from the associated request.

• The subsystem SHALL be the 7 characters “hello”.

• The first data frame SHALL be the 7 octets ‘welcome’.

• The second data frame SHALL be a string containing the router version number.

• The third data frame SHALL be the router’s identity blob.

• The fourth data frame SHALL be the peer’s identity blob.

The hello subsystem can help a peer with the following tasks:

• Test that a connection is established.

• Discover the version of the router.

• Discover the identity of the router.

• Discover the identity of the peer.

• Discover authentication metadata.

For instance, if a peer will use a ROUTER socket for its connections, it must first know the identity of the router.
The peer might first connect with a DEALER socket, issue a hello, and use the returned identity to then connect the
ROUTER socket.

2.41. Message Bus 453

VOLTTRON Documentation, Release 8.1.3

The ping Subsystem

The ping subsystem is useful for testing the presence of a peer and the integrity and latency of the connection. All
endpoints, including the router, must support the ping subsystem.

A peer ping request message must contain the following:

• The recipient frame SHALL contain the identity of the endpoint to query.

• The request id MAY have an opaque binary value.

• The subsystem SHALL be the 4 characters “ping”.

• The first data frame SHALL be the 4 octets ‘ping’.

• There MAY be zero or more additional data frames containing opaque binary blobs.

A ping response message must contain the following:

• The sender frame SHALL contain the identity of the queried endpoint.

• The request id SHALL be copied unchanged from the associated request.

• The subsystem SHALL be the 4 characters “ping”.

• The first data frame SHALL be the 4 octets ‘pong’.

• The remaining data frames SHALL be copied from the ping request unchanged, starting with the second data
frame.

Any data can be included in the ping and should be returned unchanged in the pong, but limited trust should be placed
in that data as it is possible a peer might modify it against the direction of this specification.

Discovery

VIP does not define how to discover peers or routers. Typical options might be to hard code the router address in peers
or to pass it in via the peer configuration. A well known (i.e. statically named) directory service might be used to
register connected peers and allow for discovery by other peers.

Example Exchanges

These examples show the messages as sent on the wire as sent or received by peers using DEALER sockets. The
messages received or sent by peers or routers using ROUTER sockets will have an additional address at the start. We
do not show the frame sizes or flags, only frame contents.

Example of hello Request

This shows a hello request sent by a peer, with identity “alice”, to a connected router, with identity “router”.

+-+
| | Empty recipient frame
+-+----+
| VIP1 | Signature frame
+-+----+
| | Empty user ID frame
+-+----+
| 0001 | Request ID, for example "0001"
+------++

(continues on next page)

454 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

| hello | Subsystem, "hello" in this case
+-------+
| hello | Operation, "hello" in this case
+-------+

This example assumes a DEALER socket. If a peer uses a ROUTER socket, it SHALL prepend an additional frame
containing the router identity, similar to the following example.

This shows the example request received by the router:

+-------+
| alice | Sender frame, "alice" in this case
+-+-----+
| | Empty recipient frame
+-+----+
| VIP1 | Signature frame
+-+----+
| | Empty user ID frame
+-+----+
| 0001 | Request ID, for example "0001"
+------++
| hello | Subsystem, "hello" in this case
+-------+
| hello | Operation, "hello" in this case
+-------+

This shows an example reply sent by the router:

+-------+
| alice | Recipient frame, "alice" in this case
+-+-----+
| | Empty sender frame
+-+----+
| VIP1 | Signature frame
+-+----+
| | Empty authentication metadata in user ID frame
+-+----+
| 0001 | Request ID, for example "0001"
+------++
| hello | Subsystem, "hello" in this case
+-------+-+
| welcome | Operation, "welcome" in this case
+-----+---+
| 1.0 | Version of the router
+-----+--+
| router | Router ID, "router" in this case
+-------++
| alice | Peer ID, "alice" in this case
+-------+

This shows an example reply received by the peer:

+-+
| | Empty sender frame
+-+----+
| VIP1 | Signature frame
+-+----+

(continues on next page)

2.41. Message Bus 455

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

| | Empty authentication metadata in user ID frame
+-+----+
| 0001 | Request ID, for example "0001"
+------++
| hello | Subsystem, "hello" in this case
+-------+-+
| welcome | Operation, "welcome" in this case
+-----+---+
| 1.0 | Version of the router
+-----+--+
| router | Router ID, "router" in this case
+-------++
| alice | Peer ID, "alice" in this case
+-------+

Example of ping Subsystem

This shows a ping request sent by the peer “alice” to the peer “bob” through the router “router”.

+-----+
| bob | Recipient frame, "bob" in this case
+-----++
| VIP1 | Signature frame
+-+----+
| | Empty user ID frame
+-+----+
| 0002 | Request ID, for example "0002"
+------+
| ping | Subsystem, "ping" in this case
+------+
| ping | Operation, "ping" in this case
+------+-----+
| 1422573492 | Data, a single frame in this case (Unix timestamp)
+------------+

This shows the example request received by the router:

+-------+
| alice | Sender frame, "alice" in this case
+-----+-+
| bob | Recipient frame, "bob" in this case
+-----++
| VIP1 | Signature frame
+-+----+
| | Empty user ID frame
+-+----+
| 0002 | Request ID, for example "0002"
+------+
| ping | Subsystem, "ping" in this case
+------+
| ping | Operation, "ping" in this case
+------+-----+
| 1422573492 | Data, a single frame in this case (Unix timestamp)
+------------+

This shows the example request forwarded by the router:

456 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

+-----+
| bob | Recipient frame, "bob" in this case
+-----+-+
| alice | Sender frame, "alice" in this case
+------++
| VIP1 | Signature frame
+-+----+
| | Empty authentication metadata in user ID frame
+-+----+
| 0002 | Request ID, for example "0002"
+------+
| ping | Subsystem, "ping" in this case
+------+
| ping | Operation, "ping" in this case
+------+-----+
| 1422573492 | Data, a single frame in this case (Unix timestamp)
+------------+

This shows the example request received by “bob”:

+-------+
| alice | Sender frame, "alice" in this case
+------++
| VIP1 | Signature frame
+-+----+
| | Empty authentication metadata in user ID frame
+-+----+
| 0002 | Request ID, for example "0002"
+------+
| ping | Subsystem, "ping" in this case
+------+
| ping | Operation, "ping" in this case
+------+-----+
| 1422573492 | Data, a single frame in this case (Unix timestamp)
+------------+

If “bob” were using a ROUTER socket, there would be an additional frame prepended to the message containing the
router identity, “router” in this case.

This shows an example reply from “bob” to “alice”

+-------+
| alice | Recipient frame, "alice" in this case
+------++
| VIP1 | Signature frame
+-+----+
| | Empty user ID frame
+-+----+
| 0002 | Request ID, for example "0002"
+------+
| ping | Subsystem, "ping" in this case
+------+
| pong | Operation, "pong" in this case
+------+-----+
| 1422573492 | Data, a single frame in this case (Unix timestamp)
+------------+

The message would make its way back through the router in a similar fashion to the request.

2.41. Message Bus 457

VOLTTRON Documentation, Release 8.1.3

Reference Implementation

Reference VIP router: https://github.com/VOLTTRON/volttron/blob/master/volttron/platform/vip/router.py

Reference VIP peer: https://github.com/VOLTTRON/volttron/blob/master/volttron/platform/vip/socket.py

2.41.3 RabbitMQ Overview

RabbitMQ is a new message bus that was integrated with VOLTTRON in VOLTTRON 6 version. RabbitMQ pro-
vides many of the features off the shelf that had to be custom built for ZeroMQ based message bus. VOLTTRON
leverages many of these features and take advantage of large pre-existing and growing industry support for RabbitMQ
development.

Note: Some of the RabbitMQ summary/overview documentation and supporting images added here are taken from
the RabbitMQ official documentation.

RabbitMQ Library

RabbitMQ is the most popular messaging library with over 35,000 production deployments. It is highly scalable, easy
to deploy, runs on many operating systems and cloud environments. It supports many kinds of distributed deployment
methodologies such as clusters, federation and shovels.

RabbitMQ uses Advanced Message Queueing Protocol (AMQP) and works on the basic producer consumer model. A
consumer is a program that consumes/receives messages and producer is a program that sends the messages. Following
are some important definitions that we need to know before we proceed.

• Queue - Queues can be considered like a post box that stores messages until consumed by the consumer. Each
consumer must create a queue to receives messages that it is interested in receiving. We can set properties to the
queue during it’s declaration. The queue properties are:

– Name - Name of the queue

– Durable - Flag to indicate if the queue should survive broker restart.

– Exclusive - Used only for one connection and it will be removed when connection is closed.

– Auto-queue - Flag to indicate if auto-delete is needed. The queue is deleted when last consumer un-
subscribes from it.

– Arguments - Optional, can be used to set message TTL (Time To Live), queue limit etc.

• Bindings - Consumers bind the queue to an exchange with binding keys or routing patterns. Producers send
messages and associate them with a routing key. Messages are routed to one or many queues based on a pattern
matching between a message routing key and binding key.

• Exchanges - Exchanges are entities that are responsible for routing messages to the queues based on the routing
pattern/binding key used. They look at the routing key in the message when deciding how to route messages
to queues. There are different types of exchanges and one must choose the type of exchange depending on the
application design requirements

1. Fanout - It blindly broadcasts the message it receives to all the queues it knows.

2. Direct - Here, the message is routed to a queue if the routing key of the message exactly matches the
binding key of the queue.

458 Chapter 2. Features

https://github.com/VOLTTRON/volttron/blob/master/volttron/platform/vip/router.py
https://github.com/VOLTTRON/volttron/blob/master/volttron/platform/vip/socket.py
https://www.rabbitmq.com/documentation.html

VOLTTRON Documentation, Release 8.1.3

3. Topic - Here, the message is routed to a queue based on pattern matching of the routing key with the
binding key. The binding key and the routing key pattern must be a list of words delimited by dots, for
example, “car.subaru.outback” or “car.subaru.*”, “car.#”. A message sent with a particular routing key
will be delivered to all the queues that are bound with a matching binding key with some special rules as

‘*’ (star) - can match exactly one word in that position. ‘#’ (hash) - can match zero or more words

4. Headers - If we need more complex matching then we can add a header to the message with all the
attributes set to the values that need to be matched. The message is considered matching if the values of
the attributes in the header is equal to that of the binding. The Header exchange ignores the routing key.

We can set some properties of the exchange during it’s declaration.

– Name - Name of the exchange

– Durable - Flag to indicate if the exchange should survive broker restart.

– Auto-delete - Flag indicates if auto-delete is needed. If set to true, the exchange is deleted when the last
queue is unbound from it.

– Arguments - Optional, used by plugins and broker-specific features

Lets use an example to understand how they all fit together. Consider an example where there are four consumers
(Consumer 1 - 4) interested in receiving messages matching the pattern “green”, “red” or “yellow”. In this example,
we are using a direct exchange that will route the messages to the queues only when there is an exact match of the
routing key of the message with the binding key of the queues. Each of the consumers declare a queue and bind the
queue to the exchange with a binding key of interest. Lastly, we have a producer that is continuously sending messages
to exchange with routing key “green”. The exchange will check for an exact match and route the messages to only
Consumer 1 and Consumer 3.

For more information about queues, bindings, exchanges, please refer to the RabbitMQ tutorial.

2.41. Message Bus 459

https://www.rabbitmq.com/getstarted.html

VOLTTRON Documentation, Release 8.1.3

Authentication in RabbitMQ

By default RabbitMQ supports SASL PLAIN authentication with username and password. RabbitMQ supports other
SASL authentication mechanisms using plugins. In VOLTTRON we use one such external plugin based on x509
certificates (https://github.com/rabbitmq/rabbitmq-auth-mechanism-ssl). This authentication is based on a technique
called public key cryptography which consists of a key pair - a public key and a private key. Data that has been
encrypted with a public key can only be decrypted with the corresponding private key and vice versa. The owner of
key pair makes the public key available and keeps the private confidential. To send a secure data to a receiver, a sender
encrypts the data with the receiver’s public key. Since only the receiver has access to his own private key only the
receiver can decrypted. This ensures that others, even if they can get access to the encrypted data, cannot decrypt it.
This is how public key cryptography achieves confidentiality.

A digital certificate is a digital file that is used to prove ownership of a public key. Certificates act like identification
cards for the owner/entity. Certificates are therefore crucial to determine that a sender is using the right public key
to encrypt the data in the first place. Digital Certificates are issued by Certification Authorities(CA). Certification
Authorities fulfill the role of the Trusted Third Party by accepting Certificate applications from entities, authenticating
applications, issuing Certificates and maintaining status information about the Certificates issued. Each CA has its
own public private key pair and its public key certificate is called a root CA certificate. The CA attests to the identity
of a Certificate applicant when it signs the Digital Certificate using its private key.

In x509 based authentication, a signed certificate is presented instead of username/password for authentication and
if the server recognizes the the signer of the certificate as a trusted CA, accepts and allows the connection. Each
server/system can maintain its own list of trusted CAs (i.e. list of public certificates of CAs). Certificates signed by
any of the trusted CA would be considered trusted. Certificates can also be signed by intermediate CAs that are in turn
signed by a trusted.

This section only provides a brief overview about the SSL based authentication. Please refer to the vast material
available online for detailed description. Some useful links to start:

• https://en.wikipedia.org/wiki/Public-key_cryptography

• https://robertheaton.com/2014/03/27/how-does-https-actually-work/

Management Plugin

The RabbitMQ-management plugin provides an HTTP-based API for management and monitoring of RabbitMQ
nodes and clusters, along with a browser-based UI and a command line tool, rabbitmqadmin. The management
interface allows you to:

• Create, Monitor the status and delete resources such as virtual hosts, users, exchanges, queues etc.

• Monitor queue length, message rates and connection information and more

• Manage users and add permissions (read, write and configure) to use the resources

• Manage policies and runtime parameters

• Send and receive messages (for trouble shooting)

For more detailed information about the management plugin, please refer to RabbitMQ documentation on the Man-
agement Plugin.

460 Chapter 2. Features

https://github.com/rabbitmq/rabbitmq-auth-mechanism-ssl
https://en.wikipedia.org/wiki/Public-key_cryptography
https://robertheaton.com/2014/03/27/how-does-https-actually-work/
https://www.rabbitmq.com/management.html
https://www.rabbitmq.com/management.html

VOLTTRON Documentation, Release 8.1.3

Message Bus Plugin Framework

The message bus plugin framework aims to decouple the VOLTTRON specific code from the message bus implemen-
tation without compromising the existing features of the platform. The concept of the plugin framework is similar to
that used in historian or driver framework i.e, we should be easily able to support multiple message buses and be able
to use any of them by following few installation and setup steps.

Message Bus Refactor

It consists of five components

1. New connection class per message bus

2. Extensions to platform router functionality

3. Extensions to core agent functionality

4. A proxy agent for each message bus to support backward compatibility

5. Authentication related changes

Connection class

A connection class that has methods to handle

1. Connection to new message bus.

2. Set properties such as message transmission rate, send/receive buffer sizes, open socket limits etc.

3. Send/receive messages from the underlying layer.

4. Error handling functionality.

5. Disconnect from the message bus

Platform Level Changes

A new message bus flag is introduced to indicate the type of message bus used by the platform. If no message bus flag
is added in the platform config file, the platform uses default ZeroMQ based message bus.

Path of the config: $VOLTTRON_HOME/config

[volttron]
vip-address = tcp://127.0.0.1:22916
instance-name = volttron1
message-bus = rmq

Please note, the valid message types are ‘zmq’ and ‘rmq’.

On startup, platform checks for the type of message bus and creates appropriate router module. Please note, ZeroMQ
router functionality remains unchanged. However, a new router module with limited functionality is added for Rab-
bitMQ message bus. The actual routing of messages is handed over to the RabbitMQ broker and router module will
only handle some of the necessary subsystem messages such as “hello”, “peerlist”, “query” etc. If a new message bus
needs to be added then the complexity of the router module depends on whether the messaging library uses a broker
based or broker less (as in case of ZeroMQ) protocol.

2.41. Message Bus 461

VOLTTRON Documentation, Release 8.1.3

Agent Core Changes

The application specific code of the agent remains unchanged. The agent core functionality is modified to check the
type of message bus and connect to and use the appropriate message bus. On startup, the agent Core checks the type
of message bus, connects to appropriate message bus and routes messages to appropriate subsystem. All subsystem
messages are encapsulated inside a message bus agnostic VIP message object. If a new message bus needs to be added,
then we would have to extend the Agent Core to connect to new message bus.

Compatibility Between VOLTTRON Instances Running On Different Message Buses

All the agents connected to local platform uses the same message bus that the platform is connected to. But if we
need agents running on different platforms with different message buses to communicate with each other then we
need some kind of proxy entity or bridge that establishes the connection, handles the message routing and performs
the message translation between the different message formats. To achieve that, we have a proxy agent that acts as a
bridge between the local message bus and remote message bus. The role of the proxy agent is to

• Maintain connections to internal and external message bus.

• Route messages from internal to external platform.

• Route messages from external to internal platform.

The above figure shows three VOLTTRON instances with V1 connected to ZMQ message bus, V2 connected to RMQ
message bus and V3 connected to XYZ (some message bus of the future) and all three want to connect to each other.
Then V2 and V3 will have proxy agents that get connected to the local bus and to the remote bus and forward messages
from one to another.

462 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

RabbitMQ Based VOLTTRON

RabbitMQ VOLTTRON uses the Pika library for the RabbitMQ message bus implementation. To install Pika, it is
recommended to use the VOLTTRON bootstrap.py script:

python3 bootstrap.py --rabbitmq

Configuration

To setup a VOLTTRON instance to use the RabbitMQ message bus, we need to first configure VOLTTRON to use the
RabbitMQ message library. The contents of the RabbitMQ configuration file should follow the pattern below.

Path: $VOLTTRON_HOME/rabbitmq_config.yml

#host parameter is mandatory parameter. fully qualified domain name
host: mymachine.pnl.gov

mandatory. certificate data used to create root ca certificate. Each volttron
instance must have unique common-name for root ca certificate
certificate-data:
country: 'US'
state: 'Washington'
location: 'Richland'
organization: 'PNNL'
organization-unit: 'VOLTTRON Team'
volttron1 has to be replaced with actual instance name of the VOLTTRON
common-name: 'volttron1_root_ca'

#
optional parameters for single instance setup
#
virtual-host: 'volttron' # defaults to volttron

use the below four port variables if using custom rabbitmq ports
defaults to 5672
amqp-port: '5672'

defaults to 5671
amqp-port-ssl: '5671'

defaults to 15672
mgmt-port: '15672'

defaults to 15671
mgmt-port-ssl: '15671'

defaults to true
ssl: 'true'

defaults to ~/rabbitmq_server/rabbbitmq_server-3.7.7
rmq-home: "~/rabbitmq_server/rabbitmq_server-3.7.7"

Each VOLTTRON instance resides within a RabbitMQ virtual host. The name of the virtual host needs to be unique per
VOLTTRON instance if there are multiple virtual instances within a single host/machine. The hostname needs to be
able to resolve to a valid IP. The default port of an AMQP port without authentication is 5672 and with authentication
it is 5671. The default management HTTP port without authentication is 15672 and with authentication is 15671.
These needs to be set appropriately if the default ports are not used.

2.41. Message Bus 463

VOLTTRON Documentation, Release 8.1.3

The ‘ssl’ flag indicates if SSL based authentication is required or not. If set to True, information regarding SSL certifi-
cates needs to be also provided. SSL based authentication is described in detail in Authentication And Authorization
With RabbitMQ Message Bus.

To configure the VOLTTRON instance to use RabbitMQ message bus, run the following command:

vcfg rabbitmq single [--config optional path to rabbitmq_config.yml]

At the end of the setup process, a RabbitMQ broker is setup to use the configuration provided. A new topic exchange
for the VOLTTRON instance is created within the configured virtual host.

On platform startup, VOLTTRON checks for the type of message bus to be used. If using the RabbitMQ message bus,
the RabbitMQ platform router is instantiated. The RabbitMQ platform router:

• Connects to RabbitMQ broker (with or without authentication)

• Creates a VIP queue and binds itself to the “VOLTTRON” exchange with binding key <instance-name>.router.
This binding key makes it unique across multiple VOLTTRON instances in a single machine as long as each
instance has a unique instance name.

• Handles messages intended for router module such as hello, peerlist, query etc.

• Handles “unrouteable” messages - Messages which cannot be routed to any destination agent are captured and
an error message indicating “Host Unreachable” error is sent back to the caller.

• Disconnects from the broker when the platform shuts down.

When any agent is installed and started, the Agent Core checks for the type of message bus used. If it is RabbitMQ
message bus then:

• It creates a RabbitMQ user for the agent

• If SSL based authentication is enabled, client certificates for the agent is created

• Connect to the RabbitQM broker with appropriate connection parameters

• Creates a VIP queue and binds itself to the “VOLTTRON” exchange with binding key <instance-name>.<agent
identity>

• Sends and receives messages using Pika library methods.

• Checks for the type of subsystem in the message packet that it receives and calls the appropriate subsystem
message handler.

• Disconnects from the broker when the agent stops or platform shuts down.

RPC In RabbitMQ VOLTTRON

The agent functionality remain unchanged regardless of the underlying message bus used, meaning they can continue
to use the same RPC interfaces without any change.

464 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Consider two agents with VIP identities “agent_a” and “agent_b” connected to VOLTTRON platform with instance
name “volttron1”. Agent A and B each have a VIP queue with binding key volttron1.agent_a” and “volttron1.agent_b”.
Following is the sequence of operation when Agent A wants to make RPC call to Agent B:

1. Agent A makes a RPC call to Agent B.

agent_a.vip.rpc.call("agent_b", set_point, "point_name", 2.5)

2. RPC subsystem wraps this call into a VIP message object and sends it to Agent B.

3. The VOLTTRON exchange routes the message to Agent B as the destination routing in the VIP message object
matches with the binding key of Agent B.

4. Agent Core on Agent B receives the message, unwraps the message to find the subsystem type and calls the
RPC subsystem handler.

5. RPC subsystem makes the actual RPC call set_point() and gets the result. It then wraps into VIP message object
and sends it back to the caller.

6. The VOLTTRON exchange routes it to back to Agent A.

7. Agent Core on Agent A calls the RPC subsystem handler which in turn hands over the RPC result to Agent A
application.

PUBSUB In RabbitMQ VOLTTRON

The agent functionality remains unchanged irrespective of the platform using ZeroMQ based pubsub or RabbitMQ
based pubsub, i.e. agents continue to use the same PubSub interfaces and use the same topic format delimited by
“/”. Since RabbitMQ expects binding key to be delimited by ‘.’, RabbitMQ PUBSUB internally replaces ‘/’ with “.”.
Additionally, all agent topics are converted to _pubsub__.<instance_name>.<remainder of topic> to
differentiate them from the main Agent VIP queue binding.

2.41. Message Bus 465

VOLTTRON Documentation, Release 8.1.3

Consider two agents with VIP identities “agent_a” and “agent_b” connected to VOLTTRON platform with in-
stance name “volttron1”. Agent A and B each have a VIP queue with binding key “volttron1.agent_a” and “volt-
tron1.agent_b”. Following is the sequence of operation when Agent A subscribes to a topic and Agent B publishes to
same the topic:

1. Agent B makes subscribe call for topic “devices”.

agent_b.vip.pubsub.subscribe("pubsub", prefix="devices", callback=self.onmessage)

2. Pubsub subsystem creates binding key from the topic __pubsub__.volttron1.devices.#

3. It creates a queue internally and binds the queue to the VOLTTRON exchange with the above binding key.

4. Agent B is publishing messages with topic: “devices/hvac1”.

agent_b.vip.pubsub.publish("pubsub", topic="devices/hvac1", headers={}, message="foo
→˓").

5. PubSub subsystem internally creates a VIP message object and publishes on the VOLTTRON exchange.

6. RabbitMQ broker routes the message to Agent B as routing key in the message matches with the binding key of
the topic subscription.

7. The pubsub subsystem unwraps the message and calls the appropriate callback method of Agent A.

If agent wants to subscribe to topic from remote instances, it uses:

agent.vip.subscribe('pubsub', 'devices.hvac1', all_platforms=True)

It is internally set to __pubsub__.*.<remainder of topic>

466 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Further Work

The Pubsub subsystem for the ZeroMQ message bus performs O(N) comparisons where N is the number of unique
subscriptions. The RabbitMQ Topic Exchange was enhanced in version 2.6.0 to reduce the overhead of additional
unique subscriptions to almost nothing in most cases. We speculate they are using a tree structure to store the binding
keys which would reduce the search time to O(1) in most cases and O(ln) in the worst case. The VOLTTRON PubSub
with ZeroMQ could be updated to match this performance scalability with some effort.

RabbitMQ Management Tool Integrated Into VOLTTRON

Some of the important native RabbitMQ control and management commands are now integrated with the :ref`volttron-
ctl <Platform-Commands>` (vctl) utility. Using volttron-ctl’s RabbitMQ management utility, we can control and
monitor the status of RabbitMQ message bus:

vctl rabbitmq --help
usage: vctl command [OPTIONS] ... rabbitmq [-h] [-c FILE] [--debug]

[-t SECS]
[--msgdebug MSGDEBUG]
[--vip-address ZMQADDR]
...

subcommands:

add-vhost add a new virtual host
add-user Add a new user. User will have admin privileges

i.e,configure, read and write
add-exchange add a new exchange
add-queue add a new queue
list-vhosts List virtual hosts
list-users List users
list-user-properties

List users
list-exchanges add a new user
list-exchange-properties

list exchanges with properties
list-queues list all queues
list-queue-properties

list queues with properties
list-bindings list all bindings with exchange
list-federation-parameters

list all federation parameters
list-shovel-parameters

list all shovel parameters
list-policies list all policies
remove-vhosts Remove virtual host/s
remove-users Remove virtual user/s
remove-exchanges Remove exchange/s
remove-queues Remove queue/s
remove-federation-parameters

Remove federation parameter
remove-shovel-parameters

Remove shovel parameter
remove-policies Remove policy

For information about using RabbitMQ in multi-platform deployments, view the docs

2.41. Message Bus 467

VOLTTRON Documentation, Release 8.1.3

Deployments

The platform installation docs describe performing first time setup for single machine RabbitMQ deployments.

See the multi-platform RabbitMQ docs for setting up shovel or federation in multi-platform RabbitMQ deployments.

Authentication And Authorization With RabbitMQ Message Bus

Authentication In RabbitMQ VOLTTRON

RabbitMQ VOLTTRON uses SSL based authentication, rather than the default username and password authentication.
VOLTTRON adds SSL based configuration entries into the rabbitmq.conf file during the setup process. The necessary
SSL configurations can be seen by running the following command:

cat ~/rabbitmq_server/rabbitmq_server-3.7.7/etc/rabbitmq/rabbitmq.conf

The configurations required to enable SSL:

listeners.ssl.default = 5671
ssl_options.cacertfile = VOLTTRON_HOME/certificates/certs/volttron1-trusted-cas.crt
ssl_options.certfile = VOLTTRON_HOME/certificates/certs/volttron1-server.crt
ssl_options.keyfile = VOLTTRON_HOME/certificates/private/volttron1-server.pem
ssl_options.verify = verify_peer
ssl_options.fail_if_no_peer_cert = true

Parameter explanations

• listeners.ssl.default: port for listening for SSL connections

• ssl_options.cacertfile: path to trusted Certificate Authorities (CA)

• ssl_options.certfile: path to server public certificate

• ssl_options.keyfile: path to server’s private key

• ssl_options.verify: whether verification is enabled

• ssl_options.fail_if_no_peer_cert: upon client’s failure to provide certificate, SSL connection either rejected
(true) or accepted (false)

• auth_mechanisms.1: type of authentication mechanism. EXTERNAL means SSL authentication is used

SSL in RabbitMQ VOLTTRON

To configure RabbitMQ-VOLTTRON to use SSL based authentication, we need to add SSL configuration in rab-
bitmq_config.yml.

mandatory. fully qualified domain name for the system
host: mymachine.pnl.gov

mandatory. certificate data used to create root ca certificate. Each volttron
instance must have unique common-name for root ca certificate
certificate-data:
country: 'US'
state: 'Washington'
location: 'Richland'

(continues on next page)

468 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

organization: 'PNNL'
organization-unit: 'VOLTTRON Team'
volttron1 has to be replaced with actual instance name of the VOLTTRON instance
common-name: 'volttron1_root_ca'

virtual-host: 'volttron' # defaults to volttron

use the below four port variables if using custom rabbitmq ports
defaults to 5672
amqp-port: '5672'

defaults to 5671
amqp-port-ssl: '5671'

defaults to 15672
mgmt-port: '15672'

defaults to 15671
mgmt-port-ssl: '15671'

defaults to true
ssl: 'true'

defaults to ~/rabbitmq_server/rabbbitmq_server-3.7.7
rmq-home: "~/rabbitmq_server/rabbitmq_server-3.7.7"

The parameters of interest for SSL based configuration are

• certificate-data: subject information needed to create certificates

• ssl: Flag set to ‘true’ for SSL based authentication

• amqp-port-ssl: Port number for SSL connection (defaults to 5671)

• mgmt-port-ssl: Port number for HTTPS management connection (defaults to 15671)

We can then configure the VOLTTRON instance to use SSL based authentication with the below command:

vcfg rabbitmq single [–config optional path to rabbitmq_config.yml]

When one creates a single instance of RabbitMQ, the following is created / re-created in the VOLT-
TRON_HOME/certificates directory:

• Public and private certificates of root Certificate Authority (CA)

• Public and private (automatically signed by the CA) server certificates needed by RabbitMQ broker

• Admin certificate for the RabbitMQ instance

• Public and private (automatically signed by the CA) certificates for VOLTTRON platform service agents.

• Trusted CA certificate

The public files can be found at VOLTTRON_HOME/certificates/certs and the private files can be found
at VOLTTRON_HOME/certificates/private. The trusted-cas.crt file is used to store the root CAs of all
VOLTTRON instances that the RabbitMQ server has to connected to. The trusted CA is only created once, but can be
updated. Initially, the trusted CA is a copy of the the root CA file, but when an external VOLTTRON instance needs
to be connected to an instance, the external VOLTTRON instance’s root CA will be appended to this file in order for
the RabbitMQ broker to trust the new connection.

2.41. Message Bus 469

VOLTTRON Documentation, Release 8.1.3

Every RabbitMQ has a single self signed root ca and server certificate signed by the root CA. This is created during
VOLTTRON setup and the RabbitMQ server is configured and started with these two certificates. Every time an agent
is started, the platform automatically creates a pair of public-private certificates for that agent that is signed by the
same root CA. When an agent communicates with the RabbitMQ message bus it presents it’s public certificate and
private key to the server and the server validates if it is signed by a root CA it trusts – ie., the root certificate it was
started with. Since there is only a single root CA for one VOLTTRON instance, all the agents in this instance can
communicate with the message bus over SSL.

For information about using SSL with multi-platform RabbitMQ deployments, view the docs

Authorization in RabbitMQ VOLTTRON

To be implemented in VOLTTRON at a later date.

For more detailed information about access control, please refer to RabbitMQ documentation Access Control.

2.41.4 Multi-Platform Communication

To connect to remote VOLTTRON platforms, we would need platform discovery information of the remote platforms.
This information contains the platform name, VIP address and serverkey of the remote platforms and we need to
provide this as part of multi-platform configuration.

470 Chapter 2. Features

https://www.rabbitmq.com/access-control.html

VOLTTRON Documentation, Release 8.1.3

Configuration

The configuration and authentication for multi-platform connection can be setup either manually or by running the
platforms in set up mode. Both the setups are described below.

Setup Mode For Automatic Authentication

Note: It is necessary for each platform to have a web server if running in setup mode.

For ease of use and to support multi-scale deployment, the process of obtaining the platform discovery information
and authenticating the new platform connection is automated. We can now bypass the manual process of adding auth
keys (i.e., either by using the volttron-ctl utility or directly updating the auth.json config file).

A config file containing list of web addresses (one for each platform) need to be made available in VOLTTRON_HOME
directory.

Name of the file: external_address.json

Directory path: Each platform’s VOLTTRON_HOME directory.

For example: /home/volttron/.volttron1

Contents of the file:

[
"http://<ip1>:<port1>",
"http://<ip2>:<port2>",
"http://<ip3>:<port3>",
......

]

We then start each VOLTTRON platform with setup mode option in this way.

volttron -vv -l volttron.log --setup-mode&

Each platform will obtain the platform discovery information of the remote platform that it is trying
to connect through a HTTP discovery request and store the information in a configuration file ($VOLT-
TRON_HOME/external_platform_discovery.json). It will then use the VIP address and serverkey to connect to the
remote platform. The remote platform shall authenticate the new connection and store the auth keys (public key) of
the connecting platform for future use.

The platform discovery information will be stored in VOLTTRON_HOME directory and looks like below:

Name of config file: external_platform_discovery.json

Contents of the file:

{"<platform1 name>": {"vip-address":"tcp://<ip1>:<vip port1>",
"instance-name":"<platform1 name>",
"serverkey":"<serverkey1>"
},

"<platform2 name>": {"vip-address":"tcp://<ip2>:<vip port2>",
"instance-name":"<platform2 name>",
"serverkey":"<serverkey2>"
},

"<platform3 name>": {"vip-address":"tcp://<ip3>:<vip port3>",
"instance-name":"<platform3 name>",

(continues on next page)

2.41. Message Bus 471

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"serverkey":"<serverkey3>"
},

......
}

Each platform will use this information for future connections.

Once the keys have been exchanged and stored in the auth module, we can restart all the VOLTTRON platforms in
normal mode.

./stop-volttron

./start-volttron

Manual Configuration of External Platform Information

Platform discovery configuration file can also be built manually and it needs to be added inside VOLTTRON_HOME
directory of each platform.

Name of config file: external_platform_discovery.json

Contents of the file:

{"<platform1 name>": {"vip-address":"tcp://<ip1>:<vip port1>",
"instance-name":"<platform1 nam>",
"serverkey":"<serverkey1>"
},

"<platform2 name>": {"vip-address":"tcp://<ip2>:<vip port2>",
"instance-name":"<platform2 name>",
"serverkey":"<serverkey2>"
},

"<platform3 name>": {"vip-address":"tcp://<ip3>:<vip port3>",
"instance-name":"<platform3 name>",
"serverkey":"<serverkey3>"
},

......
}

With this configuration, platforms can be started in normal mode.

./start-volttron

For external platform connections to be authenticated, we would need to add the credentials of the connecting platforms
in each platform using the volttron-ctl auth utility. For more details Agent authentication walk-through.

See also:

Multi-Platform Walk-through

472 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

PubSub Communication Between Remote Platforms

This document describes pubsub communication between different platforms. The goal of this specification is to
improve forward historians forwarding local PubSub messages to remote platforms. Agents interested in receiving
PubSub messages from external platforms will not need to have a forward historian running on the source platform to
forward PubSub messages to the interested destination platforms; The VIP router will now do all the work. It shall use
the Routing Service to internally manage connections with external VOLTTRON platforms and use the PubSubService
for the actual inter-platform PubSub communication.

For future:

This specification will need to be extended to support PubSub communication between platforms that are multiple
hops away. The VIP router of each platform shall need to maintain a routing table and use it to forward pubsub
messages to subscribed platforms that are multiple hops away. The routing table shall contain shortest path to each
destination platform.

Functional Capabilities

1. Each VOLTTRON platform shall have a list of other VOLTTRON platforms that it has to connect to in a config
file.

2. Routing Service of each platform connects to other platforms on startup.

3. The Routing Service in each platform is responsible for connecting to (and also initiating reconnection if re-
quired), monitoring and disconnecting from each external platform. The function of the Routing Service is
explained in detail in the Routing Service section.

4. Platform to platform PubSub communication shall be using VIP protocol with the subsystem frame set to “pub-
sub”.

5. The PubSubService of each VOLTTRON platform shall maintain a list of local and external subscriptions.

6. Each VIP router sends its list of external subscriptions to other connected platforms in the following cases:

a. On startup

b. When a new subscription is added

c. When an existing subscription is removed

d. When a new platform gets connected

7. When a remote platform disconnection is detected, all stale subscriptions related to that platform shall be re-
moved.

8. Whenever an agent publishes a message to a specific topic, the PubSubService on the local platform first checks
the topic against its list of local subscriptions. If a local subscription exists, it sends the publish message to
corresponding local subscribers.

9. The PubSubService shall also check the topic against list of external subscriptions. If an external subscription
exists, it shall use the Routing Service to send the publish message to the corresponding external platform.

10. Whenever a router receives messages from other platform, it shall check the destination platform in the incoming
message.

a. If the destination platform is the local platform, it hand overs the publish message to the PubSubService
which checks the topic against list of external subscriptions. If an external subscription matches, the
PubSubService forwards the message to all the local subscribers subscribed to that topic.

b. If the destination platform is not the local platform, it discards the message.

2.41. Message Bus 473

VOLTTRON Documentation, Release 8.1.3

Routing Service

1. The Routing Service shall maintain connection status (CONNECTING, CONNECTED, DISCONNECTED
etc.) for each external platform.

2. In order to establish connection with an external VOLTTRON platform, the server key of the remote platform
is needed. The Routing Service shall connect to an external platform once it obtains the server key for that
platform from the KeyDiscoveryService.

3. The Routing Service shall exchange “hello”/”welcome” handshake messages with the newly connected remote
platform to confirm the connection. It shall use VIP protocol with the subsystem frame set to “routing_table”
for the handshake messages.

4. Routing Service shall monitor the connection status and inform the PubSubService whenever a remote platform
gets connected/disconnected.

For Future:

1. Each VIP router shall exchange its routing table with its connected platforms on startup and whenever a new
platform gets connected or disconnected.

2. The router shall go through each entry in the routing table that it received from other platforms and calculate the
shortest, most stable path to each remote platform. It then sends the updated routing table to other platforms for
adjustments in the forwarding paths (in their local routing table) if any.

3. Whenever a VIP router detects a new connection, it adds an entry into the routing table and sends updated
routing table to its neighboring platforms. Each router in the other platforms shall update and re-calculate the
forwarding paths in its local routing table and forward to rest of the platforms.

4. Similarly, whenever a VIP router detects a remote platform disconnection, it deletes the entry in the routing
table for that platform and forwards the routing table to other platforms to do the same.

KeyDiscovery Service

1. Each platform tries to obtain the platform discovery information - platform name, VIP address and server key
of remote VOLTTRON platforms through HTTP discovery service at startup.

2. If unsuccessful, it shall make regular attempts to obtain discovery information until successful.

3. The platform discovery information shall then be sent to the Routing Service using VIP protocol with subsystem
frame set to “routing_table”.

Messages for Routing Service

Below are example messages that are applicable to the Routing Service.

• Message sent by KeyDiscovery Service containing the platform discovery information (platform name, VIP
address and server key) of a remote platform

+-+
| | Empty recipient frame
+-+----+
| VIP1 | Signature frame
+-+----+
| | Empty user ID frame
+-+----+
| 0001 | Request ID, for example "0001"

(continues on next page)

474 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

+---------------+
| routing_table | Subsystem, "routing_table"
+---------------+----------------+
| normalmode_platform_connection | Type of operation, "normalmode_
→˓platform_connection"
+--------------------------------+
| platform discovery information |
| of external platform | platform name, VIP address and server
→˓key of external platform
+--------------------------------+
| platform name | Remote platform for which the server key belongs
→˓to.
+---------------------+

Handshake messages between two newly connected external VOLTTRON platform to confirm successful connection.

• Message from initiating platform

+-+
| | Empty recipient frame
+-+----+
| VIP1 | Signature frame
+-+----+
| | Empty user ID frame
+-+----+
| 0001 | Request ID, for example "0001"
+--------------++
| routing_table | Subsystem, "routing_table"
+---------------+
| hello | Operation, "hello"
+--------+
| hello | Hello handshake request frame
+--------+------+
| platform name | Platform initiating a "hello"
+---------------+

• Reply message from the destination platform

+-+
| | Empty recipient frame
+-+----+
| VIP1 | Signature frame
+-+----+
| | Empty user ID frame
+-+----+
| 0001 | Request ID, for example "0001"
+--------------++
| routing_table | Subsystem, "routing_table"
+--------+------+
| hello | Operation, "hello"
+--------++
| welcome | Welcome handshake reply frame
+---------+-----+
| platform name | Platform sending reply to "hello"
+---------------+

2.41. Message Bus 475

VOLTTRON Documentation, Release 8.1.3

Messages for PubSub communication

The VIP routers of each platform shall send PubSub messages between platforms using VIP protocol message seman-
tics. Below is an example of external subscription list message sent by VOLTTRON platform V1 router to VOLTTRON
platform V2.

+-+
| | Empty recipient frame
+-+----+
| VIP1 | Signature frame
+-+---------+
|V1 user id | Empty user ID frame
+-+---------+
| 0001 | Request ID, for example "0001"
+-------++
| pubsub | Subsystem, "pubsub"
+-------------+-+
| external_list | Operation, "external_list" in this case
+---------------+
| List of |
| subscriptions | Subscriptions dictionary consisting of VOLTTRON platform id and
→˓list of topics as
+---------------+ key - value pairings, for example: { "V1": ["devices/rtu3"]}

This shows an example of an external publish message sent by the router of VOLTTRON platform V2 to VOLTTRON
platform V1.

+-+
| | Empty recipient frame
+-+----+
| VIP1 | Signature frame
+-+---------+
|V1 user id | Empty user ID frame
+-+---------+
| 0001 | Request ID, for example "0001"
+-------++
| pubsub | Subsystem, "pubsub"
+------------------+
| external_publish | Operation, "external_publish" in this case
+------------------+
| topic | Message topic
+------------------+
| publish message | Actual publish message frame
+------------------+

API

Methods for Routing Service

• external_route() - This method receives message frames from external platforms, checks the subsystem frame
and redirects to appropriate subsystem (routing table, pubsub) handler. It shall run within a separate thread and
get executed whenever there is a new incoming message from other platforms.

• setup() - This method initiates socket connections with all the external VOLTTRON platforms configured in the
config file. It also starts monitor thread to monitor connections with external platforms.

476 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

• handle_subsystem(frames) - Routing Service subsytem handler to handle serverkey message from KeyDiscov-
eryService and “hello/welcome” handshake message from external platforms.

• send_external(instance_name, frames) - This method sends input message to specified VOLTTRON plat-
form/instance.

• register(type, handler) - Register method for PubSubService to register for connection and disconnection
events.

• disconnect_external_instances(instance_name) - Disconnect from specified VOLTTRON platform.

• close_external_connections() - Disconnect from all external VOLTTRON platforms.

• get_connected_platforms() - Return list of connected platforms.

Methods for PubSubService

• external_platform_add(instance_name) - Send external subscription list to newly connected external VOLT-
TRON platform.

• external_platform_drop(instance_name) - Remove all subscriptions for the specified VOLTTRON platform

• update_external_subscriptions(frames) - Store/Update list of external subscriptions as per the subscription list
provided in the message frame.

• _distribute_external(frames) - Publish the message all the external platforms that have subscribed to the topic.
It uses send_external_pubsub_message() of router to send out the message.

• external_to_local_publish(frames) - This method retrieves actual message from the message frame, checks the
message topic against list of external subscriptions and sends the message to corresponding subscribed agents.

Methods for agent pubsub subsystem

To subscribe to topics from a remote platform, the subscribing agent has to add an additional input parameter -
all_platforms to the pubsub subscribe method.

• subscribe(peer, prefix, callback, bus=”, all_platforms=False) - The existing ‘subscribe’ method is modified to
include optional keyword argument - ‘all_platforms’. If ‘all_platforms’ is set to True, the agent is subscribing
to topic from local publisher and from external platform publishers.

self.vip.pubsub.subscribe('pubsub', 'foo', self.on_match, all_platforms=True)

There is no change in the publish method pf PubSub subsystem. If all the configurations are correct and the publisher
agent on the remote platform is publishing message to topic=``foo``, then the subscriber agent will start receiving
those messages.

Multi-Platform RPC Communication

Multi-Platform RPC communication allows an agent on one platform to make RPC call on an agent in another platform
without having to setup connection to the remote platform directly. The connection will be internally managed by
the VOLTTRON platform router module. Please refer here Multi-Platform Communication Setup) for more details
regarding setting up of Multi-Platform connections.

2.41. Message Bus 477

VOLTTRON Documentation, Release 8.1.3

Calling External Platform RPC Method

If an agent in one platform wants to use an exported RPC method of an agent in another platform, it has to provide the
platform name of the remote platform when using RPC subsystem call/notify method.

Here is an example:

self.vip.rpc.call(peer, 'say_hello', 'Bob', external_platform='platform2').get()
self.vip.rpc.notify(peer, 'ready', external_platform='platform2')

Here, ‘platform2’ is the platform name of the remote platform.

Distributed RabbitMQ Brokers

RabbitMQ allows multiple distributed RabbitMQ brokers to be connected in three different ways - with clustering,
with federation and using shovel. We take advantage of these built-in plugins for multi-platform VOLTTRON com-
munication. For more information about the differences between clustering, federation, and shovel, please refer to the
RabbitMQ documentation on Distributed RabbitMQ brokers.

Clustering

Clustering connects multiple brokers residing in multiple machines to form a single logical broker. It is used in
applications where tight coupling is necessary i.e, where each node shares the data and knows the state of all other
nodes in the cluster. A new node can connect to the cluster through a peer discovery mechanism if configured to do so
in the RabbitMQ config file. For all the nodes to be connected together in a cluster, it is necessary for them to share the
same Erlang cookie and be reachable through it’s DNS hostname. A client can connect to any one of the nodes in the
cluster and perform any operation (to send/receive messages from other nodes etc.), the nodes will route the operation
internally. In case of a node failure, clients should be able to reconnect to a different node, recover their topology and
continue operation.

Note: This feature is not integrated into VOLTTRON, but we hope to support it in the future. For more detailed
information about clustering, please refer to RabbitMQ documentation on the Clustering plugin.

Federation

Federation plugin is used in applications that does not require as much of tight coupling as clustering. Federation has
several useful features:

• Loose coupling - The federation plugin can transmit messages between brokers (or clusters) in different admin-
istrative domains:

– they may have different users and virtual hosts;

– they may run on different versions of RabbitMQ and Erlang.

• WAN friendliness - They can tolerate network intermittent connectivity.

• Specificity - Not everything needs to be federated (made available to other brokers); There can be local-only
components.

• Scalability - Federation does not require O(n2) connections for n brokers, so it scales better.

478 Chapter 2. Features

https://www.rabbitmq.com/distributed.html
https://www.rabbitmq.com/clustering.html

VOLTTRON Documentation, Release 8.1.3

The federation plugin allows you to make exchanges and queues federated. A federated exchange or queue can receive
messages from one or more upstreams (remote exchanges and queues on other brokers). A federated exchange can
route messages published upstream to a local queue. A federated queue lets a local consumer receive messages from
an upstream queue.

Before we move forward, let’s define upstream and downstream servers.

• Upstream server - The node that is publishing some message of interest

• Downstream server - The node connected to a different broker that wants to receive messages from the upstream
server

A federation link needs to be established from downstream server to the upstream server. The data flows in single
direction from upstream server to downstream server. For bi-directional data flow, we would need to create federation
links on both the nodes.

We can receive messages from upstream server to downstream server by either making an exchange or a queue feder-
ated.

For more detailed information about federation, please refer to RabbitMQ documentation Federation plugin.

Federated Exchange

When we make an exchange on the downstream server federated, the messages published to the upstream exchanges
are copied to the federated exchange, as though they were published directly to it.

The above figure explains message transfer using federated exchange. The box on the right acts as the downstream
server and the box on the left acts as the upstream server. A federation/upstream link is established between the
downstream server and the upstream server by using the federation management plugin.

An exchange on the downstream server is made federated using federation policy configuration. The federated ex-
change only receives the messages for which it has subscribed. An upstream queue is created on the upstream server
with a binding key same as subscription made on the federated exchange. For example, if an upstream server is pub-
lishing messages with binding key “foo” and a client on the downstream server is interested in receiving messages of
the binding key “foo”, then it creates a queue and binds the queue to the federated with the same binding key. This
binding is sent to the upstream and the upstream queue binds to the upstream exchange with that key.

Publications to either exchange may be received by queues bound to the federated exchange, but publications directly
to the federated exchange cannot be received by queues bound to the upstream exchange.

For more information about federated exchanges and different federation topologies, please read about Federated
Exchanges.

2.41. Message Bus 479

https://www.rabbitmq.com/federation.html
https://www.rabbitmq.com/federated-exchanges.html
https://www.rabbitmq.com/federated-exchanges.html

VOLTTRON Documentation, Release 8.1.3

Federated Queue

Federated queue provides a way of balancing load of a single queue across nodes or clusters. A federated queue lets a
local consumer receive messages from an upstream queue. A typical use would be to have the same “logical” queue
distributed over many brokers. Such a logical distributed queue is capable of having higher capacity than a single
queue. A federated queue links to other upstream queues.

A federation or upstream link needs to be created like before and a federated queue needs to be setup on the downstream
server using federation policy configuration. The federated queue will only retrieve messages when it has run out of
messages locally, it has consumers that need messages, and the upstream queue has “spare” messages that are not
being consumed.

For more information about federated queues, please read about Federated Queues.

Shovel

The Shovel plugin allows you to reliably and continually move messages from a source in one broker to destination in
another broker. A shovel behaves like a well-written client application in that it:

• connects to it’s source and destination broker

• consumes messages from the source queue

• re-publishes messages to the destination if the messages match the routing key.

The Shovel plugin uses an Erlang client under the hood. In the case of shovel, apart from configuring the hostname,
port and virtual host of the remote node, we will also have to provide a list of routing keys that we want to forward to
the remote node. The primary advantages of shovels are:

• Loose coupling - A shovel can move messages between brokers (or clusters) in different administrative domains:
* they may have different users and virtual hosts; * they may run on different versions of RabbitMQ and Erlang.

• WAN friendliness - They can tolerate network intermittent connectivity.

Shovels are also useful in cases where one of the nodes is behind NAT. We can setup shovel on the node behind NAT
to forward messages to the node outside NAT. Shovels do not allow you to adapt to subscriptions like a federation link
and we need to a create a new shovel per subscription.

For more detailed information about shovel, please refer to RabbitMQ documentation on the Shovel plugin.

Agent communication to Remote RabbitMQ instance

Communication between two RabbitMQ based VOLTTRON instances must be done using SSL certificate based au-
thentication. Non SSL based authentication will not be supported for communication to remote RabbitMQ based
VOLTTRON instances. A VOLTTORN instance that wants to communicate with a remote instance should first re-
quest a SSL certificate that is signed by the remote instance. To facilitate this process there will be a web based server
API for requesting, listing, approving and denying certificate requests. This api will be exposed via the PlatformWeb-
Service and will be available to any RabbitMQ based VOLTTRON instance with SSL enabled. This API will be tested
and used in the following agents:

• ForwarderAgent

• DataPuller

• VolttronCentralPlatform

For the following document we will assume we have two instances a local-instance and remote-volttron-instance. The
remote-volttron-instance will be configured to allow certificate requests to be sent to it from the local-instance. A
remote-agent running in local-instance will attempt to establish a connection to the remote-volttron-instance

480 Chapter 2. Features

https://www.rabbitmq.com/federated-queues.html
https://www.rabbitmq.com/shovel.html

VOLTTRON Documentation, Release 8.1.3

Configuration

Both volttron-server and volttron-client must be configured for RabbitMQ message bus with SSL using the step de-
scribed at Installing Volttron.

In addition the remote-volttron-instance configuration file must have a https bind-web-address specified in the instance
config file. Below is an example config file with bind-web-address. Restart volttron after editing the config file

[volttron]
message-bus = rmq
vip-address = tcp://127.0.0.1:22916
bind-web-address = https://volttron1:8443
instance-name = volttron1

By default the bind-web-address parameter will use the PlatformWebService agent’s certificate and private key. Both
private and public key are necessary in order to bind the port to the socket for incoming connections. This key pair
is auto generated for RabbitMQ based VOLTTRON at the time of platform startup. Users can provide a different
certificate and private key to be used for the bind-web-address by specifying web-ssl-cert and web-ssl-key in the
config file. Below is an example config file with the additional entries

[volttron]
message-bus = rmq
vip-address = tcp://127.0.0.1:22916
bind-web-address = https://volttron1:8443
instance-name = volttron1
web-ssl-cert = /path/to/cert/cert.pem
web-ssl-key = /path/to/cert/key.pem

Note:

• The /etc/hosts file should be modified in order for the dns name to be used for the bound address.

remote-agent on local-instance

The auth subsystem of the volttron architecture is how a remote-agent on local instance will connect to the remote
volttron instance.

The following is a code snippet from the remote-agent to connect to the remote volttron instance.

...
value = self.vip.auth.connect_remote_platform(address)

The above function call will return an agent that connects to the remote instance only after the request is approved by
an administrator of the remote instance. It is up to the agent to repeat calling connect_remote_platform periodically
until an agent object is obtained.

2.41. Message Bus 481

VOLTTRON Documentation, Release 8.1.3

Approving a CSR Request

The following diagram shows the sequence of events when an access request is approved by the administrator of
remote volttron instance. In this case, the volttron-client agent will get a Agent object that is connected to the remote
instance. The diagram shows the client agent repeating the call to connect_remote_platform until the return value is
not None.

Denying a CSR Request

The following diagram shows the sequence of events when an access request is denied by the administrator. The client
agent repeats the call to connect_remote_platform until the return value is not None. When the remote instance’s
administrator denies a access request, the auth subsystem will raise an alert and shutdown the agent.

482 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Follow walk-through in Multi-Platform Multi-Bus Walk-through for setting up different combinations of multi-bus
multi-platform setup using CSR.

2.42 VOLTTRON Control

The base platform functionality focuses on the agent lifecycle, management of the platform itself, and security. This
section describes how to use the commands included with VOLTTRON to configure and control the platform, agents
and drivers.

2.42.1 Platform Commands

VOLTTRON files for a platform instance are stored under a single directory known as the VOLTTRON home. This
home directory is set via the VOLTTRON_HOME environment variable and defaults to ~/.volttron. Multiple in-
stances of the platform may exist under the same account on a system by setting the VOLTTRON_HOME environment
variable appropriately before executing VOLTTRON commands.

VOLTTRON’s configuration file uses a modified INI format where section names are command names for which the
settings in the section apply. Settings before the first section are considered global and will be used by all commands
for which the settings are valid. Settings keys are long options (with or without the opening “–”) and are followed by
a colon (:) or equal (=) and then the value. Boolean options need not include the separator or value, but may specify
a value of 1, yes, or true for true or 0, no, or false for false.

It is best practice to use the vcfg command prior to starting VOLTTRON for the first time to populate the configura-
tion file for your deployment. If VOLTTRON is started without having run vcfg, a default config will be created in
$VOLTTRON_HOME/config. The following is an example configuration after running vcfg:

[volttron]
message-bus = rmq

(continues on next page)

2.42. VOLTTRON Control 483

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

instance-name = volttron1
vip-address = tcp://127.0.0.1:22916
bind-web-address = https://<hostname>:8443
volttron-central-address = https://<hostname>:8443

where:

• message-bus - Indicates message bus to be used. Valid values are zmq and rmq

• instance-name - Name of the VOLTTRON instance. This has to be unique if multiple instances need to be
connected together

• vip-address - VIP address of the VOLTTRON instance. It contains the IP address and port number (default port
number is 22916)

• bind-web-address - Optional parameter, only needed if VOLTTRON instance needs a web interface

• volttron-central-address - Optional parameter. Web address of VOLTTRON Central agent

Note:

env/bin/volttron -c <config> -l volttron.log &

Below is a compendium of commands which can be used to operate the VOLTTRON Platform from the command line
interface.

VOLTTRON Platform Command

The main VOLTTRON platform command is volttron, however this command is seldom run as-is. In most cases
the user will want to run the platform in the background. In a limited number of cases, the user will wish to enable
verbose logging. A typical command to start the platform is:

Note:

• All commands and sub-commands have help available with -h or --help

• Additional configuration files may be specified with -c or -config

• To specify a log file, use -l or --log

• The ampersand (&) can be added to then end of the command to run the platform in the background, freeing the
open shell to be used for additional commands.

volttron -vv -l volttron.log &

484 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

volttron Optional Arguments

• -c FILE, –config FILE - Start the platform using the configuration from the provided FILE

• -l FILE, –log FILE - send log output to FILE instead of standard output/error

• -L FILE, –log-config FILE - Use the configuration from FILE for VOLTTRON platform logging

• –log-level LOGGER:LEVEL - override default logger logging level (INFO, DEBUG, WARNING, ERROR,
CRITICAL, NOTSET)

• –monitor - monitor and log connections (implies verbose logging mode -v)

• -q, –quiet - decrease logger verboseness; may be used multiple times to further reduce logging (i.e. -qq)

• -v, –verbose - increase logger verboseness; may be used multiple times (i.e. -vv)

• –verboseness LEVEL - set logger verboseness level

• -h, –help - show this help message and exit

• –version - show program’s version number and exit

• –message-bus MESSAGE_BUS - set message bus to be used. valid values are zmq and rmq

Note: Visit the Python 3 logging documentation for more information about logging and verboseness levels.

Agent Options

• –autostart - automatically start enabled agents and services after platform startup

• –vip-address ZMQADDR - ZeroMQ URL to bind for VIP connections

• –vip-local-address ZMQADDR - ZeroMQ URL to bind for local agent VIP connections

• –bind-web-address BINDWEBADDR - Bind a web server to the specified ip:port passed

• –web-ca-cert CAFILE - If using self-signed certificates, this variable will be set globally to allow requests to
be able to correctly reach the webserver without having to specify verify in all calls.

• –web-secret-key WEB_SECRET_KEY - Secret key to be used instead of HTTPS based authentication.

• –web-ssl-key KEYFILE - SSL key file for using https with the VOLTTRON server

• –web-ssl-cert CERTFILE - SSL certificate file for using https with the VOLTTRON server

• –volttron-central-address VOLTTRON_CENTRAL_ADDRESS - The web address of a VOLTTRON Cen-
tral install instance.

• –volttron-central-serverkey VOLTTRON_CENTRAL_SERVERKEY - The server key of the VOLTTRON
Central being connected to.

• –instance-name INSTANCE_NAME - The name of the instance that will be reported to VOLTTRON Central.

• –msgdebug - Route all messages to an instance of the MessageDebug agent while debugging.

• –setup-mode - Setup mode flag for setting up authorization of external platforms.

• –volttron-central-rmq-address VOLTTRON_CENTRAL_RMQ_ADDRESS - The AMQP address of a
VOLTTRON Central install instance

• –agent-monitor-frequency AGENT_MONITOR_FREQUENCY - How often should the platform check for
crashed agents and attempt to restart. Units=seconds. Default=600

2.42. VOLTTRON Control 485

https://docs.python.org/3/library/logging.html#logging-levels

VOLTTRON Documentation, Release 8.1.3

• –secure-agent-users SECURE_AGENT_USERS - Require that agents run with their own users (this requires
running scripts/secure_user_permissions.sh as sudo)

Warning: Certain options alter some basic behaviors of the platform, such as –secure-agent-users which causes
the platform to run each agent using its own Unix user to spawn the process. Please view the documentation for
each feature to understand its implications before choosing to run the platform in that fashion.

volttron-ctl Commands

volttron-ctl is used to issue commands to the platform from the command line. Through volttron-ctl it is possible to
install and removed agents, start and stop agents, manage the configuration store, get the platform status, and shutdown
the platform.

In more recent versions of VOLTTRON, the commands vctl, vpkg, and vcfg have been added to be used as a stand-in for
volttron-ctl, volttron-pkg, and volttron-cfg in the CLI. The VOLTTRON documentation will often use this convention.

Warning: vctl creates a special temporary agent to communicate with the platform with a specific VIP Identity,
thus multiple instances of vctl cannot run at the same time. Attempting to do so will result in a conflicting identity
error.

Use vctl with one or more of the following arguments, or below sub-commands:

vctl Optional Arguments

• -c FILE, –config FILE - Start the platform using the configuration from the provided FILE

• –debug - show tracebacks for errors rather than a brief message

• -t SECS, –timeout SECS - timeout in seconds for remote calls (default: 60)

• –msgdebug MSGDEBUG - route all messages to an agent while debugging

• –vip-address ZMQADDR - ZeroMQ URL to bind for VIP connections

• -l FILE, –log FILE - send log output to FILE instead of standard output/error

• -L FILE, –log-config FILE - Use the configuration from FILE for VOLTTRON platform logging

• -q, –quiet - decrease logger verboseness; may be used multiple times to further reduce logging (i.e. -qq)

• -v, –verbose - increase logger verboseness; may be used multiple times (i.e. -vv)

• –verboseness LEVEL - set logger verboseness level (this level is a numeric level co

• –json - format output to json

• -h, –help - show this help message and exit

486 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Commands

• install - install an agent from wheel or from an agent package directory

Note: If –agent-config is not specified then a default config, config.json or config.yml file in the
agent directory will be used as configuration. If none present then no configuration file will be
loaded.

• tag AGENT TAG - set, show, or remove agent tag for a particular agent

• remove AGENT - disconnect specified agent from the platform and remove its installed agent package from
VOLTTRON_HOME

• peerlist - list the peers connected to the platform

• list - list installed agents

• status - show status of installed agents

• health AGENT - show agent health as JSON

• clear - clear status of defunct agents

• enable AGENT - enable agent to start automatically

• disable AGENT - prevent agent from start automatically

• start AGENT - start installed agent

• stop AGENT - stop agent

• restart AGENT - restart agent

• run PATH - start any agent by path

• upgrade AGENT WHEEL - upgrade agent from wheel file

Note: Does NOT upgrade agents from the agent’s code directory, requires agent wheel file.

• rpc - rpc controls

• certs OPTIONS - manage certificate creation

• auth OPTIONS - manage authorization entries and encryption keys

• config OPTIONS - manage the platform configuration store

• shutdown - stop all agents (providing the –platform optional argument causes the platform to be shutdown)

• send WHEEL - send agent and start on a remote platform

• stats - manage router message statistics tracking

• rabbitmq OPTIONS - manage rabbitmq

Note: For each command with OPTIONS in the description, additional options are required to make use of the
command. For each, please visit the corresponding section of documentation.

• Auth

• Certs

• Config

2.42. VOLTTRON Control 487

VOLTTRON Documentation, Release 8.1.3

• RPC

Note: Visit the Python 3 logging documentation for more information about logging and verboseness levels.

vctl auth Subcommands

• add - add new authentication record

• add-group - associate a group name with a set of roles

• add-known-host - add server public key to known-hosts file

• add-role - associate a role name with a set of capabilities

• keypair - generate CurveMQ keys for encrypting VIP connections

• list - list authentication records

• list-groups - show list of group names and their sets of roles

• list-known-hosts - list entries from known-hosts file

• list-roles - show list of role names and their sets of capabilities

• publickey - show public key for each agent

• remove - removes one or more authentication records by indices

• remove-group - disassociate a group name from a set of roles

• remove-known-host - remove entry from known-hosts file

• remove-role - disassociate a role name from a set of capabilities

• serverkey - show the serverkey for the instance

• update - updates one authentication record by index

• update-group - update group to include (or remove) given roles

• update-role - update role to include (or remove) given capabilities

vctl certs Subcommands

• create-ssl-keypair - create a SSL keypair

• export-pkcs12 - create a PKCS12 encoded file containing private and public key from an agent. This function
is may also be used to create a Java key store using a p12 file.

488 Chapter 2. Features

https://docs.python.org/3/library/logging.html#logging-levels

VOLTTRON Documentation, Release 8.1.3

vctl config Subcommands

• store AGENT CONFIG_NAME CONFIG PATH - store a configuration file in agent’s config store (parses
JSON by default, use –csv for CSV files)

• edit AGENT CONFIG_NAME - edit a configuration. (opens nano by default, respects EDITOR env variable)

• delete AGENT CONFIG_NAME - delete a configuration from agent’s config store (–all removes all configs
for the agent)

• list AGENT - list stores or configurations in a store

• get AGENT CONFIG_NAME - get the contents of a configuration

vctl rpc Subcommands

• code - shows how to use RPC call in other agents

• list - lists all agents and their RPC methods

vpkg Commands

vpkg is the VOLTTRON command used to manage agent packages (code directories and wheel files) including creating
initializing new agent code directories, creating agent wheels, etc.

vpkg Optional Arguments

• -h, –help - show this help message and exit

• -l FILE, –log FILE - send log output to FILE instead of standard output/error

• -L FILE, –log-config FILE - Use the configuration from FILE for VOLTTRON platform logging

• -q, –quiet - decrease logger verboseness; may be used multiple times to further reduce logging (i.e. -qq)

• -v, –verbose - increase logger verboseness; may be used multiple times (i.e. -vv)

• –verboseness LEVEL - set logger verboseness level

Subcommands

• package - Create agent package (whl) from a directory

• init - Create new agent code package from a template. Will prompt for additional metadata.

• repackage - Creates agent package from a currently installed agent.

• configure - Add a configuration file to an agent package

2.42. VOLTTRON Control 489

VOLTTRON Documentation, Release 8.1.3

volttron-cfg Commands

volttron-cfg (vcfg) is a tool aimed at making it easier to get up and running with VOLTTRON and a handful of agents.
Running the tool without any arguments will start a wizard with a walk through for setting up instance configuration
options and available agents. If only individual agents need to be configured they can be listed at the command line.

Note: For a detailed description of the VOLTTRON configuration file and vcfg wizard, as well as example usage,
view the platform configuration docs.

vcfg Optional Arguments

• -h, –help - show this help message and exit

• -v, –verbose - increase logger verboseness; may be used multiple times (i.e. -vv)

• –vhome VHOME Path to volttron home

• –instance-name INSTANCE_NAME Name of this volttron instance

• –list-agents - list configurable agents

Agents available to configure:
listener
platform_driver
platform_historian
vc
vcp

• –agent AGENT [AGENT . . .] - configure listed agents

• –rabbitmq RABBITMQ [RABBITMQ . . .] - Configure RabbitMQ for single instance, federation, or shovel
either based on configuration file in YML format or providing details when prompted. Usage:

vcfg --rabbitmq single|federation|shovel [rabbitmq config file]

• –secure-agent-users Require that agents run with their own users (this requires running
scripts/secure_user_permissions.sh as sudo)

Warning: The secure agent users significantly changes the operation of agents on the platform, please read
the secure agent users documentation before using this feature.

2.42.2 Agent Control Commands

The VOLTTRON platform has several commands for controlling the lifecycle of agents. This page discusses how to
use them, for details of operation please see Platform Configuration

Note: These examples assume the VOLTTRON environment has been activated

. env/bin/activate

If not activating the VOLTTRON virtual environment, add “bin/” to all commands

490 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Agent Packaging

The vpkg command is used for packaging and configuring agents. It is not necessary to have the platform running to
use this command. The platform uses Python Wheel for its packaging and follows the Wheel naming convention.

To create an agent package, call:

vpkg <Agent Dir>

For instance: vpkg package examples/ListenerAgent

The package command uses the setup.py in the agent directory to create the package. The name and version number
portion of the Wheel filename come from this. The resulting wheels are created at ~/.volttron/packaged. For example:
~/.volttron/packaged/listeneragent-3.0-py2-none-any.whl.

Agent Configuration

Agent packages are configured with:

vpkg configure <AgentPackage> <ConfigFile>

It is suggested that this file use JSON formatting but the agent can be written to interpret any format it requires. The
configuration of a particular agent is opaque to the VOLTTRON platform. The location of the agent config file is
passed as an environmental variable AGENT_CONFIG which the provided utilities read in and pass to the agent.

An example config file passing in some parameters:

{

"agentid": "listener1",
"message": "hello"

}

Agent Installation and Removal

Agents are installed into the platform using:

vctl install <package>

When agents are installed onto a platform, it creates a uuid for that instance of an agent. This allows multiple instances
of the same agent package to be installed on the platform.

This allows the user to refer to the agent with --tag <tag> instead of the uuid when issuing commands. This tag
can also distinguish instances of an agent from each other.

A stopped agent can be removed with:

• vctl remove <AGENT_UUID>

• vctl remove --tag <AGENT_TAG>

• vctl remove --name <AGENT_NAME>

2.42. VOLTTRON Control 491

https://pypi.python.org/pypi/wheel
http://legacy.python.org/dev/peps/pep-0427/#file-name-convention

VOLTTRON Documentation, Release 8.1.3

Tagging Agents

Agents can be tagged as they are installed with:

vctl install <TAG>=<AGENT_PACKAGE>

Agents can be tagged after installation with:

vctl tag <AGENT_UUID> <TAG>

Agents can be “tagged” to provide a meaningful user defined way to reference the agent instead of the uuid or the
name. This allows users to differentiate between instances of agents which use the same codebase but are configured
differently.

Example

A user installs two instances of the Listener Agent, tagged with listen1 and listen2 respectively:

python scripts/install-agent.py -s examples/ListenerAgent --tag listener1
python scripts/install-agent.py -s examples/ListenerAgent --tag listener2

vctl status displays:

AGENT IDENTITY TAG STATUS HEALTH
a listeneragent-3.3 listeneragent-3.3_2 listener2
6 listeneragent-3.3 listeneragent-3.3_1 listener1

Commands which operate off an agent’s UUID can optionally operate off the tag by using “–tag “. This can use wild-
cards to catch multiple agents at once. For example, vctl start --tag listener* will start both listener1
and listener2.

Warning: Removal by tag and name potentially allows multiple agents to be removed at once and should be used
with caution. A “-f” option is required to delete more than one agent at a time.

Agent Control

Starting and Stopping an Agent

Agent that are installed in the platform can be launched with the start command. By default this operates off the
agent’s UUID but can be used with --tag or --name to launch agents by those attributes.

This can allow multiple agents to be started at once. For instance: vctl start --name myagent-0.1 would
start all instances of that agent regardless of their uuid, tag, or configuration information.

After an agent is started, it will show up in Agent Status as “running” with a process id.

Similarly, volttron-ctl stop <UUID> can also operate off the tag and name of agent(s). After an agent is
stopped, it will show an exit code of 0 in Agent Status

492 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Running an agent

For testing purposes, an agent package not installed in the platform can be run by using:

vctl run <PACKAGE>

Agent Status

vctl list shows the agents which have been installed on the platform along with their uuid, associated tag and
priority.

• uuid is the first column of the display and is displayed as the shorted unique portion. Using this portion, agents
can be started, stopped, removed, etc.

• AGENT is the “name” of this agent based on the name of the wheel file which was installed. Agents can be
controlled with this using --name.

Note: If multiple instances of a wheel are installed they will all have the same name and can be controlled as a
group.

• IDENTITY is the VIP platform identity assigned to the agent which can be used to make RPC calls, etc. with
the platform

• TAG is a user provided tag which makes it simpler to track and refer to agents. --tag <tag> can used in
most agent control commands instead of the UUID to control that agent or multiple agents with a pattern.

• PRI is the priority for agents which have been “enabled” using the vctl enable command. When enabled,
agents will be automatically started in priority order along with the platform.

AGENT IDENTITY TAG PRI
a listeneragent-3.3 listeneragent-3.3_2 listener2
6 listeneragent-3.3 listeneragent-3.3_1 listener1

The vctl status command shows the list of installed agents and whether they are running or have exited.

AGENT IDENTITY TAG STATUS HEALTH
a listeneragent-3.3 listeneragent-3.3_2 listener2 running [12872] GOOD
6 listeneragent-3.3 listeneragent-3.3_1 listener1 running [12873] GOOD

• AGENT, IDENTITY and TAG are the same as in the vctl list command

• STATUS is the current condition of the agent. If the agent is currently executing, it has “running” and the process
id of the agent. If the agent is not running, the exit code is shown.

• HEALTH represents the current state of the agent. GOOD health is displayed while the agent is operating as
expected. If an agent enters an error state the health will display as BAD

To get more information about a current agents’ health one can execute

vctl health agent_uuid
vctl health a

The above command will output json such as the following:

2.42. VOLTTRON Control 493

VOLTTRON Documentation, Release 8.1.3

{
"peer": "listeneragent-3.2_1",
"service_agent": false,
"connected": "2020-11-02T14:26:07.749003",
"last_heartbeat": "2020-11-02T14:26:12.762268",
"message": "GOOD"

}

Note: When an agent sets its health it can set the message to any serializable string.

Agent Autostart

An agent can be setup to start when the platform is started with the enable command. This command also allows a
priority to be set (0-100, default 50) so that agents can be started after any dependencies. This command can also be
used with the --tag or --name options.

vctl enable <AGENT_UUID> -p <PRIORITY>

2.42.3 Authentication Commands

All authentication sub-commands can be viewed by entering following command.

vctl auth --help

usage: vctl command [OPTIONS] ... auth [-h] [-c FILE] [--debug] [-t SECS]
[--msgdebug MSGDEBUG]
[--vip-address ZMQADDR]
...

optional arguments:
-h, --help show this help message and exit
-c FILE, --config FILE

read configuration from FILE
--debug show tracebacks for errors rather than a brief message
-t SECS, --timeout SECS

timeout in seconds for remote calls (default: 60)
--msgdebug MSGDEBUG route all messages to an agent while debugging
--vip-address ZMQADDR

ZeroMQ URL to bind for VIP connections

subcommands:

add add new authentication record
add-group associate a group name with a set of roles
add-known-host add server public key to known-hosts file
add-role associate a role name with a set of capabilities
keypair generate CurveMQ keys for encrypting VIP connections
list list authentication records
list-groups show list of group names and their sets of roles
list-known-hosts list entries from known-hosts file
list-roles show list of role names and their sets of capabilities
publickey show public key for each agent

(continues on next page)

494 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

remove removes one or more authentication records by indices
remove-group disassociate a group name from a set of roles
remove-known-host remove entry from known-hosts file
remove-role disassociate a role name from a set of capabilities
serverkey show the serverkey for the instance
update updates one authentication record by index
update-group update group to include (or remove) given roles
update-role update role to include (or remove) given capabilities
remote manage pending RMQ certs and ZMQ credentials
rpc Manage rpc method authorizations

Authentication record

An authentication record consist of following parameters

domain []:
address []: Either a single agent identity or an array of agents identities
user_id []: Arbitrary string to identify the agent
identity []: agents vip identity, if provided
capabilities (delimit multiple entries with comma) []: Array of strings referring to
→˓authorized capabilities defined by exported RPC methods
rpc_method_authorizations []: Dictionary containing the agent's exported RPC methods,
→˓and the authorized capabilities for each. Will populate on startup.
roles (delimit multiple entries with comma) []:
groups (delimit multiple entries with comma) []:
mechanism [CURVE]:
credentials []: Public key string for the agent
comments []:
enabled [True]:

For more details on how to create authentication record, please see section Agent Authentication

How to authenticate an agent to communicate with VOLTTRON platform

An administrator can allow an agent to communicate with VOLTTRON platform by creating an authentication record
for that agent. An authentication record is created by using vctl auth add command and entering values to asked
arguments.

vctl auth add

domain []:
address []:
user_id []:
identity []:
capabilities (delimit multiple entries with comma) []:
roles (delimit multiple entries with comma) []:
groups (delimit multiple entries with comma) []:
mechanism [CURVE]:
credentials []:
comments []:
enabled [True]:

The listed fields can also be specified on the command line:

2.42. VOLTTRON Control 495

VOLTTRON Documentation, Release 8.1.3

vctl auth add --user_id bob --credentials ABCD...

If any field is specified on the command line, then the interactive menu will not be used.

The simplest way of creating an authentication record is by entering the user_id and credential values. User_id is a
arbitrary string for VOLTTRON to identify the agent. Credential is the encoded public key string for the agent. Create
a public/private key pair for the agent and enter encoded public key for credential parameter.

vctl auth add

domain []:
address []:
user_id []: my-test-agent
capabilities (delimit multiple entries with comma) []:
roles (delimit multiple entries with comma) []:
groups (delimit multiple entries with comma) []:
mechanism [CURVE]:
credentials []: encoded-public-key-for-my-test-agent
comments []:
enabled [True]:

In next sections, we will discuss each parameter, its purpose and what all values it can take.

Domain:

Domain is the name assigned to locally bound address. Domain parameter is currently not being used in VOLTTRON
and is placeholder for future implementation.

Address:

By specifying address, administrator can allow an agent to connect with VOLTTRON only if that agent is running on
that address. Address parameter can take a string representing an IP addresses. It can also take a regular expression
representing a range of IP addresses.

address []: 192.168.111.1
address []: /192.168.*/

User_id:

User_id can be any arbitrary string that is used to identify the agent by the platform. If a regular expression is used
for address or credential to combine agents in an authentication record then all those agents will be identified by this
user_id. It is primarily used for identifying agents during logging.

496 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Identity:

An identity is a string that represents the agent’s VIP identity. This is an optional field, used by the platform to
communicate between agents via RPC calls. It should be set if an agent has RPC exports.

Capabilities:

A capability is a string used by an agent to constrain its exported RPC method. Only agents who have that capability
listed in their authentication record will be able to access that RPC method.

If an administrator wants to authorize an agent to access an exported RPC method with a specific capability on another
agent, the administrator can list that capability string in this parameter. The capability parameter takes a string, an
array of strings, or the string representation of dictionary listing all the capabilities this agent is authorized to access.

The agent will have access to all corresponding exported RPC methods of other agents that are constrained by the
listed capabilities. For example, if there is an AgentA with capability enables exported RPC method and AgentB
needs to access that method then AgentA’s code and AgentB’s authentication record would be as follows:

AgentA’s capability enabled exported RPC method:

@RPC.export
@RPC.allow('can_call_bar')
def bar(self):

return 'If you can see this, then you have the required capabilities'

AgentB’s authentication record to access bar method:

volttron-ctl auth add

domain []:
address []:
user_id []: agent-b
capabilities (delimit multiple entries with comma) []: can_call_bar
roles (delimit multiple entries with comma) []:
groups (delimit multiple entries with comma) []:
mechanism [NULL]: CURVE
credentials []: encoded-public-key-for-agent-b
comments []:
enabled [True]:

Similarly, the capability parameter can take an array of strings:

capabilities (delimit multiple entries with comma) []: can_call_bar
capabilities (delimit multiple entries with comma) []: can_call_method1, can_call_
→˓method2

Capabilities can also be used to restrict access to a rpc method with specific parameter values. For example, if AgentA
exposes a method bar which accepts parameter x

AgentA’s capability enabled exported RPC method:

@RPC.export
@RPC.allow('can_call_bar')
def bar(self, x):

return 'If you can see this, then you have the required capabilities'

You can restrict access to AgentA’s bar method to AgentB with x=1. To add this auth entry use the vctl auth add
command shown below.

2.42. VOLTTRON Control 497

VOLTTRON Documentation, Release 8.1.3

vctl auth add --capabilities '{"test1_cap2":{"x":1}}' --user_id AgentB --credential
→˓vELQORgWOUcXo69DsSmHiCCLesJPa4-CtVfvoNHwIR0

The auth.json file entry for the above command would be:

{
"domain": null,
"user_id": "AgentB",
"roles": [],
"enabled": true,
"mechanism": "CURVE",
"capabilities": {
"test1_cap2": {

"x": 1
}

},
"groups": [],
"address": null,
"credentials": "vELQORgWOUcXo69DsSmHiCCLesJPa4-CtVfvoNHwIR0",
"comments": null

}

Parameter values can also be regular expressions. For example, the following command will allow any agent with

(volttron)volttron@volttron1:~/git/myvolttron$ vctl auth add
domain []:
address []:
user_id []:
capabilities (delimit multiple entries with comma) []: {'test1_cap2':{'x':'/.*'}}
roles (delimit multiple entries with comma) []:
groups (delimit multiple entries with comma) []:
mechanism [CURVE]:
credentials []: vELQORgWOUcXo69DsSmHiCCLesJPa4-CtVfvoNHwIR0
comments []:
enabled [True]:
added entry domain=None, address=None, mechanism='CURVE', credentials=u
→˓'vELQORgWOUcXo69DsSmHiCCLesJPa4-CtVfvoNHwIR0', user_id='b22e041d-ec21-4f78-b32e-
→˓ab7138c22373'

auth.json file entry for the above command would be:

{
"domain": null,
"user_id": "90f8ef35-4407-49d8-8863-4220e95974c7",
"roles": [],
"enabled": true,
"mechanism": "CURVE",
"capabilities": {
"test1_cap2": {

"x": "/.*"
}

},
"groups": [],
"address": null,
"credentials": "vELQORgWOUcXo69DsSmHiCCLesJPa4-CtVfvoNHwIR0",
"comments": null

}

498 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Roles:

A role is a name for a set of capabilities. Roles can be used to grant an agent multiple capabilities without listing each
capability in the in the agent’s authorization entry. Capabilities can be fully utilized without roles. Roles are purely
for organizing sets of capabilities.

Roles can be viewed and edited with the following commands:

• vctl auth add-role

• vctl auth list-roles

• vctl auth remove-role

• vctl auth updated-role

For example, suppose agents protect certain methods with the following capabilites: READ_BUILDING_A_TEMP,
SET_BUILDING_A_TEMP, READ_BUILDLING_B_TEMP, and SET_BUILDING_B_TEMP.

These capabilities can be organized into various roles:

vctl auth add-role TEMP_READER READ_BUILDING_A_TEMP READ_BUILDLING_B_TEMP
vctl auth add-role BUILDING_A_ADMIN READ_BUILDING_A_TEMP SET_BUILDING_A_TEMP
vctl auth add-role BUILDING_B_ADMIN READ_BUILDING_B_TEMP SET_BUILDING_B_TEMP

To view these roles run vctl auth list-roles:

ROLE CAPABILITIES
---- ------------
BUILDING_A_ADMIN ['READ_BUILDING_A_TEMP', 'SET_BUILDING_A_TEMP']
BUILDING_B_ADMIN ['READ_BUILDING_B_TEMP', 'SET_BUILDING_B_TEMP']
TEMP_READER ['READ_BUILDING_A_TEMP', 'READ_BUILDLING_B_TEMP']

With this configuration, adding the BUILDING_A_ADMIN role to an agent’s authorization entry implicitly grants that
agent the READ_BUILDING_A_TEMP and SET_BUILDING_A_TEMP capabilities.

To add a new capabilities to an existing role:

vctl auth update-role BUILDING_A_ADMIN CLEAR_ALARM TRIGGER_ALARM

To remove a capability from a role:

vctl auth update-role BUILDING_A_ADMIN TRIGGER_ALARM --remove

Groups:

Groups provide one more layer of grouping. A group is a named set of roles. Like roles, groups are optional and are
meant to help with organization.

Groups can be viewed and edited with the following commands:

• vctl auth add-group

• vctl auth list-groups

• vctl auth remove-group

• vctl auth updated-group

These commands behave the same as the role commands. For example, to further organize the capabilities in the
previous section, one could create create an ALL_BUILDING_ADMIN group:

2.42. VOLTTRON Control 499

VOLTTRON Documentation, Release 8.1.3

vctl auth add-group ALL_BUILDING_ADMIN BUILDING_A_ADMIN BUILDING_B_ADMIN

With this configuration, agents in the ALL_BUILDING_ADMIN group would implicity have the
BUILDING_A_ADMIN and BUILDING_B_ADMIN roles. This means such agents would implicity be granted the
following capabilities: READ_BUILDING_A_TEMP, SET_BUILDING_A_TEMP, READ_BUILDLING_B_TEMP,
and SET_BUILDING_B_TEMP.

Mechanism:

Mechanism is the authentication method by which the agent will communicate with VOLTTRON platform. Currently
VOLTTRON uses only CURVE mechanism to authenticate agents.

Credentials:

The credentials field must be an CURVE encoded public key (see volttron.platform.vip.socket.encode_key for method
to encode public key).

credentials []: encoded-public-key-for-agent

Comments:

Comments is arbitrary string to associate with authentication record

Enabled:

TRUE of FALSE value to enable or disable the authentication record. Record will only be used if this value is True

Remote Agent Management

The remote sub-parser allows the user to manage connections to remote platforms and agents. This functionality is
comparable to that provided by the admin webpage, and requires the volttron instance to be web enabled. In addition,
when working with RMQ based CSRs, the RMQ messagebus must be used.

All remote sub-commands can be viewed by entering following command:

vctl auth remote --help

optional arguments:
-h, --help show this help message and exit
-c FILE, --config FILE

read configuration from FILE
--debug show tracebacks for errors rather than a brief message
-t SECS, --timeout SECS

timeout in seconds for remote calls (default: 60)
--msgdebug MSGDEBUG route all messages to an agent while debugging
--vip-address ZMQADDR

ZeroMQ URL to bind for VIP connections

remote subcommands:

(continues on next page)

500 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

list lists approved, denied, and pending certs and
credentials

approve approves pending or denied remote connection
deny denies pending or denied remote connection
delete approves pending or denied remote connection

The four primary actions are list, approve, deny, and delete. List displays all remote CSRs and ZMQ credentials, their
address, and current status, either APPROVED, DENIED, or PENDING.

USER_ID ADDRESS STATUS
volttron1.volttron1.platform.agent 192.168.56.101 PENDING
917a5da0-5a85-4201-b7d8-cd8c3959f391 127.0.0.1 PENDING

To accept a pending cert/credential, use:

vctl auth remote approve <USER_ID>

The USER_ID can be taken directly from vctl auth remote list.

To deny a pending cert/credential, use:

vctl auth remote deny <USER_ID>

Once a cert/credential has been approved or denied, the status will change.

USER_ID ADDRESS STATUS
volttron1.volttron1.platform.agent 192.168.56.101 APPROVED
917a5da0-5a85-4201-b7d8-cd8c3959f391 127.0.0.1 DENIED

The status of an approved or denied cert is persistent. A user may deny a previously approved cert/credential, or
approve a previously denied cert/credential. However, if a cert or credential is deleted, then the remote instance must
resend the request.

A request can be deleted using the following command:

vctl auth remote delete <USER_ID>

Dynamic RPC Method Authorization

RPC method authorizations are the capabilities used to limit access to specific exported RPC methods on an
agent. While the capability field is used to define which exported RPC methods the agent can access, the
rpc_method_authorization field describes which capabilities will authorize a remote agent to access it’s exported RPC
methods.

Note: While this field can be modified manually, it is best practice to use the interface. When the agent starts up, it
will query the AuthService for all current allowed rpc capabilities on each method.

The format for rpc_method_authorizations is as follows:

rpc_method_authorizations: {
"RPC_exported_method_1": [

"authorized_capability_1",
"authorized_capability_2"

(continues on next page)

2.42. VOLTTRON Control 501

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

],
"RPC_exported_method_2": [

"authorized_capability_3",
]

}

To dynamically modify an RPC method’s authorization, use:

vctl auth rpc add <agent_id.method> <authorized capability 1> <authorized capability
→˓2> ...

For example, AgentA has an RPC exported method ‘bar’ which can be called by any other agent.

@RPC.export
def bar(self, x):

return 'If you can see this, then you have the required capabilities'

If you wanted the bar method to only be accessible to an agent with the “can_call_bar” capability, you could restrict
access to the bar method on AgentA using the following command:

vctl auth rpc add AgentA.bar can_call_bar

This would be equivalent to having written the agent method as:

@RPC.export
@RPC.allow("can_call_bar")
def bar(self, x):

return 'If you can see this, then you have the required capabilities'

Although it would be possible to re-write the agent method in the above manner, a restart of the agent would be
required for the change to take effect. By using the vctl command, the method’s authorization is updated on the fly.

On the other hand, if you wish to remove an rpc authorization from an agent dynamically, you can use the remove
command.

As in the above example, AgentA has a method ‘bar’, which can only be called by agents with the “can_call_bar” ca-
pability. Since you want bar to be accessible to all agents, regardless of their capabilities, you could use the command:

vctl auth rpc remove AgentA.bar can_call_bar

2.43 Configuration Store

The Platform Configuration Store is a mechanism provided by the platform to facilitate the dynamic configuration
of agents. The Platform Configuration Store works by informing agents of changes to their configuration store and
the agent responding to those changes by updating any settings, subscriptions, or processes that are affected by the
configuration of the Agent.

502 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

2.43.1 Configurations and Agents

Each agent has it’s own configuration store (or just store). Agents are not given access to any other agent’s store.

The existence of a store is not dependent on the existence of an agent installed on the platform.

Each store has a unique identity. Stores are matched to agents at agent runtime via the agent’s VIP Identity. Therefore
the store for an agent is the store with the same identity as the agent’s VIP IDENTITY.

When a user updates a configuration in the store the platform immediately informs the agent of the change. The
platform will not send another update until the Agent finishes processing the first. The platform will send updates to
the agent, one file at a time, in the order the changes were received.

2.43.2 Configuration Names

Every configuration in an agent’s store has a unique name. When a configuration is added to an agent’s store with the
same name as an existing configuration it will replace the existing configuration. The store will remove any leading or
trailing whitespace, “/”, and “\” from the name.

2.43.3 Configuration File Types

The configuration store will automatically parse configuration files before presenting them to an agent. Additionally,
the configuration store does support storing raw data and giving to the agent unparsed. Most Agents will require
the configuration to be parsed. Any Agent that requires raw data will specifically mention the requirement in its
documentation.

This system removes the requirement that configuration files for an agent be in a specific format. For instance a registry
configuration for a driver may be JSON instead of CSV if that is more convenient for the user. This will work as long
as the JSON parses into an equivalent set of objects as an appropriate CSV file.

Currently the store supports parsing JSON and CSV files with support for more files types to come.

JSON

The store uses the same JSON parser that agents use to parse their configuration files. Therefore it supports Python
style comments and must create an object or list when parsed.

{
"result": "PREEMPTED", #This is a comment.
"info": null,
"data": {

"agentID": "my_agent", #This is another comment.
"taskID": "my_task"

}
}

2.43. Configuration Store 503

VOLTTRON Documentation, Release 8.1.3

CSV

A CSV file is represented as a list of objects. Each object represents a row in the CSV file.

For instance this simple CSV file:

Table 29: Example CSV
Volttron Point Name Modbus Register Writable Point Address
ReturnAirCO2 >f FALSE 1001
ReturnAirCO2Stpt >f TRUE 1011

Is the equivalent to this JSON file:

[
{

"Volttron Point Name": "ReturnAirCO2",
"Modbus Register": ">f",
"Writable": "FALSE",
"Point Address": "1001"

},
{

"Volttron Point Name": "ReturnAirCO2Stpt",
"Modbus Register": ">f",
"Writable": "TRUE",
"Point Address": "1011"

}
]

2.43.4 File references

The Platform Configuration Store supports referencing one configuration file from another. If a referenced file exists
the contents of that file will replace the file reference when the file is processed by the agent. Otherwise the reference
will be replaced with null (or in Python, None).

Only configurations that are parsed by the platform (currently JSON or CSV) will be examined for references. If the
file referenced is another parsed file type (JSON or CSV, currently) then the replacement will be the parsed contents
of the file, otherwise it will be the raw contents of the file.

In a JSON object the name of a value will never be considered a reference.

A file reference is any value string that starts with config://. The rest of the string is the name of another configu-
ration. The configuration name is converted to lower case for comparison purposes.

Consider the following configuration files named devices/vav1.config and registries/vav.csv, respectively:

{
"driver_config": {"device_address": "10.1.1.5",

"device_id": 500},

"driver_type": "bacnet",
"registry_config":"config://registries/vav.csv",
"campus": "pnnl",
"building": "isb1",
"unit": "vav1"

}

504 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Table 30: vav.csv
Volttron Point Name Modbus Register Writable Point Address
ReturnAirCO2 >f FALSE 1001
ReturnAirCO2Stpt >f TRUE 1011

The resulting configuration returns when an agent asks for devices/vav1.config.

{
"driver_config": {"device_address": "10.1.1.5",

"device_id": 500},

"driver_type": "bacnet",
"registry_config":[

{
"Volttron Point Name": "ReturnAirCO2",
"Modbus Register": ">f",
"Writable": "FALSE",
"Point Address": "1001"

},
{

"Volttron Point Name": "ReturnAirCO2Stpt",
"Modbus Register": ">f",
"Writable": "TRUE",
"Point Address": "1011"

}
],

"campus": "pnnl",
"building": "isb1",
"unit": "vav1"

}

Circular references are not allowed. Adding a file that creates a circular reference will cause that file to be rejected by
the platform.

If a configuration is changed in any way and that configuration is referred to by another configuration then the agent
considers the referring configuration as changed. Thus a set of configurations with references can be considered one
large configuration broken into pieces for the users convenience.

Multiple configurations may all reference a single configuration. For instance, when configuring drivers in the Platform
Driver you may have multiple drivers reference the same registry if appropriate.

2.43. Configuration Store 505

VOLTTRON Documentation, Release 8.1.3

2.43.5 Modifying the Configuration Store

Currently the configuration store must be modified through the command line. See Commandline Interface.

Config Store Command Line Tools

Command line management of the Configuration Store is done with the vctl config sub-commands.

Store Configuration

To store a configuration in the Configuration Store use the store sub-command:

vctl config store <agent vip identity> <configuration name> <infile>

• agent vip identity - The agent store to add the configuration to.

• configuration name - The name to give the configuration in the store.

• infile - The file to ingest into the store.

Optionally you may specify the file type of the file. Defaults to --json.

• --json - Interpret the file as JSON.

• --csv - Interpret the file as CSV.

• --raw - Interpret the file as raw data.

Delete Configuration

To delete a configuration in the Configuration Store use the delete sub-command:

vctl config delete <agent vip identity> <configuration name>

• agent vip identity - The agent store to delete the configuration from.

• configuration name - The name of the configuration to delete.

To delete all configurations for an agent in the Configuration Store use --all switch in place of the configuration
name:

vctl config delete <agent vip identity> --all

Get Configuration

To get the current contents of a configuration in the Configuration Store use the get sub-command:

vctl config get <agent vip identity> <configuration name>

• agent vip identity - The agent store to retrieve the configuration from.

• configuration name - The name of the configuration to get.

By default this command will return the json representation of what is stored.

• --raw - Return the raw version of the file.

506 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

List Configurations

To get the current list of agents with configurations in the Configuration Store use the list sub-command:

vctl config list

To get the current list of configurations for an agent include the Agent’s VIP IDENTITY:

vctl config list <agent vip identity>

• agent vip identity - The agent store to retrieve the configuration from.

Edit Configuration

To edit a configuration in the Configuration Store use the edit sub-command:

vctl config edit <agent vip identity> <configuration name>

• agent vip identity - The agent store containing the configuration.

• configuration name - The name of the configuration to edit.

The configuration must exist in the store to be edited.

By default edit will try to open the file with the nano editor. The edit command will respect the EDITOR environment
variable. You may override this with the –editor option.

Agent Configuration Store

This document describes the configuration store feature and explains how an agent uses it.

The configuration store enables users to store agent configurations on the platform and allows the agent to automati-
cally retrieve them during runtime. Users may update the configurations and the agent will automatically be informed
of the changes.

Compatibility

Supporting the configuration store will not be required by Agents, however the usage will be strongly encouraged as
it should substantially improve user experience.

The previous method for configuring an agent will still be available to agents (and in some cases required), however
agents can be created to only work with the configuration store and not support the old method at all.

It will be possible to create an agent to use the traditional method for configuration to establish defaults if no configu-
ration exist in the platform configuration store.

2.43. Configuration Store 507

VOLTTRON Documentation, Release 8.1.3

Configuration Names and Paths

Any valid OS file path name is a valid configuration name. Any leading or trailing “/”, “" and whitespace is removed
by the store.

The canonical name for the main agent configuration is config.

The configuration subsystem remembers the case of configuration names. Name matching is case insensitive both
on the Agent and platform side. Configuration names are reported to agent callbacks in the original case used when
adding them to the configuration. If a new configuration is store with a different case of an existing name the new
name case is used.

Configuration Ownership

Each configuration belongs to one agent and one agent only. When an agent refers to a configuration file via it’s path
it does not need to supply any information about its identity to the platform in the file path. The only configurations
an agent has direct access to are it’s own. The platform will only inform the owning agent configuration changes.

Configuration File Types

Configurations files come in three types: json, csv, and raw. The type of a configuration file is declared when it is
added to or changed in the store.

The parser assumes the first row of every CSV file is a header.

Invalid JSON or CSV files are rejected at the time they are added to the store.

Raw files are unparsed and accepted as is.

Other parsed types may be added in the future.

Configuration File Representation to Agents

JSON

A JSON file is parsed and represented as appropriate data types to the requester.

Consider a file with the following contents:

{
"result": "PREEMPTED",
"info": null,
"data": {

"agentID": "my_agent",
"taskID": "my_task"

}
}

The file will be parsed and presented as a dictionary with 3 values to the requester.

508 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

CSV

A CSV file is represented as a list of objects. Each object represents a row in the CSV file.

For instance this (simplified) CSV file:

Table 31: Example CSV
Volttron Point Name Modbus Register Writable Point Address
ReturnAirCO2 >f FALSE 1001
ReturnAirCO2Stpt >f TRUE 1011

will be represented like this:

[
{

"Volttron Point Name": "ReturnAirCO2",
"Modbus Register": ">f",
"Writable": "FALSE",
"Point Address": "1001"

},
{

"Volttron Point Name": "ReturnAirCO2Stpt",
"Modbus Register": ">f",
"Writable": "TRUE",
"Point Address": "1011"

}
]

Raw

Raw files are represented as a string containing the contents of the file.

File references

The Platform Configuration Store supports referencing one configuration file from another. If a referenced file exists
the contents of that file will replace the file reference when the file is sent to the owning agent. Otherwise the reference
will be replaced with None.

Only configurations that are parsed by the platform (currently “json” or “csv”) will be examined for references. If the
file referenced is another parsed file type (JSON or CSV, currently) then the replacement will be the parsed contents
of the file.

In a JSON object the name of a value will never be considered a reference.

A file reference is any value string that starts with config://. The rest of the string is the path in the config store to
that configuration. The config store path is converted to lower case for comparison purposes.

Consider the following configuration files named devices/vav1.config and registries/vav.csv, respectively:

{
"driver_config": {"device_address": "10.1.1.5",

"device_id": 500},

"driver_type": "bacnet",

(continues on next page)

2.43. Configuration Store 509

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"registry_config":"config://registries/vav.csv",
"campus": "pnnl",
"building": "isb1",
"unit": "vav1"

}

Table 32: vav.csv
Volttron Point Name Modbus Register Writable Point Address
ReturnAirCO2 >f FALSE 1001
ReturnAirCO2Stpt >f TRUE 1011

The resulting configuration returns when an agent asks for devices/vav1.config. The Python object will have the
following configuration:

{
"driver_config": {"device_address": "10.1.1.5",

"device_id": 500},

"driver_type": "bacnet",
"registry_config":[

{
"Volttron Point Name": "ReturnAirCO2",
"Modbus Register": ">f",
"Writable": "FALSE",
"Point Address": "1001"

},
{

"Volttron Point Name": "ReturnAirCO2Stpt",
"Modbus Register": ">f",
"Writable": "TRUE",
"Point Address": "1011"

}
],

"campus": "pnnl",
"building": "isb1",
"unit": "vav1"

}

Circular references are not allowed. Adding a file that creates a circular reference will cause that file to be rejected by
the platform.

If a file is changed in anyway (NEW, UPDATE, or DELETE) and that file is referred to by another file then the platform
considers the referring configuration as changed. The configuration subsystem on the Agent will call every callback
listening to a file or any file referring to that file either directly or indirectly.

510 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Agent Configuration Sub System

The configuration store shall be implemented on the Agent(client) side in the form of a new subsystem called config.

The subsystem caches configurations as the platform updates the state to the agent. Changes to the cache triggered by
an RPC call from the platform will trigger callbacks in the agent.

No callback methods are called until the onconfig phase of agent startup. A new phase to agent startup called onconfig
will be added to the Core `class. Originally it was planned to have this run after the `onstart phase has completed but
that is currently not possible. Ideally if an agent is using the config store feature it will not need any onstart methods.

When the onconfig phase is triggered the subsystem will retrieve the current configuration state from the platform and
call all callbacks registered to a configuration in the store to the NEW action. No callbacks are called before this point
in agent startup.

The first time callbacks are called at agent startup any callbacks subscribed to a configuration called config are called
first.

Configuration Subsystem Agent Methods

These methods are part of the interface available to the Agent.

config.get(config_name=”config”) - Get the contents of a configuration. If no name is provided the
contents of the main agent configuration “config” is returned. This may not be called before onstart
methods are called. If called during the onstart phase it will trigger the subsystem to initialize early but
will not trigger any callbacks.

config.subscribe(callback, action=(“NEW”, “UPDATE”, “DELETE”), pattern=”*”) - Sets up a call-
back for handling a configuration change. The platform will automatically update the agent when a
configuration changes ultimately triggering all callbacks that match the pattern specified. The action ar-
gument describes the types of configuration change action that will trigger the callback. Possible actions
are NEW, UPDATE, and DELETE or a tuple of any combination of actions. If no action is supplied
the callback happens for all changes. A list of actions can be supplied if desired. If no file name pat-
tern is supplied then the callback is called for all configurations. The pattern is an regex used match the
configuration name.

The callback will also be called if any file referenced by a configuration file is changed.

The signature of the callback method is callback(config_name, action, contents) where
file_name is the file that triggered the callback, action is the action that triggered the callback, and contents
are the new contents of the configuration. Contents will be None on a DELETE action. All callbacks
registered for NEW events will be called at agent startup after all osntart methods have been called.
Unlike pubsub subscriptions, this may be called at any point in an agent’s lifetime.

config.unsubscribe(callback=None, config_name_pattern=None) - Unsubscribe from configuration
changes. Specifying a callback only will unsubscribe that callback from all config name patterns they
have been bound to. If a pattern only is specified then all callbacks bound to that pattern will be removed.
Specifying both will remove that callback from that pattern. Calling with no arguments will remove all
subscriptions.

config.unsubscribe_all() - Unsubscribe from all configuration changes.

config.set(config_name, contents, trigger_callback=False) - Set the contents of a configuration. This
may not be called before onstart methods are called. This can be used by an agent to store agent state
across agent installations. This will NOT trigger any callbacks unless trigger_callback is set to True. To
prevent deadlock with the platform this method may not be called from a configuration callback function.
Doing so will raise a RuntimeError exception.

2.43. Configuration Store 511

VOLTTRON Documentation, Release 8.1.3

This will not modify the local configuration cache the Agent maintains. It will send the configuration
change to the platform and rely on the subsequent update_config call.

config.delete(config_name, trigger_callback=False) - Remove the configuration from the store. This
will NOT trigger any callbacks unless trigger_callback is True. To prevent deadlock with the platform
this method may not be called from a configuration callback function. Doing so will raise a RuntimeError
exception.

config.list() - Returns a list of configuration names.

config.set_default(config_name, contents, trigger_callback=False) - Set a default value for a configu-
ration. DOES NOT modify the platform’s configuration store but creates a default configuration that is
used for agent configuration callbacks if the configuration does not exist in the store or the configuration is
deleted from the store. The callback will only be triggered if trigger_callback is true and the configuration
store subsystem on the agent is not aware of a configuration with that name from the platform store.

Typically this will be called in the __init__ method of an agent with the parsed contents of the packaged
configuration file. This may not be called from a configuration callback. Doing so will raise a RuntimeEr-
ror.

config.delete_default(config_name, trigger_callback=False) - Delete a default value for a configura-
tion. This method is included for for completeness and is unlikely to be used in agent code. This may not
be called from a configuration callback. Doing so will raise a RuntimeError.

Configuration Sub System RPC Methods

These methods are made available on each agent to allow the platform to communicate changes to a configuration to
the affected agent. As these methods are not part of the exposed interface they are subject to change.

config.update(config_name, action, contents=None, trigger_callback=True) - called by the platform when a con-
figuration was changed by some method other than the Agent changing the configuration itself. Trigger callback tells
the agent whether or not to call any callbacks associate with the configuration.

Notes on trigger_callback

As the configuration subsystem calls all callbacks in the onconfig phase and none are called beforehand the trig-
ger_callback setting is effectively ignored if an agent sets a configuration or default configuration before the end of
the onstart phase.

Platform Configuration Store

The platform configuration store handles the storage and maintenance of configuration states on the platform.

As these methods are not part of the exposed interface they are subject to change.

512 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Platform RPC Methods

Methods for Agents

Agent methods that change configurations do not trigger any callbacks unless trigger_callback is True.

set_config(config_name, contents, trigger_callback=False) - Change/create a configuration file on the platform.

get_configs() - Get all of the configurations for an Agent.

delete_config(config_name, trigger_callback=False) - Delete a configuration.

Methods for Management

manage_store_config(identity, config_name, contents, config_type=”raw”) - Change/create a configuration on the
platform for an agent with the specified identity

manage_delete_config(identity, config_name) - Delete a configuration for an agent with the specified identity. Calls
the agent’s update_config with the action DELETE_ALL and no configuration name.

manage_delete_store(identity) - Delete all configurations for a VIP Identity.

manage_list_config(identity) - Get a list of configurations for an agent with the specified identity.

manage_get_config(identity, config_name, raw=True) - Get the contents of a configuration file. If raw is set to True
this function will return the original file, otherwise it will return the parsed representation of the file.

manage_list_stores() - Get a list of all the agents with configurations.

Direct Call Methods

Services local to the platform who wish to use the configuration store may use two helper methods on the agent class
created for this purpose. This allows the auth service to use the config store before the router is started.

delete(self, identity, config_name, trigger_callback=False) - Same as functionality as delete_config, but the caller
must specify the identity of the config store.

store(self, identity, config_name, contents, trigger_callback=False) - Same functionality as set_config, but the
caller must specify the identity of the config store.

Command Line Interface

The command line interface will consist of a new commands for the volttron-ctl program called config with four sub-
commands called store, delete, list, get. These commands will map directly to the management RPC functions in the
previous section.

2.43. Configuration Store 513

VOLTTRON Documentation, Release 8.1.3

Disabling the Configuration Store

Agents may optionally disable support for the configuration store by passing enable_store=False to the __init__
method of the Agent class. This allows temporary agents to not spin up the subsystem when it is not needed. Platform
service agents that do not yet support the configuration store and the temporary agents used by volttron-ctl will set this
value.

2.44 Platform Security

There are various security-related topics throughout VOLTTRON’s documentation. This is a quick roadmap for finding
security documentation.

A core component of VOLTTRON is its message bus. The security of this message bus is crucial to the entire system.
The VOLTTRON Interconnect Protocol provides communication over the message bus.

VIP was built with security in mind from the ground up. VIP uses encrypted channels and enforces agent authentica-
tion by default for all network communication. VIP’s authorization mechanism allows system administrators to limit
agent capabilities with fine granularity.

Even with these security mechanisms built into VOLTTRON, it is important for system administrators to harden
VOLTTRON’s underlying OS.

The VOLTTRON team has engaged with PNNL’s Secure Software Central team to create a threat profile document.
You can read about the threat assessment findings and how the VOLTTRON team is addressing them here: SSC Threat
Profile

Additional documentation related to VIP authentication and authorization is available here:

2.44.1 Key Stores

Warning: Most VOLTTRON users should not need to directly interact with agent key stores. These are notes
for VOLTTRON platform developers. This is not a stable interface and the implementation details are subject to
change.

Each agent has its own encryption key-pair that is used to authenticate itself with the VOLTTRON platform. A key-
pair comprises a public key and a private (secret) key. These keys are saved in a “key store”, which is implemented by
the KeyStore class. Each agent has its own key store.

Key Store Locations

There are two main locations key stores will be saved. Installed agents’ key stores are in the the agent’s data directory:

$VOLTTRON_HOME/agents/<AGENT_UUID>/<AGENT_NAME>/keystore.json

Agents that are not installed, such as platform services and stand-alone agents, store their key stores here:

$VOLTTRON_HOME/keystores/<VIP_IDENTITY>/keystore.json

514 Chapter 2. Features

https://volttron.org/sites/default/files/publications/VolttronThreatProfile_v1.1.pdf
https://volttron.org/sites/default/files/publications/VolttronThreatProfile_v1.1.pdf

VOLTTRON Documentation, Release 8.1.3

Generating a Key Store

Agents automatically retrieve keys from their key store unless both the publickey and secretkey parameters are
specified when the agent is initialized. If an agent’s key store does not exist it will automatically be generated upon
access.

Users can generate a key pair by running the following command:

vctl auth keypair

2.44.2 Known Hosts File

Before an agent can connect to a VOLTTRON platform that agent must know the platform’s VIP address and public
key (known as the server key). It can be tedious to manually keep track of server keys and match them with their
corresponding addresses.

The purpose of the known-hosts file is to save a mapping of platform addresses to server keys. This way the user only
has to specify a server key one time.

Saving a Server Key

Suppose a user wants to connect to a platform at 192.168.0.42:22916, and the platform’s public key is
uhjbCUm3kT5QWj5Py9w0XZ7c1p6EP8pdo4Hq4dNEIiQ. To save this address-to-server-key association, the
user can run:

volttron-ctl auth add-known-host --host 192.168.0.42:22916 --serverkey
→˓uhjbCUm3kT5QWj5Py9w0XZ7c1p6EP8pdo4Hq4dNEIiQ

Now agents on this system will automatically use the correct server key when connecting to the platform at 192.
168.0.42:22916.

Server Key for Local Platforms

When a platform starts it automatically adds its public key to the known-hosts file. Thus agents connecting to the local
VOLTTRON platform (on the same system and using the same $VOLTTRON_HOME) will automatically be able to
retrieve the platform’s public key.

Know-Host-File Details

Note: The following details regarding the known-hosts file are subject to change. These notes are primarily for
developers, but the may be helpful if troubleshooting an issue. The known-hosts file should not be edited directly.

2.44. Platform Security 515

VOLTTRON Documentation, Release 8.1.3

File Location

The known-hosts-file is stored at $VOLTTRON_HOME/known_hosts.

File Contents

Here are the contents of an example known-hosts file:

{
"@": "FSG7LHhy3v8tdNz3gK35G6-oxUcyln54pYRKu5fBJzU",
"127.0.0.1:22916": "FSG7LHhy3v8tdNz3gK35G6-oxUcyln54pYRKu5fBJzU",
"127.0.0.2:22916": "FSG7LHhy3v8tdNz3gK35G6-oxUcyln54pYRKu5fBJzU",
"127.0.0.1:12345": "FSG7LHhy3v8tdNz3gK35G6-oxUcyln54pYRKu5fBJzU",
"192.168.0.42:22916": "uhjbCUm3kT5QWj5Py9w0XZ7c1p6EP8pdo4Hq4dNEIiQ"

}

The first four entries are for the local platform. (They were automatically added when the platform started.) The first
entry with the @ key is for IPC connections, and the entries with the 127.0.0.* keys are for local TCP connections.
Note that a single VOLTTRON platform can bind to multiple TCP addresses, and each address will be automatically
added to the known-hosts file. The last entry is for a remote VOLTTRON platform. (It was added in the Saving a
Server Key section.)

2.44.3 Running Agents as Unix Users

This VOLTTRON feature will cause the platform to create a new, unique Unix user(agent users) on the host machine
for each agent installed on the platform. This user will have restricted permissions for the file system, and will be used
to run the agent process.

Warning: The Unix user starting the VOLTTRON platform will be given limited sudo access to create and delete
agent users.

Since this feature requires system level changes (e.g. sudo access, user creation, file permission changes), the initial
step needs to be run as root or user with sudo access. This can be a user other than Unix user used to run the
VOLTTRON platform.

All files and folder created by the VOLTTRON process in this mode would not have any access to others by de-
fault. Permission for Unix group others would be provided to specific files and folder based on VOLTTRON process
requirement.

It is recommended that you use a new VOLTTRON_HOME to run VOLTTRON in secure mode. Converting a existing
VOLTTRON instance to secure mode is also possible but would involve some manual changes. Please see the section
Porting existing volttron home to secure mode.

Note: VOLTTRON has to be bootstrapped as prerequisite to running agents as unique users.

516 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Setup agents to run using unique users

1. This feature requires acl to be installed.

Make sure the acl library is installed. If you are running on a Docker image acl might not be installed by default.

apt-get install acl

2. Agents now run as a user different from VOLTTRON platform user. Agent users should have read and execute
permissions to all directories in the path to the Python executable used by VOLTTRON. For example, if VOLT-
TRON is using a virtual environment, then agent users should have read permissions to <ENV_DIR>/bin/python
and read and execute permission to all the directories in the path <ENV_DIR>/bin. This can be achieved by
running:

chmod -R o+rx <ENV_DIR>/bin

3. Run scripts/secure_user_permissions.sh as root or using sudo

This script MUST be run as root or using sudo. This script gives the VOLTTRON platform user limited sudo
access to create a new Unix user for each agent. All users created will be of the format volttron_<timestamp>.

This script prompts for:

a. volttron platform user - Unix user who would be running the VOLTTRON platform. This should be an
existing Unix user. On a development machine this could be the Unix user you logged in as to check out
VOLTTRON source

b. VOLTTRON_HOME directory - The absolute path of the volttron home directory.

c. Volttron instance name if VOLTTRON_HOME/config does not exist -

If the VOLTTRON_HOME/config file exists then instance name is obtained from that config file. If not,
the user will be prompted for an instance name. volttron_<instance_name> MUST be a 23 characters or
shorter containing only characters valid as Unix user names.

This script will create necessary entries in /etc/sudoers.d/volttron to allow the VOLTTRON platform user to
create and delete agent users, the VOLTTRON agent group, and run any non-sudo command as the agent users.

This script will also create VOLTTRON_HOME and the config file if given a new VOLTTRON home directory
when prompted.

4. Continue with VOLTTRON bootstrap and setup as normal - point to the VOLTTRON_HOME that you
provided in step 2.

5. On agent install (or agent start for existing agents) - a unique agent user(Unix user) is created and the
agent is started as this user. The agent user name is recorded in USER_ID file under the agent install directory
(VOLTTRON_HOME/agents/<agent-uuid>/USER_ID). Subsequent agent restarts will read the content of the
USER_ID file and start the agent process as that user.

6. On agent uninstall - The agent user is deleted and the agent install directory is deleted.

2.44. Platform Security 517

VOLTTRON Documentation, Release 8.1.3

Creating new Agents

In this secure mode, agents will only have read write access to the agent-data directory under the agent install directory
- VOLTTRON_HOME/agents/<agent_uuid>/<agent_name>/<agent_name>.agent-data. Attempting to write in any
other folder under VOLTTRON_HOME will result in permission errors.

Changes to existing agents in secure mode

Due to the above change, SQL historian has been modified to create its database by default under its agent-data
directory if no path is given in the config file. If providing a path to the database in the config file, please provide
a directory where agent will have write access. This can be an external directory for which agent user (recorded in
VOLTTRON_HOME/agents/<agent-uuid>/USER_ID) has read, write, and execute access.

Porting existing VOLTTRON home to secure mode

When running scripts/secure_users_permissions.sh you will be prompted for a VOLTTRON_HOME directory. If this
directory exists and contains a volttron config file, the script will update the file locations and permissions of existing
VOLTTRON files including installed directories. However this step has the following limitations:

1. You will NOT be able to revert to insecure mode once the changes are done. - Once setup is complete, chang-
ing the config file manually to make parameter secure-agent-users to False, may result inconsistent VOLTTRON
behavior

2. The VOLTTRON process and all agents have to be restarted to take effect

3. Agents can only to write to its own agent-data dir. - If your agents writes to any directory outside
$VOLTTRON_HOME/agents/<agent-uuid>/<agent-name>/agent-name.agent-data move existing files and up-
date the agent configuration such that the agent writes to the agent-name.agent-data dir. For example, if
you have a SQLHistorian which writes a .sqlite file to a subdirectory under VOLTTRON_HOME that is not
$VOLTTRON_HOME/agents/<agent-uuid>/<agent-name>/agent-name.agent-data this needs to be manually
updated.

2.45 ActuatorAgent

2.45.1 actuator package

actuator.agent module

The Actuator Agent is used to manage write access to devices. Other agents may request scheduled times, called
Tasks, to interact with one or more devices.

Agents may interact with the ActuatorAgent via either PUB/SUB or RPC, but it is recommended agents use RPC to
interact with the ActuatorAgent.

The PUB/SUB interface remains primarily for VOLTTRON 2.0 agents.

The Actuator Agent also triggers the heart beat on devices whose drivers are configured to do so.

518 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

ActuatorAgent Configuration

“schedule_publish_interval” Interval between published schedule announcements in seconds. De-
faults to 30. See Schedule State Publishes.

“preempt_grace_time” Minimum time given to Tasks which have been preempted to clean up in sec-
onds. Defaults to 60.

“schedule_state_file” File used to save and restore Task states if the ActuatorAgent restarts for any rea-
son. File will be created if it does not exist when it is needed.

“heartbeat_interval” How often to send a heartbeat signal to all devices in seconds. Defaults to 60.

Sample configuration file

{
"schedule_publish_interval": 30,
"schedule_state_file": "actuator_state.pickle"

}

Workflow

Agents interact with the Actuator Agent following these basic steps:

• Schedule one or more blocks of time with one or more devices. This is

called a Task. - If needed wait until a block of time starts. - Set one or more values on the reserved devices. - Cancel
the schedule when finished.

Scheduling a New Task

RPC interface PUB/SUB interface

Creating a Task requires four things:

• The requester of the Task. This is the Agent’s ID.

• A name for the Task.

• The Task’s priority.

• A list of devices and time ranges for each device.

Task Priority

There are three valid prioirity levels:

“HIGH” This Task cannot be preempted under any circumstance. This Task may preempt other conflict-
ing preemptable Tasks.

“LOW” This Task cannot be preempted once it has started. A Task is considered started once the
earliest time slot on any device has been reached. This Task may not preempt other Tasks.

2.45. ActuatorAgent 519

VOLTTRON Documentation, Release 8.1.3

“LOW_PREEMPT” This Task may be preempted at any time. If the Task is preempted once it has
begun running any current time slots will be given a grace period (configurable in the ActuatorAgent
configuration file, defaults to 60 seconds) before being revoked. This Task may not preempt other
Tasks.

Whenever a Task is preempted the Actuator Agent will publish a message to devices/actuators/schedule/
result indicating that the Task has been cancelled due to being preempted. See Preemption Publishes

Even when using the RPC interface agents which schedule low priority tasks may need to subscribe to devices/
actuators/schedule/result to learn when its Tasks are canceled due to preemption.

Device Schedule

The device schedule is a list of block of time for each device.

Both the RPC and PUB/SUB interface accept schedules in the following format:

[
["campus/building/device1", #First time slot.
"2013-12-06 16:00:00", #Start of time slot.
"2013-12-06 16:20:00"], #End of time slot.

["campus/building/device1", #Second time slot.
"2013-12-06 18:00:00", #Start of time slot.
"2013-12-06 18:20:00"], #End of time slot.

["campus/building/device2", #Third time slot.
"2013-12-06 16:00:00", #Start of time slot.
"2013-12-06 16:20:00"], #End of time slot.

#etc...
]

Note: Points on Task Scheduling

• Task id and requester id (agentid) should be a non empty value of type string

• A Task schedule must have at least one time slot.

• The start and end times are parsed with dateutil’s date/time parser. The default string representation of a
python datetime object will parse without issue.

• Two Tasks are considered conflicted if at least one time slot on a device from one task overlaps the time slot of
the other on the same device.

• The end time of one time slot can be the same as the start time of another time slot for the same device. This will
not be considered a conflict. For example, time_slot1(device0, time1, time2) and time_slot2(device0,time2,
time3) are not considered a conflict

• A request must not conflict with itself.

520 Chapter 2. Features

http://labix.org/python-dateutil#head-c0e81a473b647dfa787dc11e8c69557ec2c3ecd2

VOLTTRON Documentation, Release 8.1.3

New Task Response

Both the RPC and PUB/SUB interface respond to requests with the result in the following format:

{
'result': <'SUCCESS', 'FAILURE'>,
'info': <Failure reason string, if any>,
'data': <Data about the failure or cancellation, if any>

}

The PUB/SUB interface will respond to requests on the devices/actuators/schedule/result topic.

The PUB/SUB interface responses will have the following header:

{
'type': 'NEW_SCHEDULE'
'requesterID': <VIP Identity of requesting agent>,
'taskID': <Task ID from the request>

}

Failure Reasons

In many cases the ActuatorAgent will try to give good feedback as to why a request failed. The type of failure will
populate “info” item as a string.

Some of these errors only apply to the PUB/SUB interface.

General Failures

“INVALID_REQUEST_TYPE” Request type was not “NEW_SCHEDULE” or “CANCEL_SCHEDULE”.

“MISSING_TASK_ID” Failed to supply a taskID.

“MISSING_AGENT_ID” AgentID not supplied.

Task Schedule Failures

“TASK_ID_ALREADY_EXISTS “ The supplied taskID already belongs to an existing task.

“MISSING_PRIORITY” Failed to supply a priority for a Task schedule request.

“INVALID_PRIORITY” Priority not one of “HIGH”, “LOW”, or “LOW_PREEMPT”.

“MALFORMED_REQUEST_EMPTY” Request list is missing or empty.

“REQUEST_CONFLICTS_WITH_SELF” Requested time slots on the same device overlap.

“MALFORMED_REQUEST” Reported when the request parser raises an unhandled exception. The excep-
tion name and info are appended to this info string.

“CONFLICTS_WITH_EXISTING_SCHEDULES” This schedule conflict with an existing schedules that it can-
not preempt. The data item for the results will contain info about the conflicts in this form:

2.45. ActuatorAgent 521

VOLTTRON Documentation, Release 8.1.3

{
'<agentID1>':
{

'<taskID1>':
[

["campus/building/device1",
"2013-12-06 16:00:00",
"2013-12-06 16:20:00"],

["campus/building/device1",
"2013-12-06 18:00:00",
"2013-12-06 18:20:00"]

]
'<taskID2>':[...]

}
'<agentID2>': {...}

}

Device Interaction

Getting values

RPC interface PUB/SUB interface

While a device driver for a device will periodically broadcast the state of a device you may want an up to the moment
value for point on a device.

As of VOLTTRON 3.5 it is no longer required to have the device scheduled before you can use this interface.

Setting Values

RPC interface PUB/SUB interface

Failure to schedule the device first will result in an error.

Errors Setting Values

If there is an error the RPC interface will raise an exception and the PUB/SUB interface will publish to

devices/actuators/error/<full device path>/<actuation point>

The headder of the publish will take this form:

{
'requesterID': <VIP Identity of requesting agent>

}

and a message body in this form:

{
'type': <Class name of the exception raised by the request>
'value': <Specific info about the error>

}

522 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Common Error Types

LockError Raised when a request is made when we do not have permission to use a de-
vice. (Forgot to schedule, preempted and we did not handle the preemption message cor-
rectly, ran out of time in time slot, etc. . .)

ValueError Message missing (PUB/SUB only) or is the wrong data type.

Most other error types involve problems with communication between the VOLTTRON device drivers and the device
itself.

Reverting Values and Devices to a Default State

As of VOLTTRON 3.5 device drivers are now required to support reverting to a default state. The exact mechanism
used to accomplish this is driver specific.

Failure to schedule the device first will result in a LockError.

RPC revert value interface PUB/SUB revert value interface

RPC revert device interface PUB/SUB revert device interface

Canceling a Task

RPC interface PUB/SUB interface

Cancelling a Task requires two things:

• The original requester of the Task. The agent’s VIP identity automatically replaces provided parameters.

• The name of the Task.

Cancel Task Response

Both the RPC and PUB/SUB interface respond to requests with the result in the following format:

{
'result': <'SUCCESS', 'FAILURE'>,
'info': <Failure reason, if any>,
'data': {}

}

Note: There are some things to be aware of when canceling a schedule:

• The taskID must match the original value from the

original request header. - After a Tasks time has passed there is no need to cancel it. Doing so will result
in a “TASK_ID_DOES_NOT_EXIST” error.

If an attempt cancel a schedule fails than the “info” item will have any of the following values:

“TASK_ID_DOES_NOT_EXIST” Trying to cancel a Task which does not exist. This error can also
occur when trying to cancel a finished Task.

“AGENT_ID_TASK_ID_MISMATCH” A different agent ID is being used when trying to cancel a
Task.

2.45. ActuatorAgent 523

VOLTTRON Documentation, Release 8.1.3

Preemption Publishes

If a Task is preempted it will publish the following to the devices/actuators/schedule/result topic:

{
'result': 'PREEMPTED',
'info': None,
'data': {

'agentID': <Agent ID of preempting task>,
'taskID': <Task ID of preempting task>

}
}

Along with the following header:

{
'type': 'CANCEL_SCHEDULE',
'requesterID': <VIP id associated with the preempted Task>,
'taskID': <Task ID of the preempted Task>

}

Note: Remember that if your “LOW_PREEMPT” Task has already started and is preempted you have a grace period
to do any clean up before losing access to the device.

Schedule State Publishes

Periodically the ActuatorAgent will publish the state of all currently reserved devices. The first publish for a device
will happen exactly when the reserved block of time for a device starts.

For each device the ActuatorAgent will publish to an associated topic:

devices/actuators/schedule/announce/<full device path>

With the following header:

{
'requesterID': <VIP identity of Agent with access>,
'taskID': <Task associated with the time slot>
'window': <Seconds remaining in the time slot>

}

The frequency of the updates is configurable with the “schedule_publish_interval” setting in the configuration.

class actuator.agent.ActuatorAgent(heartbeat_interval=60, sched-
ule_publish_interval=60, preempt_grace_time=60,
driver_vip_identity='platform.driver', al-
low_no_lock_write=True, **kwargs)

Bases: volttron.platform.vip.agent.Agent

The Actuator Agent regulates control of devices by other agents. Agents request a schedule and then issue
commands to the device through this agent.

The Actuator Agent also sends out the signal to drivers to trigger a device heartbeat.

Parameters

• heartbeat_interval (float) – Interval in seonds to send out a heartbeat to devices.

524 Chapter 2. Features

https://docs.python.org/3.6/library/functions.html#float

VOLTTRON Documentation, Release 8.1.3

• schedule_publish_interval (float) – Interval in seonds to publish the currently
active schedules.

• schedule_state_file – Name of the file to save the current schedule state to. This
file is updated every time a schedule changes.

• preempt_grace_time (float) – Time in seconds after a schedule is preemted before
it is actually cancelled.

• driver_vip_identity (str) – VIP identity of the Platform Driver Agent.

configure(config_name, action, contents)

get_multiple_points(topics, **kwargs)
RPC method

Get multiple points on multiple devices. Makes a single RPC call to the platform driver per device.

Parameters

• topics – List of topics or list of [device, point] pairs.

• **kwargs – Any driver specific parameters

Returns Dictionary of points to values and dictonary of points to errors

Warning: This method does not require that all points be returned successfully. Check that the error
dictionary is empty.

get_point(topic, point=None, **kwargs)
RPC method

Gets up to date value of a specific point on a device. Does not require the device be scheduled.

Parameters

• topic (str) – The topic of the point to grab in the format <device topic>/<point name>

Only the <device topic> if point is specified.

• point – Point on the device. Uses old behavior if omitted.

• **kwargs – Any driver specific parameters

Returns point value

Return type any base python type

handle_get(peer, sender, bus, topic, headers, message)
Requests up to date value of a point.

To request a value publish a message to the following topic:

devices/actuators/get/<device path>/<actuation point>

with the fallowing header:

{
'requesterID': <Ignored, VIP Identity used internally>

}

The ActuatorAgent will reply on the value topic for the actuator:

devices/actuators/value/<full device path>/<actuation point>

2.45. ActuatorAgent 525

https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str

VOLTTRON Documentation, Release 8.1.3

with the message set to the value the point.

handle_revert_device(peer, sender, bus, topic, headers, message)
Revert all the writable values on a device.

To revert a device publish a message to the following topic:

devices/actuators/revert/device/<device path>

with the fallowing header:

{
'requesterID': <Ignored, VIP Identity used internally>

}

The ActuatorAgent will reply on the value topic for the actuator:

devices/actuators/reverted/device/<full device path>

to indicate that a point was reverted.

Errors will be published on

devices/actuators/error/<full device path>/<actuation point>

with the same header as the request.

handle_revert_point(peer, sender, bus, topic, headers, message)
Revert the value of a point.

To revert a value publish a message to the following topic:

actuators/revert/point/<device path>/<actuation point>

with the fallowing header:

{
'requesterID': <Ignored, VIP Identity used internally>

}

The ActuatorAgent will reply on

devices/actuators/reverted/point/<full device path>/<actuation point>

This is to indicate that a point was reverted.

Errors will be published on

devices/actuators/error/<full device path>/<actuation point>

with the same header as the request.

handle_schedule_request(peer, sender, bus, topic, headers, message)
Schedule request pub/sub handler

An agent can request a task schedule by publishing to the devices/actuators/schedule/
request topic with the following header:

{
'type': 'NEW_SCHEDULE',
'requesterID': <Ignored, VIP Identity used internally>,
'taskID': <unique task ID>, #The desired task ID for this
task. It must be unique among all other scheduled tasks.
'priority': <task priority>, #The desired task priority,

(continues on next page)

526 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

must be 'HIGH', 'LOW', or 'LOW_PREEMPT'
}

The message must describe the blocks of time using the format described in Device Schedule.

A task may be canceled by publishing to the devices/actuators/schedule/request topic with
the following header:

{
'type': 'CANCEL_SCHEDULE',
'requesterID': <Ignored, VIP Identity used internally>,
'taskID': <unique task ID>, #The task ID for the canceled Task.

}

requesterID The name of the requesting agent. Automatically replaced with VIP id.

taskID The desired task ID for this task. It must be unique among all other scheduled tasks.

priority The desired task priority, must be ‘HIGH’, ‘LOW’, or ‘LOW_PREEMPT’

No message is requires to cancel a schedule.

handle_set(peer, sender, bus, topic, headers, message)
Set the value of a point.

To set a value publish a message to the following topic:

devices/actuators/set/<device path>/<actuation point>

with the fallowing header:

{
'requesterID': <Ignored, VIP Identity used internally>

}

The ActuatorAgent will reply on the value topic for the actuator:

devices/actuators/value/<full device path>/<actuation point>

with the message set to the value the point.

Errors will be published on

devices/actuators/error/<full device path>/<actuation point>

with the same header as the request.

request_cancel_schedule(requester_id, task_id)
RPC method

Requests the cancellation of the specified task id.

Parameters

• requester_id (str) – Ignored, VIP Identity used internally

• task_id (str) – Task name.

Returns Request result

Return type dict

Return Values

2.45. ActuatorAgent 527

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict

VOLTTRON Documentation, Release 8.1.3

The return values are described in Cancel Task Response.

request_new_schedule(requester_id, task_id, priority, requests)
RPC method

Requests one or more blocks on time on one or more device.

Parameters

• requester_id – Ignored, VIP Identity used internally

• task_id – Task name.

• priority – Priority of the task. Must be either “HIGH”, “LOW”,

or “LOW_PREEMPT” :param requests: A list of time slot requests in the format described in Device
Schedule.

Returns Request result

Return type dict

Return Values The return values are described in New Task Response.

revert_device(requester_id, topic, **kwargs)
RPC method

Reverts all points on a device to a default state. Requires the device be scheduled by the calling agent.

Parameters

• requester_id (str) – Ignored, VIP Identity used internally

• topic (str) – The topic of the device to revert

• **kwargs – Any driver specific parameters

Warning: Calling without previously scheduling a device and not

within the time allotted will raise a LockError

revert_point(requester_id, topic, point=None, **kwargs)
RPC method

Reverts the value of a specific point on a device to a default state. Requires the device be scheduled by the
calling agent.

Parameters

• requester_id (str) – Ignored, VIP Identity used internally

• topic (str) – The topic of the point to revert in the format <device topic>/<point name>

• **kwargs – Any driver specific parameters

Warning: Calling without previously scheduling a device and not

within the time allotted will raise a LockError

528 Chapter 2. Features

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str

VOLTTRON Documentation, Release 8.1.3

scrape_all(topic)
RPC method

Get all points from a device.

Parameters topic – Device topic

Returns Dictionary of points to values

set_multiple_points(requester_id, topics_values, **kwargs)
RPC method

Set multiple points on multiple devices. Makes a single RPC call to the platform driver per device.

Parameters

• requester_id – Ignored, VIP Identity used internally

• topics_values – List of (topic, value) tuples

• **kwargs – Any driver specific parameters

Returns Dictionary of points to exceptions raised. If all points were set successfully an empty
dictionary will be returned.

Warning: calling without previously scheduling all devices and not within the time allotted will raise
a LockError

set_point(requester_id, topic, value, point=None, **kwargs)
RPC method

Sets the value of a specific point on a device. Requires the device be scheduled by the calling agent.

Parameters

• requester_id (str) – Ignored, VIP Identity used internally

• topic (str) – The topic of the point to set in the format <device topic>/<point name>
Only the <device topic> if point is specified.

• value (any basic python type) – Value to set point to.

• point (str) – Point on the device. Uses old behavior if omitted.

• **kwargs – Any driver specific parameters

Returns value point was actually set to. Usually invalid values cause an error but some drivers
(MODBUS) will return a different value with what the value was actually set to.

Return type any base python type

Warning: Calling without previously scheduling a device and not

within the time allotted will raise a LockError

exception actuator.agent.LockError
Bases: Exception

Error raised when the user does not have a device scheuled and tries to use methods that require exclusive access.

actuator.agent.actuator_agent(config_path, **kwargs)
Parses the Actuator Agent configuration and returns an instance of the agent created using that configuation.

2.45. ActuatorAgent 529

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/exceptions.html#Exception

VOLTTRON Documentation, Release 8.1.3

Parameters config_path (str) – Path to a configuation file.

Returns Actuator Agent

Return type ActuatorAgent

actuator.agent.main()
Main method called to start the agent.

actuator.scheduler module

class actuator.scheduler.DeviceState(agent_id, task_id, time_remaining)
Bases: tuple

property agent_id
Alias for field number 0

property task_id
Alias for field number 1

property time_remaining
Alias for field number 2

class actuator.scheduler.RequestResult(success, data, info_string)
Bases: tuple

property data
Alias for field number 1

property info_string
Alias for field number 2

property success
Alias for field number 0

class actuator.scheduler.Schedule
Bases: object

check_availability(time_slot)

finished(now)

get_conflicts(other)
Returns a list of our time_slices that conflict with the other schedule

get_current_slot(now)

get_next_event_time(now)
Run this to know when to the next state change is going to happen with this schedule

get_schedule()

make_current(now)
Should be called before working with a schedule. Updates the state to the schedule to eliminate stuff in
the past.

prune_to_current(grace_time, now)
Use this to prune a schedule due to preemption.

schedule_slot(time_slot)

exception actuator.scheduler.ScheduleError
Bases: Exception

530 Chapter 2. Features

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/exceptions.html#Exception

VOLTTRON Documentation, Release 8.1.3

class actuator.scheduler.ScheduleManager(grace_time, now=None,
save_state_callback=None, ini-
tial_state_string=None)

Bases: object

cancel_task(agent_id, task_id, now)

get_next_event_time(now)

get_schedule_state(now)

load_state(now, initial_state_string)

request_slots(agent_id, id_, requests, priority, now=None)

save_state(now)

set_grace_period(seconds)

class actuator.scheduler.Task(agent_id, priority, requests)
Bases: object

STATE_FINISHED = 'FINISHED'

STATE_PREEMPTED = 'PREEMPTED'

STATE_PRE_RUN = 'PRE_RUN'

STATE_RUNNING = 'RUNNING'

change_state(new_state)

check_can_preempt_other(other)

get_conflicts(other)

get_current_slots(now)

get_next_event_time(now)

make_current(now)

populate_schedule(requests)

preempt(grace_time, now)
Return true if there are time slots that have a grace period left

class actuator.scheduler.TimeSlice(start=None, end=None)
Bases: object

contains_include_start(other)
Similar to == or “in” but includes time == self.start

property end

property start

stretch_to_include(time_slice)

2.45. ActuatorAgent 531

https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/functions.html#object

VOLTTRON Documentation, Release 8.1.3

2.45.2 Actuator Agent

The Actuator Agent is used to manage write access to devices. Other agents may request scheduled times, called
Tasks, to interact with one or more devices.

Agents may interact with the ActuatorAgent via either PUB/SUB or RPC, but it is recommended agents use RPC to
interact with the ActuatorAgent. For an example of an agent using RPC to interact with the ActuatorAgent, see the
SchedulerExample agent from the Volttron repository.

The PUB/SUB interface remains primarily for VOLTTRON 2.0 agents.

The Actuator Agent also triggers the heart beat on devices whose drivers are configured to do so.

ActuatorAgent Configuration

1. “schedule_publish_interval”

Interval between published schedule announcements in seconds. Defaults to 30.

2. “preempt_grace_time”

Minimum time given to Tasks which have been preempted to clean up in seconds. Defaults to 60.

3. “schedule_state_file”

File used to save and restore Task states if the ActuatorAgent restarts for any reason. File will be
created if it does not exist when it is needed.

4. “heartbeat_interval”

How often to send a heartbeat signal to all devices in seconds. Defaults to 60.

Sample configuration file

{
"schedule_publish_interval": 30,
"schedule_state_file": "actuator_state.pickle"

}

2.46 Ambient

2.46.1 ambient package

ambient.agent module

class ambient.agent.Ambient(application_key='', **kwargs)
Bases: volttron.platform.agent.base_weather.BaseWeatherAgent

The Ambient agent requires having an API key to interact with the remote API. The agent offers a perfor-
mance_mode configuration option which allows users to limit the amount of data returned by the API.

generate_response_error(url, response_code)
Raises a descriptive runtime error based on the response code returned by a service. :param url: actual url
used for requesting data from Ambient :param response_code: Http response code returned by a service
following a request

532 Chapter 2. Features

https://github.com/VOLTTRON/volttron/blob/main/examples/SchedulerExample/schedule_example/agent.py

VOLTTRON Documentation, Release 8.1.3

get_api_description(service_name)
Provides a human-readable description of the various endpoints provided by the agent :param ser-
vice_name: requested service endpoint :return: Human-readable description string

get_point_name_defs_file()
Constructs the point name mapping dict from the mapping csv. :return: dictionary containing a mapping
of service point names to standard point names with optional

get_update_interval(service_name)
Indicates the interval between remote API updates :param service_name: requested service endpoint :re-
turn: datetime timedelta representing the time interval

get_version()
Provides the current version of the agent. :return: current version number in string format.

make_request()
Request data from the Ambient Weather API An example of the return value is as follows

[

{ “macAddress”: “18:93:D7:3B:89:0C”, “lastData”: {

“dateutc”: 1556212140000, “tempinf”: 71.9, “humidityin”: 31, “battout”: “1”, “temp1f”:
68.7, “humidity1”: 36, “batt1”: “1”, “date”: “2019-04-25T17:09:00.000Z”

}, “info”: {

“name”: “Home B WS”, “location”: “Lab Home B”

}

}, {

“macAddress”: “50:F1:4A:F7:3C:C4”, “lastData”: {

“dateutc”: 1556211960000, “tempinf”: 82.5, “humidityin”: 27, “battout”: “1”,
“temp1f”: 68.5, “humidity1”: 42, “batt1”: “1”, “date”: “2019-04-25T17:06:00.000Z”

}, “info”: {

“name”: “Home A WS”, “location”: “Lab Home A”

}

}

] :return:

query_current_weather(location)
Retrieve data from the Ambient API, return formatted current data and store forecast data in cache :param
location: location dictionary requested by the user :return: Timestamp and data for current data from the
Ambient API

query_forecast_service(service, location, quantity, forecast_start)
Unimplemented method stub :param service: forecast service type of weather data to return :param loca-
tion: location dictionary requested during the RPC call :param quantity: number of records to return, used
to generate Time Machine requests after the forecast request :param forecast_start: forecast results that are
prior to this timestamp will be filtered by base weather agent :return: Timestamp and data returned by the
Ambient weather API response

query_hourly_forecast(location)
Unimplemented method stub :param location: currently accepts lat/long location dictionary format only
:return: time of forecast prediction as a timestamp string, and a list of

2.46. Ambient 533

VOLTTRON Documentation, Release 8.1.3

query_hourly_historical(location, start_date, end_date)
Unimplemented method stub :param location: no format currently determined for history. :param
start_date: Starting date for historical weather period. :param end_date: Ending date for historical weather
period. :return: NotImplementedError

validate_location(service_name, location)
Indicates whether the location dictionary provided matches the format required by the remote weather API
:param service_name: name of the remote API service :param location: location dictionary to provide in
the remote API url :return: True if the location matches the required format else False

ambient.agent.ambient(config_path, **kwargs)
Parses the Agent configuration and returns an instance of the agent created using that configuration. :param
config_path: Path to a configuration file. :type config_path: str :returns: Ambient :rtype: Ambient

ambient.agent.main()
Main method called to start the agent.

2.46.2 Ambient Weather Agent

The Ambient weather agent provides the ability to query for current weather data from Ambient weather stations via
the Ambient weather API. The agent inherits features of the Volttron BaseWeatherAgent which provides caching of
recently recieved data, as well as point name mapping and unit conversion using the standardized CF-conventions
scheme.lu

The values from the Ambient weather station can be accessed through the cloud platform which can be accessed at
https://dashboard.ambientweather.net/dashboard

Two API Keys are required for all REST API requests:

applicationKey - identifies the developer / application. To request an application key please email sup-
port@ambientweather.com

apiKey - grants access to past/present data for a given user's devices. A typical consumer-facing ap-
plication will initially ask the user to create an apiKey on thier AmbientWeather.net account page
(https://dashboard.ambientweather.net/account) and paste it into the app. Developers for personal or in-
house apps will also need to create an apiKey on their own account page.

API requests are capped at 1 request/second for each user's apiKey and 3 requests/second per applicationKey. When
this limit is exceeded, the API will return a 429 response code. This will result in a response from the Ambient agent
containing "weather_error" and no weather data.

Ambient Endpoints

The Ambient Weather agent provides only current weather data (all other base weather endpoints are unimplemented,
and will return a record containing "weather_error" if used).

The location format for the Ambient agent is as follows:

{"location": "<location_string>"}

Ambient locations are Arbitrary string identifiers given to a weather station by the weather station owner/operator.

This is an example response:

534 Chapter 2. Features

https://dashboard.ambientweather.net/dashboard
mailto:support@ambientweather.com
mailto:support@ambientweather.com
https://dashboard.ambientweather.net/account

VOLTTRON Documentation, Release 8.1.3

2019-12-17 15:35:56,395 (listeneragent-3.3 3103) listener.agent INFO: Peer: pubsub,
→˓Sender: platform.ambient:, Bus: , Topic: weather/poll/current/all, Headers: {'Date
→˓': '2019-12-17T23:35:56.392709+00:00', 'Content-Type': 'Content-Type', 'min_
→˓compatible_version': '3.0', 'max_compatible_version': ''}, Message:
[{'location': 'Lab Home A',

'observation_time': '2019-12-18T07:33:00.000000+00:00',
'weather_results': {'batt1': 1,

'battout': 1,
'dateutc': 1576625580000,
'dewPointin': 39.6,
'feelsLikein': 70.2,
'humidity1': 1,
'humidityin': 31,
'macAddress': '50:F1:4A:F7:3C:C4',
'name': 'Home A WS',
'tempinf': 71.9,
'tz': 'Etc/GMT'}},

{'location': 'Lab Home B',
'observation_time': '2019-12-18T07:33:00.000000+00:00',
'weather_results': {'batt1': 1,

'battout': 1,
'dateutc': 1576625580000,
'dewPoint1': 28.6,
'dewPointin': 23.5,
'feelsLike1': 35.7,
'feelsLikein': 53.4,
'humidity1': 75,
'humidityin': 31,
'macAddress': '18:93:D7:3B:89:0C',
'name': 'Home B WS',
'temp1f': 35.7,
'tempinf': 53.4,
'tz': 'Etc/GMT'}}]

The selection of weather data points which are included may depend upon the type of Ambient device.

Configuration

The following is an example configuration for the Ambient agent. The "api_key" and "app_key" parameters are
required while all others are optional.

Parameters

1. “api_key” - api key string provided by Ambient - this is required and will not be provided by the VOLTTRON
team.

2. “appplication_key” - application key string provided by Ambient - this is required and will not be provided by
the VOLTTRON team.

3. “database_file” - sqlite database file for weather data caching. Defaults to "weather.sqlite" in the agent's data
directory.

4. “max_size_gb” - maximum size of cache database. When cache exceeds this size, data will get purged from
cache till cache is within the configured size.

5. “poll_locations” - list of locations to periodically poll for current data.

6. “poll_interval” - polling frequency or the number of seconds between each poll.

2.46. Ambient 535

VOLTTRON Documentation, Release 8.1.3

Example configuration:

{
"application_key" : "<api_key>",
"api_key":"<application_key>",
"poll_locations": [

{"location": "Lab Home A"},
{"location": "Lab Home B"}

],
"poll_interval": 60,
"identity": "platform.ambient"

}

Registry Configuration

The registry configuration file for this agent can be found in agent's data directory. This configuration provides the
point name mapping from the Ambient API's point scheme to the CF-conventions scheme by default. Points that do
not specify "Standard_Point_Name" were found to not have a logical match to any point found in the CF-Conventions.
For these points Ambient point name convention (Service_Point_Name) will be used.

Running Ambient Agent Tests

The following instructions can be used to run PyTests for the Ambient agent.

1. Set up the test file - test_ambient_agent.py is the PyTest file for the ambient agent. The test file features a few
variables at the top of the tests. These will need to be filled in by the runner of the Ambient agent tests. The LOCA-
TIONS variable specifies a list of "locations" of Ambient devices. The required format is a list of dictionaries of the
form {"location": <ambient weather station location>}. Locations are determined by the user when configuring a
weather station for the Ambient service using the Ambient app. For more information about the Ambient API, visit
https://www.ambientweather.com/api.html

2. Set up the test environment - The tests are intended to be run from the Volttron root directory using the Volttron
environment. Setting the environment variable, DEBUG_MODE=True or DEBUG=1 will preserve the test setup and
can be useful for debugging purposes. When testing from pycharm set the Working Directory value to be the root of
volttron source/checkout directory.

Example command line:

(volttron) <user>@<host>:~/volttron$ pytest -s ~/house-deployment/Ambient

2.47 BACnetProxy

2.47.1 bacnet_proxy package

bacnet_proxy.agent module

2.47.2 BACnet Proxy Agent

Communication with BACnet device on a network happens via a single virtual BACnet device. In VOLTTRON driver
framework, we use a separate agent specifically for communicating with BACnet devices and managing the virtual
BACnet device.

536 Chapter 2. Features

https://www.ambientweather.com/api.html

VOLTTRON Documentation, Release 8.1.3

Dependencies

1. The BACnet Proxy agent requires the BACPypes package. This package can be installed in an activated envi-
ronment with:

pip install bacpypes

2. Current versions of VOLTTRON support only BACPypes version 0.16.7

Agent Configuration

{
"device_address": "10.0.2.15",
"max_apdu_length": 1024,
"object_id": 599,
"object_name": "Volttron BACnet driver",
"vendor_id": 15,
"segmentation_supported": "segmentedBoth"

}

1. device_address - Address bound to the network port over which BACnet communication will happen on the
computer running VOLTTRON. This is NOT the address of any target device.

2. object_id - ID of the Device object of the virtual BACnet device. Defaults to 599. Only needs to be changed if
there is a conflicting BACnet device ID on your network.

3. max_apdu_length - Maximum size message the device can handle

4. object_name - Name of the object. Defaults to “Volttron BACnet driver”. (Optional)

5. vendor_id - Vendor ID of the virtual BACnet device. Defaults to 15. (Optional)

6. segmentation_supported - Segmentation allows larger messages to be broken up into segments and spliced
back together. Possible setting are “segmentedBoth” (default), “segmentedTransmit”, “segmentedReceive”, or
“noSegmentation” (Optional)

2.48 CrateHistorian

2.48.1 cratedb package

cratedb.historian module

2.48.2 Crate Historian

Crate is an open source SQL database designed on top of a No-SQL design. It allows automatic data replication and
self-healing clusters for high availability, automatic sharding, and fast joins, aggregations and sub-selects.

Find out more about crate from https://crate.io/.

2.48. CrateHistorian 537

https://crate.io/

VOLTTRON Documentation, Release 8.1.3

2.48.3 Upgrading

As of version 3 of the CrateHistorian the default topics table is topics instead of topic. To continue using the same
table name for topics please add a tabledef section to your configuration file

{
"connection": {

"type": "crate",
Optional table prefix defaults to historian
"schema": "testing",
"params": {

"host": "localhost:4200"
}

},
"tables_def": {

"table_prefix": "",
"data_table": "data",
"topics_table": "topics",
"meta_table": "meta"

}
}

NOTE: CrateHistorian is still alpha, schemas could change in the future, do not use this for produc-
tion data until schema is confirmed as final Currently the historian supports two schemas for numerical
data, the primary schema closely resembles the SQLHistorian schema but there is an optional "raw"
schema that can be enabled in the config below that utilizes some of the advanced indexing features of
crate

2.48.4 Prerequisites

1. Crate Database

Install crate version 3.3.3 from https://cdn.crate.io/downloads/releases/crate-3.3.3.tar.gz. Untar the file and run crate-
3.3.3/bin/crate to start crate. After the installation the service will be available for viewing at http://localhost:4200 by
default.

NOTE: Authentication for crate is an enterprise subscription only feature.

2. Crate Driver

There is a python library for crate that must be installed in the volttron python environment in order to access crate.
From an activated environment, in the root of the volttron folder, execute the following command:

python bootstrap.py --crate

or

pip install crate

538 Chapter 2. Features

https://cdn.crate.io/downloads/releases/crate-3.3.3.tar.gz
http://localhost:4200

VOLTTRON Documentation, Release 8.1.3

2.48.5 Configuration

The following is an example of the crate historian's configuration.

{
"connection": {

"type": "crate",
Optional table prefix defaults to historian
"schema": "testing",
"params": {

"host": "localhost:4200"
}

}
}

2.49 Darksky

2.49.1 darksky package

darksky.agent module

class darksky.agent.Darksky(performance_mode=True, **kwargs)
Bases: volttron.platform.agent.base_weather.BaseWeatherAgent

The Darksky agent requires having an API key to interact with the remote API. The agent offers a perfor-
mance_mode configuration option which allows users to limit the amount of data returned by the API.

Powered by Dark Sky

create_forecast_entry(service, location, timestamp, forecast_start)
Helper method used for removing extraneous data from a forecast request response based on request time
:param service: weather agent service endpoint :param location: request location dictionary :param times-
tamp: timestamp for the forecast request. If None, the default forecast result of

are returned - a minute-by-minute forecast for the next hour (where available), or an hour-by-hour
forecast for the next 48 hours, or a day-by-day forecast for the next week

Returns (the last time stamp for which forecast is returned, filtered Dark Sky forecast response)

format_multientry_response(location, response, service, timezone)
Used to extract the data not used by the RPC method, and store it in the cache, helping to limit the number
of API calls used to obtain data :param location: location dictionary to include with cached data :param
response: Darksky forecast response :param service: :param timezone: timezone string extracted from
Darksky response :return: formatted response data by service

generate_response_error(url, response_code)
raises a descriptive runtime error based on the response code returned by a service. :param url: actual url
used for requesting data from Darksky :param response_code: Http response code returned by a service
following a request

get_api_calls_interval()

Returns Returns a datetime object representing the time period for API

calls to expire as well as a number representing the number of API calls alloted during the period

2.49. Darksky 539

VOLTTRON Documentation, Release 8.1.3

get_api_description(service_name)
Provides a human-readable description of the various endpoints provided by the agent :param ser-
vice_name: requested service endpoint :return: Human-readable description string

get_daily_forecast(locations, days=7)
RPC method for getting time series forecast weather data by full day. :param locations: list of location
dictionaries from the RPC call :param days: Number of minutes of weather data to be returned :return:
List of daily forecast weather dictionaries

get_darksky_data(service, location, timestamp=None)
Generic method called by the current and forecast service endpoint methods to fetch a forecast request from
the Darksky API. If performance mode is set to True, the url adds exclusions for the services provided by
the API that were not requested. :param service: requested service endpoint :param location: location
dictionary for building url :param timestamp: timestamp of a record if this request is for the Time Machine
end point :return: Darksky forecast request response

get_generation_time_for_service(service)
Calculates generation time of forecast request response. “Next-hour minutely forecast data is updated ev-
ery five minutes. Hourly and daily forecast data are updated every hour.” (https://darksky.net/dev/docs/
faq#data-update) :param service: requested weather agent service endpoint :return: Datetime object rep-
resenting the timestamp when the weather was forecasted

get_hourly_forecast(locations, hours=48)
Overload of get_hourly_forecast method of base weather agent - sets default hours to 48 as this is the
quantity provided by a Dark Sky forecast request :param locations: ist of location dictionaries from the
RPC call :param hours: Number of hours of weather data to be returned :return: Dark Sky forecast data by
the hour

get_minutely_forecast(locations, minutes=60)
RPC method for getting time series forecast weather data minute by minute. Dark Sky does not provide
more than 1 hour into the future of minutely forecast data. :param locations: list of location dictionaries
from the RPC call :param minutes: Number of minutes of weather data to be returned :return: List of
minutely forecast weather dictionaries

get_point_name_defs_file()
Constructs the point name mapping dict from the mapping csv. :return: dictionary containing a mapping
of service point names to standard point names with optional

get_update_interval(service_name)
Indicates the interval between remote API updates :param service_name: requested service endpoint :re-
turn: datetime timedelta representing the time interval

get_version()
Provides the current version of the agent. :return: current version number in string format.

query_current_weather(location)
Retrieve data from the Darksky API, return formatted current data and store forecast data in cache :param
location: location dictionary requested by the user :return: Timestamp and data for current data from the
Darksky API

query_forecast_service(service, location, quantity, forecast_start)
Generic method for requesting forecast data from the various RPC forecast methods. If the user requests
a number of records to return greater than the default for the forecast request(7 daily records) additional
API calls will be made to the Dark Sky Time Machine endpoint. If the number of API calls required to
fulfill the additional records is greater than the amount of available API calls, the user will receive only
the records returned by the forecast request. :param service: forecast service type of weather data to return
:param location: location dictionary requested during the RPC call :param quantity: number of records to
return, used to generate Time Machine requests after the forecast request :param forecast_start: forecast
results that are prior to this

540 Chapter 2. Features

https://darksky.net/dev/docs/faq#data-update
https://darksky.net/dev/docs/faq#data-update

VOLTTRON Documentation, Release 8.1.3

timestamp will be filtered by base weather agent

Returns Timestamp and data returned by the Darksky weather API response

validate_location(service_name, location)
Indicates whether the location dictionary provided matches the format required by the remote weather API
:param service_name: name of the remote API service :param location: location dictionary to provide in
the remote API url :return: True if the location matches the required format else False

darksky.agent.darksky(config_path, **kwargs)
Parses the Agent configuration and returns an instance of the agent created using that configuration.

Parameters config_path (str) – Path to a configuration file.

Returns Darksky

Return type Darksky

darksky.agent.main()
Main method called to start the agent.

2.49.2 Dark Sky Agent

Powered by Dark Sky

This agent provides the ability to query for current and forecast weather data from Dark Sky. The agent extends
BaseWeatherAgent that provides caching of recently requested data, API call tracking, as well as mapping of weather
point names from Darksky's naming scheme to the standardized CF-conventions scheme.

Requirements

The Dark Sky agent requires the Pint package. This package can be installed in an activated environment with:

pip install pint

Dark Sky Endpoints

The Dark Sky agent provides the following endpoints in addition to those included with the base weather agent:

Get Minutely Forecast Data

RPC call to weather service method ‘get_minutely_forecast’

Parameters:

• locations - List of dictionaries containing location details. Dark Sky requires

[{"lat": <lattitude>, "long": <longitude>},...]

optional parameters:

• minutes - The number of minutes for which forecast data should be returned. By default, it is 60 minutes
as well as the current minute. Dark Sky does not provide minutely data for more than one hour (60 minutes)
into the future.

2.49. Darksky 541

https://docs.python.org/3.6/library/stdtypes.html#str
https://darksky.net/dev

VOLTTRON Documentation, Release 8.1.3

Get Daily Forecast Data

RPC call to weather service method ‘get_minutely_forecast’

Parameters:

• locations - List of dictionaries containing location details. Dark Sky requires

[{"lat": <lattitude>, "long": <longitude>},...]

optional parameters:

• days - The number of days for which forecast data should be returned. By default, it is the next 7 days as well
as the current day.

Please note: If your forecast request to the Dark Sky agent asks for more data points than the default, the agent
must use an additional API calls; an additional API call will be used to fetch any records not included in the
default forecast request for the current day, and one additional call for each subsequent day of data the request
would require, regardless of Dark Sky agent endpoint (If requesting 60 hours of hourly data Monday night at
8PM, 3 API calls must be made to fulfill the request: one for the initial request containing 48 hours of data, one
for the remaining 4 hours of Wednesday evening's data, and one for records in Thursday's forecast).

Configuration

The following is an example configuration for the Dark Sky agent. The "api_key" parameter is required while all
others are optional.

Parameters

1. "api_key" - api key string provided by Dark Sky - this is required and will not be provided by the VOLTTRON
team.

2. "api_calls_limit" - limit of api calls that can be made to the remote before the agent no longer returns weather
results. The agent will keep track of number of api calls and return an error when the limit is reached without
attempting a connection to dark sky server. This is primarily used to prevent possible charges. If set to -1, no
limit will be applied by the agent. Dark sky api might return a error after limit is exceeded. Defaults to -1

3. "database_file" - sqlite database file for weather data caching. Defaults to "weather.sqlite" in the agent's data
directory.

4. "max_size_gb" - maximum size of cache database. When cache exceeds this size, data will get purged from
cache till cache is within the configured size.

5. "poll_locations - list of locations to periodically poll for current data.

6. "poll_interval" - polling frequency or the number of seconds between each poll.

7. "performance_mode" - If set to true, request response will exclude extra data points (this is primarily useful for
reducing network traffic). If set to false, all data points are included in the response, and extra data is cached (to
reduce the number of API calls used for future RPC calls). Defaults to True.

Example configuration:

{
"api_key": "<api key string>",
"api_calls_limit": 1000,
"database_file": "weather.sqlite",
"max_size_gb": 1,
"poll_locations": [{"lat": 39.7555, "long": -105.2211},

{"lat": 46.2804, "long": -119.2752}],
(continues on next page)

542 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"poll_interval": 60
}

Registry Configuration

The registry configuration file for this agent can be found in agent's data directory. This configuration provides the
point name mapping from the Dark Sky API's point scheme to the CF-conventions scheme by default. Points that do
not specify "Standard_Point_Name" were found to not have a logical match to any point found in the CF-Conventions.
For these points Dark Sky point name convention (Service_Point_Name) will be used.

Service_Point_Name Standard_Point_Name Service_Units Standard_Units
precipIntensity lwe_precipitation_rate millimeter / hour meter / second
precipProbability
temperature surface_temperature degC degK
apparentTemperature degC degK
dewPoint dew_point_temperature degC degK

Notes

The Dark Sky agent requires an API key to be configured in order for users to request data. A user of the Dark Sky
agent must obtain the key themselves.

API call tracking features will work only when each agent instance uses its own api key. If API key is shared across
multiple dark sky agent instances, disable this feature by setting api_calls_limit = -1.

As of writing, dark sky gives 1000 daily API calls free for a trial account. Once this limit is reached, the error "daily
usage limit exceeded" is returned. See https://darksky.net/dev for details

By default performance mode is set to True and for a given location and time period only the requested data points are
returned. Set performance_mode to False to query all available data for a given location and time period if you want
to cache all the data points for future retrieval there by reducing number of API calls.

2.50 DataMover

2.50.1 datamover package

datamover.agent module

class datamover.agent.DataMover(destination_vip, destination_serverkey, destina-
tion_historian_identity='platform.historian', re-
mote_identity=None, **kwargs)

Bases: volttron.platform.agent.base_historian.BaseHistorian

This historian forwards data to another platform.

capture_data(peer, sender, bus, topic, headers, message)

configure(configuration)
Optional, may be implemented by a concrete implementation to add support for the configuration store.
Values should be stored in this function only.

The process thread is stopped before this is called if it is running. It is started afterwards.

2.50. DataMover 543

https://darksky.net/dev

VOLTTRON Documentation, Release 8.1.3

historian_setup is called after this is called.

historian_setup()
Optional setup routine, run in the processing thread before main processing loop starts. Gives the Historian
a chance to setup connections in the publishing thread.

historian_teardown()
Optional teardown routine, run in the processing thread if the main processing loop is stopped. This
happened whenever a new configuration arrives from the config store.

publish_to_historian(to_publish_list)
Main publishing method for historian Agents.

Parameters to_publish_list (list) – List of records

to_publish_list takes the following form:

[
{

'timestamp': timestamp1.replace(tzinfo=pytz.UTC),
'source': 'scrape',
'topic': "pnnl/isb1/hvac1/thermostat",
'value': 73.0,
'meta': {"units": "F", "tz": "UTC", "type": "float"}

},
{

'timestamp': timestamp2.replace(tzinfo=pytz.UTC),
'source': 'scrape',
'topic': "pnnl/isb1/hvac1/temperature",
'value': 74.1,
'meta': {"units": "F", "tz": "UTC", "type": "float"}

},
...

]

The contents of meta is not consistent. The keys in the meta data values can be different and can change
along with the values of the meta data. It is safe to assume that the most recent value of the “meta”
dictionary are the only values that are relevant. This is the way the cache treats meta data.

Once one or more records are published either BaseHistorianAgent.report_all_handled()
or BaseHistorianAgent.report_handled() must be called to report records as being pub-
lished.

timestamp()

datamover.agent.historian(config_path, **kwargs)

datamover.agent.main(argv=['/home/docs/checkouts/readthedocs.org/user_builds/volttron/envs/releases-
8.x/lib/python3.6/site-packages/sphinx/__main__.py', '-b', 'latex', '-D', 'lan-
guage=en', '-d', '_build/doctrees', '.', '_build/latex'])

544 Chapter 2. Features

https://docs.python.org/3.6/library/stdtypes.html#list

VOLTTRON Documentation, Release 8.1.3

2.50.2 DataMover Historian

The DataMover Historian is used to send data from one instance of VOLTTRON to another. This agent is similar to
the Forward Historian but does not publish data on the target platform's message bus. Messages are instead inserted
into the backup queue in the target's historian. This helps to ensure that messages are recorded.

If the target instance becomes unavailable or the target historian is stopped then this agent's cache will build up until it
reaches it's maximum capacity or the instance and agent comes back online.

The DataMover now uses the configuration store for storing its configurations. This allows dynamic updating of
configuration without having to rebuild the agent.

Configuration Options

The following JSON configuration file shows all the options currently supported by the DataMover agent.

{
destination-serverkey
The destination instance's publickey. Required if the
destination-vip-address has not been added to the known-host file.
See vctl auth --help for all instance security options.
#
This can be retrieved either through the command:
vctl auth serverkey
Or if the web is enabled on the destination through the browser at:
http(s)://hostaddress:port/discovery/
"destination-serverkey": null,

destination-vip-address - REQUIRED
Address of the target platform.
Examples:
"destination-vip": "ipc://@/home/volttron/.volttron/run/vip.socket"
"destination-vip": "tcp://127.0.0.1:23916"
"destination-vip": "tcp://<ip address>:<port>",

destination_historian_identity
Identity of the historian to send data to. Only needed if data
should be sent an agent other than "platform.historian"
"destination-historian-identity": "platform.historian",

remote_identity - OPTIONAL
identity that will show up in peers list on the remote platform
By default this identity is randomly generated
"remote-identity": "22916.datamover"

}

2.50. DataMover 545

VOLTTRON Documentation, Release 8.1.3

2.51 ExternalData

2.51.1 external_data package

external_data.agent module

class external_data.agent.ExternalData(interval, default_user, default_password, sources,
global_topic_prefix, **kwargs)

Bases: volttron.platform.vip.agent.Agent

Gathers and publishes JSON data available via a web api.

external_data.agent.external_data_agent(config_path, **kwargs)

external_data.agent.main(argv=['/home/docs/checkouts/readthedocs.org/user_builds/volttron/envs/releases-
8.x/lib/python3.6/site-packages/sphinx/__main__.py', '-b', 'latex', '-D',
'language=en', '-d', '_build/doctrees', '.', '_build/latex'])

Main method called by the eggsecutable.

2.51.2 External Data Agent

This agent gathers and publishes JSON data available via a web api

Configuration

The following is an example configuration file for the External Data Agent:

{
#Interval at which to scrape the sources.
"interval":300,

#Global topic prefix for all publishes.
"global_topic_prefix": "record",

#Default user name and password if all sources require the same
#credentials. Can be overridden in individual sources.
#"default_user":"my_user_name",
#"default_password" : "my_password",

"sources":
[
{

#Valid types are "csv", "json", and "raw"
#Defaults to "raw"
"type": "csv",
#Source URL for CSV data.
"url": "https://example.com/example",

#URL parameters for data query (optional).
See https://en.wikipedia.org/wiki/Query_string
"params": {"period": "currentinterval",

"format": "csv"},

#Topic to publish on.
"topic": "example/examplecsvdata1",

(continues on next page)

546 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

#Column used to break rows in CSV out into separate publishes.
#The key will be removed from the row data and appended to the end
of the publish topic.
If this option is missing the entire CSV will be published as a list
of objects.
#If the column does not exist nothing will be published.
"key": "Key Column",

#Attempt to parse these columns in the data into numeric types.
#Currently columns are parsed with ast.literal_eval()
#Values that fail to parse are left as strings unless the
values is an empty string. Empty strings are changed to None.
"parse": ["Col1", "Col2"],

#Source specific authentication.
"user":"username",
"password" : "password"

},
{

#Valid types are "csv", "json", and "raw"
#Defaults to "raw"
"type": "csv",
#Source URL for CSV data.
"url": "https://example.com/example_flat",

#URL parameters for data query (optional).
See https://en.wikipedia.org/wiki/Query_string
"params": {"format": "csv"},

#Topic to publish on. (optional)
"topic": "example/examplecsvdata1",

#If the rows in a csv represent key/value pairs use this
#setting to reduce this format to a single object for publishing.
"flatten": true,

#Attempt to parse these columns in the data into numeric types.
#Currently columns are parsed with ast.literal_eval()
#Values that fail to parse are left as strings unless the
values is an empty string. Empty strings are changed to None.
"parse": ["Col1", "Col2"]

},
{

#Valid types are "csv", "json", and "raw"
#Defaults to "raw"
"type": "json",
#Source URL for JSON data.
"url": "https://example.com/api/example1",

#URL parameters for data query (optional)
See https://en.wikipedia.org/wiki/Query_string
"params": {"format": "json"},

#Topic to publish on. (optional)
"topic": "example/exampledata1",

(continues on next page)

2.51. ExternalData 547

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

#Path to desired data withing the JSON. Optional.
#Elements in a path may be either a string or an integer.
#Useful for peeling off unneeded layers around the wanted data.
"path": ["parentobject", "0"],

#After resolving the path above if the resulting data is a list
the key is the path to a value in a list item. Each item in the list
is published separately with the key appended to the end of the topic.
Elements in a key may be a string or an integer. (optional)
"key": ["Location", "$"],

#Source specific authentication.
"user":"username",
"password" : "password"

}
]

}

2.52 ForwardHistorian

2.52.1 forwarder package

forwarder.agent module

class forwarder.agent.ForwardHistorian(destination_vip, destination_serverkey, cus-
tom_topic_list=[], topic_replace_list=[], re-
quired_target_agents=[], cache_only=False,
destination_address=None, **kwargs)

Bases: volttron.platform.agent.base_historian.BaseHistorian

This historian forwards data to another instance as if it was published originally to the second instance.

capture_data(peer, sender, bus, topic, headers, message)

configure(configuration)
Optional, may be implemented by a concrete implementation to add support for the configuration store.
Values should be stored in this function only.

The process thread is stopped before this is called if it is running. It is started afterwards.

historian_setup is called after this is called.

historian_setup()
Optional setup routine, run in the processing thread before main processing loop starts. Gives the Historian
a chance to setup connections in the publishing thread.

historian_teardown()
Optional teardown routine, run in the processing thread if the main processing loop is stopped. This
happened whenever a new configuration arrives from the config store.

publish_to_historian(to_publish_list)
Main publishing method for historian Agents.

Parameters to_publish_list (list) – List of records

to_publish_list takes the following form:

548 Chapter 2. Features

https://docs.python.org/3.6/library/stdtypes.html#list

VOLTTRON Documentation, Release 8.1.3

[
{

'timestamp': timestamp1.replace(tzinfo=pytz.UTC),
'source': 'scrape',
'topic': "pnnl/isb1/hvac1/thermostat",
'value': 73.0,
'meta': {"units": "F", "tz": "UTC", "type": "float"}

},
{

'timestamp': timestamp2.replace(tzinfo=pytz.UTC),
'source': 'scrape',
'topic': "pnnl/isb1/hvac1/temperature",
'value': 74.1,
'meta': {"units": "F", "tz": "UTC", "type": "float"}

},
...

]

The contents of meta is not consistent. The keys in the meta data values can be different and can change
along with the values of the meta data. It is safe to assume that the most recent value of the “meta”
dictionary are the only values that are relevant. This is the way the cache treats meta data.

Once one or more records are published either BaseHistorianAgent.report_all_handled()
or BaseHistorianAgent.report_handled() must be called to report records as being pub-
lished.

timestamp()

forwarder.agent.historian(config_path, **kwargs)

forwarder.agent.main(argv=['/home/docs/checkouts/readthedocs.org/user_builds/volttron/envs/releases-
8.x/lib/python3.6/site-packages/sphinx/__main__.py', '-b', 'latex', '-D', 'lan-
guage=en', '-d', '_build/doctrees', '.', '_build/latex'])

Main method called by the aip.

2.52.2 Forward Historian

The Forward Historian is used to send data from one instance of VOLTTRON to another. This agents primary purpose
is to allow the target instance's pubsub bus to simulate data coming from a real device. If the target instance becomes
unavailable or one of the "required agents" becomes unavailable then the cache of this agent will build up until it
reaches it's maximum capacity or the instance and agents come back online.

The Forward Historian now uses the configuration store for storing its configurations. This allows dynamic updating
of configuration without having to rebuild the agent.

FAQ /Notes

By default the Forward Historian adds an X-Forwarded and X-Forwarded-From header to the forwarded message. The
X-Forwarded-From uses the instance-name of the platform (ip address:port by default).

2.52. ForwardHistorian 549

VOLTTRON Documentation, Release 8.1.3

Configuration Options

The following JSON configuration file shows all the options currently supported by the ForwardHistorian agent.

{
destination-serverkey
The destination instance's publickey. Required if the
destination-vip-address has not been added to the known-host file.
See vctl auth --help for all instance security options.
#
This can be retrieved either through the command:
vctl auth serverkey
Or if the web is enabled on the destination through the browser at:
http(s)://hostaddress:port/discovery/
"destination-serverkey": null,

destination-vip-address - REQUIRED
Address of the target platform.
Examples:
"destination-vip": "ipc://@/home/volttron/.volttron/run/vip.socket"
"destination-vip": "tcp://127.0.0.1:22916"
"destination-vip": "tcp://<ip address>:<port>"

required_target_agents
Allows checking on the remote instance to verify peer identtites
are connected before publishing.
#
Example:
Require the platform.historian agent to be present on the
destination instance before publishing.
"required_target_agent" ["platform.historian"]
"required_target_agents": [],

capture_device_data
This is True by default and allows the Forwarder to forward
data published from the device topic
"capture_device_data": true,

capture_analysis_data
This is True by default and allows the Forwarder to forward
data published from the device topic
"capture_analysis_data": true,

capture_log_data
This is True by default and allows the Forwarder to forward
data published from the datalogger topic
"capture_log_data": true,

capture_record_data
This is True by default and allows the Forwarder to forward
data published from the record topic
"capture_record_data": true,

custom_topic_list
Unlike other historians, the forward historian can re-publish from
any topic. The custom_topic_list is prefixes to subscribe to on
the local bus and forward to the destination instance.
"custom_topic_list": ["actuator", "alert"],

(continues on next page)

550 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

cache_only
Allows one to put the forward historian in a cache only mode so that
data is backed up while doing operations on the destination
instance.
#
Setting this to true will start cache to backup and not attempt
to publish to the destination instance.
"cache_only": false,

topic_replace_list - Deprecated in favor of retrieving the list of
replacements from the VCP on the current instance.
"topic_replace_list": [

#{"from": "FromString", "to": "ToString"}
],

Publish a message to the log after a certain number of "successful"
publishes. To disable the message to not print anything set the
count to 0.
#
Note "successful" means that it was removed from the backup cache.
"message_publish_count": 10000

}

2.53 MQTTHistorian

2.53.1 mqtt_historian package

mqtt_historian.agent module

class mqtt_historian.agent.MQTTHistorian(connection, **kwargs)
Bases: volttron.platform.agent.base_historian.BaseHistorian

This historian publishes data to a MQTT Broker.

publish_to_historian(to_publish_list)
Main publishing method for historian Agents.

Parameters to_publish_list (list) – List of records

to_publish_list takes the following form:

[
{

'timestamp': timestamp1.replace(tzinfo=pytz.UTC),
'source': 'scrape',
'topic': "pnnl/isb1/hvac1/thermostat",
'value': 73.0,
'meta': {"units": "F", "tz": "UTC", "type": "float"}

},
{

'timestamp': timestamp2.replace(tzinfo=pytz.UTC),
'source': 'scrape',

(continues on next page)

2.53. MQTTHistorian 551

https://docs.python.org/3.6/library/stdtypes.html#list

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

'topic': "pnnl/isb1/hvac1/temperature",
'value': 74.1,
'meta': {"units": "F", "tz": "UTC", "type": "float"}

},
...

]

The contents of meta is not consistent. The keys in the meta data values can be different and can change
along with the values of the meta data. It is safe to assume that the most recent value of the “meta”
dictionary are the only values that are relevant. This is the way the cache treats meta data.

Once one or more records are published either BaseHistorianAgent.report_all_handled()
or BaseHistorianAgent.report_handled() must be called to report records as being pub-
lished.

timestamp()

mqtt_historian.agent.historian(config_path, **kwargs)

mqtt_historian.agent.main(argv=['/home/docs/checkouts/readthedocs.org/user_builds/volttron/envs/releases-
8.x/lib/python3.6/site-packages/sphinx/__main__.py', '-b', 'latex', '-D',
'language=en', '-d', '_build/doctrees', '.', '_build/latex'])

2.53.2 mqttlistener module

mqttlistener.listen(client, userdata, message)

2.53.3 MQTT Historian

Overview

The MQTT Historian agent publishes data to an MQTT broker.

The mqttlistener.py script will connect to the broker and print all messages.

Dependencies

The Paho MQTT library from Eclipse is needed for the agent and can be installed with:

pip install paho-mqtt

The Mosquitto MQTT broker may be useful for testing and can be installed with

apt-get install mosquitto

552 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Configuration

The following is an example configuration file:

{
"connection: {

Optional backup limit in gigabytes. Default is no backup limit.
"backup_storage_limit_gb": null,

Quality of service level for MQTT publishes. Default is 0.
"mqtt_qos": 0,

Set messages to be retained. Default is False
"mqtt_retain": false,

Address of broker to connect to. Default is localhost.
"mqtt_hostname": "localhost",

Port on broker accepting connections. Default is 1883
"mqtt_port": 1883

If a client id is not provided one will be generated by paho-mqtt.
Default is an empty string.
"mqtt_client_id": "",

Keepalive timeout for the client. Default is 60 seconds
"mqtt_keepalive": 60,

Optional will is published when the client disconnects. Default is None.
If used then QOS defaults to 0 and retain defaults to False.
"mqtt_will": {
"topic": "<topic>",
"payload":"<payload">,
"qos":<qos>,
"retain":<retain>
},

MQTT authentication info. Defaults to None.
"mqtt_auth": {
"username": "<username>",
"password": "<password>"
},

MQTT TLS parameters. If used then CA Certs is required. Otherwise the
default is None.
"mqtt_tls": {
"ca_certs":"<ca_certs>",
"certfile":"<certfile>",
"keyfile":"<keyfile>",
"tls_version":"<tls_version>",
"ciphers":"<ciphers">
}

Protocol versions MQTTv311 and MQTTv31 are supported. Default is MQTTv311.
"mqtt_protocol": "MQTTv311"

}
}

2.53. MQTTHistorian 553

VOLTTRON Documentation, Release 8.1.3

2.54 MongodbTaggingService

2.54.1 mongotagging package

mongotagging.tagging module

class mongotagging.tagging.MongodbTaggingService(connection, table_prefix=None,
**kwargs)

Bases: volttron.platform.agent.base_tagging.BaseTaggingService

This is a tagging service agent that writes data to a Mongo database. For instance with large amount of tags and
frequent tag queries, a NOSQL database such as Mongodb would provide better efficiency than SQLite.

insert_topic_tags(tags, update_version=False)
Add tags to multiple topics.

Parameters

• tags (dict) – dictionary object or file containing the topic and the tag details. dictionary
object or the file content should be of the format:

<topic_name or prefix or topic_name pattern>: {<valid
tag>:<value>, ... }, ... }

• update_version (bool) – True/False. Default to False. If set to True and if any of the
tags update an existing tag value the older value would be preserved as part of tag version
history. Note: this feature is not implemented in the current version of sqlite and mongodb
tagging service.

load_tag_refs()
Called right after setup to load a dictionary of reference tags and its corresponding parent tag. Implement-
ing methods should load self.tag_refs with tag and parent tag information

load_valid_tags()
Called right after setup to load a dictionary of valid tags. It should load self.valid_tags with tag and type
information

query_categories(include_description=False, skip=0, count=None, order='FIRST_TO_LAST')
Get the available list tag categories. category can have multiple tags and tags could belong to multiple
categories

Parameters

• include_description (bool) – indicate if result should include available descrip-
tion for categories returned

• skip (int) – number of tags to skip. usually used with order

• count (int) – limit on the number of tags to return

• order (str) – order of result - “FIRST_TO_LAST” or “LAST_TO_FIRST”

Returns list of category names if include_description is False, list of (category name, descrip-
tion) if include_description is True

Return type list

query_tags_by_category(category, include_kind=False, include_description=False, skip=0,
count=None, order='FIRST_TO_LAST')

Get the list of tags for a given category name. category can have multiple tags and tags could belong to
multiple categories

554 Chapter 2. Features

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#list

VOLTTRON Documentation, Release 8.1.3

Parameters

• category (str) – name of the category for which associated tags should be returned

• include_kind (bool) – indicate if result should include the kind/datatype for tags
returned

• include_description (bool) – indicate if result should include available descrip-
tion for tags returned

• skip (int) – number of tags to skip. usually used with order

• count (int) – limit on the number of tags to return

• order (str) – order of result - “FIRST_TO_LAST” or “LAST_TO_FIRST”

Returns

Will return one of the following

• list of tag names

• list of (tags, its data type/kind) if include_kind is True

• list of (tags, description) if include_description is True

• list of (tags, its data type/kind, description) if include_kind is True and include_description
is true

Return type list

query_tags_by_topic(topic_prefix, include_kind=False, include_description=False, skip=0,
count=None, order='FIRST_TO_LAST')

Get the list of tags for a given topic prefix or name.

Parameters

• topic_prefix (str) – topic_prefix for which associated tags should be returned

• include_kind (bool) – indicate if result should include the kind/datatype for tags
returned

• include_description (bool) – indicate if result should include available descrip-
tion for tags returned

• skip (int) – number of tags to skip. usually used with order

• count (int) – limit on the number of tags to return

• order (str) – order of result - “FIRST_TO_LAST” or “LAST_TO_FIRST”

Returns

Will return one of the following

• list of (tag name, value)

• list of (tag name, value, data type/kind) if include_kind is True

• list of (tag name, value, description) if include_description is True

• list of (tags, value, data type/kind, description) if include_kind is True and in-
clude_description is true

Return type list

query_topics_by_tags(ast, skip=0, count=None, order=None)
Get list of topic names and topic name prefixes based on query condition. Query condition is passed as an
abstract syntax tree.

2.54. MongodbTaggingService 555

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#list

VOLTTRON Documentation, Release 8.1.3

Parameters

• ast (tuple) – Abstract syntax tree that represents conditional statement to be used for
matching tags. The abstract syntax tree represents query condition that is created using the
following specification

Query condition is a boolean expression that contains one or more query conditions com-
bined together with an “AND” or “OR”. Query conditions can be grouped together using
parenthesis. Each condition in the expression should conform to one of the following
format:

1. <tag name/ parent.tag_name> <binary_operator> <value>

2. <tag name/ parent.tag_name>

3. <tag name/ parent.tag_name> LIKE <regular expression within single quotes

4. the word NOT can be prefixed before any of the above three to negate the condition.

5. expressions can be grouped with parenthesis. For example

condition="(tag1 = 1 or tag1 = 2) and (tag2 < '' and tag2 >
'') and tag3 and (tag4 LIKE '^a.*b$')"
condition="NOT (tag5='US' OR tag5='UK') AND NOT tag3 AND
NOT (tag4 LIKE 'a.*')"
condition="campusRef.geoPostalCode='20500' and equip and
boiler"

• skip (int) – number of tags to skip. usually used with order

• count (int) – limit on the number of tags to return

• order (str) – order of result - “FIRST_TO_LAST” or “LAST_TO_FIRST”

Returns list of topics/topic_prefix that match the given query conditions

Return type list

setup()
Called on start of agent Method to establish database connection, do any initial bootstrap necessary. Ex-
ample - load master list of tags, units, categories etc. into data store/memory

mongotagging.tagging.main(argv=['/home/docs/checkouts/readthedocs.org/user_builds/volttron/envs/releases-
8.x/lib/python3.6/site-packages/sphinx/__main__.py', '-b', 'latex', '-D',
'language=en', '-d', '_build/doctrees', '.', '_build/latex'])

Main entry point for the agent.

Parameters argv –

Returns

mongotagging.tagging.tagging_service(config_path, **kwargs)
This method is called by the tagging.main() to parse the passed config file or configuration dictionary
object, validate the configuration entries, and create an instance of MongodbTaggingService

Parameters

• config_path – could be a path to a configuration file or can be a dictionary object

• kwargs – additional keyword arguments if any

Returns an instance of tagging.MongodbTaggingService

556 Chapter 2. Features

https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#list

VOLTTRON Documentation, Release 8.1.3

2.54.2 Mongodb Tagging Service

Mongodb tagging service provide APIs to tag both topic names(device points) and topic name prefixes (campus,
building, unit/equipment, sub unit) and then query for relevant topics based on saved tag names and values. This agent
stores the tags in a mongodb database.

Tags used by this agent are not user defined. They have to be pre-defined in a resource file at volt-
tron_data/tagging_resources. The agent validates against this predefined list of tags every time user add tags to topics.
Tags can be added to one topic at a time or multiple topics by using a topic name pattern(regular expression). This
agent uses tags from project haystack. and adds a few custom tags for campus and VOLTTRON point name.

Each tag has an associated value and users can query for topic names based tags and its values using a simplified sql-
like query string. Queries can specify tag names with values or tags without values for boolean tags(markers). Queries
can combine multiple conditions with keyword AND and OR, and use the keyword NOT to negate a conditions.

Requirements

This historian requires a mongodb connector installed in your activated volttron environment to talk to mongodb.
Please execute the following from an activated shell in order to install it.

pip install pymongo

Dependencies and Limitations

1. When adding tags to topics, this agent calls the platform.historian's get_topic_list and hence requires the plat-
form.historian to be running but it doesn't require the historian to use any specific database. It does not require
platform.historian to be running for using its query APIs.

2. Resource files that provides the list of valid tags is mandatory and should be in volt-
tron_data/tagging_reosurces/tags.csv

3. Tagging service only provides APIs query for topic names based on tags. Once the list of topic names is
retrieved, users should use the historian APIs to get the data corresponding to those topics.

4. Current version of tagging service does not support versioning of tag/values. When tags values set using tagging
service APIs update/overwrite any existing tag entries in the database

Configuration Options

The following JSON configuration file shows all the options currently supported by this agent.

{
"connection": {

"type": "mongodb",
"params": {

"host": "localhost",
"port": 27017,
"database": "test_historian",
"user": "username for this db. should have read write access",
"passwd": "password for this db"

}
},
optional. Specify if collections created for tagging should have names
starting with a specific prefix <given prefix>_<collection_name>
"table_prefix":"volttron",

(continues on next page)

2.54. MongodbTaggingService 557

https://project-haystack.org/

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

optional. Specify if you want tagging service to query the historian
with this vip identity. defaults to platform.historian
"historian_vip_identity": "mongo.historian"

}

See Also

TaggingServiceSpec

2.55 PlatformDriverAgent

2.55.1 platform_driver package

Subpackages

platform_driver.interfaces package

Driver Development

New drivers are implemented by subclassing BaseInterface.

While it is possible to create an Agent which handles communication with a new device it will miss out on the benefits
of creating a proper interface for the Platform Driver Agent.

Creating an Interface for a device allows users of the device to automatically benefit from the following platform
features:

• Existing Agents can interact with the device via the Actuator Agent without any code changes.

• Configuration follows the standard form of other devices. Existing and future tools for configuring de-
vices on the platform will work with the new device driver.

• Historians will automatically capture data published by the new device driver.

• Device data can be graphed in VOLTTRON Central in real time.

• If the device can receive a heartbeat signal the driver framework can be configured to automatically send
a heartbeat signal.

• When the configuration store feature is rolled out the device can by dynamically configured through the
platform.

558 Chapter 2. Features

https://volttron.readthedocs.io/en/develop/developing-volttron/developing-agents/specifications/tagging-service.html

VOLTTRON Documentation, Release 8.1.3

Creating a New Interface

To create a new device driver create a new module in the PlatformDriverAgent.platform_driver.
interfaces package. The name of this module will be the name to use in the “driver_type” setting in a driver
configuration file in order to load the new driver.

In the new module create a subclass of BaseInterface called Interface.

The Interface class must implement the following methods:

• BaseInterface.configure()

• BaseInterface.set_point()

• BaseInterface.get_point()

• BaseInterface.scrape_all()

These methods are required but can be implemented using the BasicRevert mixin.

• BaseInterface.revert_point()

• BaseInterface.revert_all()

Each point on the device must be represented by an instance of the BaseRegister. Create one or more subclasses
of BaseRegister as needed to represent the points on a device.

Interface Configuration and Startup

When processing a driver configuration file the Platform Driver Agent will use the “driver_type” setting to automati-
cally find and load the appropriate Interface class for the desired driver.

After loading the class the Platform Driver Agent will call BaseInterface.configure() with the contents of
the “driver_config” section of the driver configuration file parsed into a python dictionary and the contents of the file
referenced in “registry_config” entry.

BaseInterface.configure() must setup register representations of all points on a device by creat-
ing instances of BaseRegister (or a subclass) and adding them to the Interface with BaseInterface.
insert_register().

After calling BaseInterface.configure() the Platform Driver Agent will use the created registers to create
meta data for each point on the device.

Device Scraping

The work scheduling and publish periodic device scrapes is handled by the Platform Driver Agent. When a scrape
starts the Platform Driver Agent calls the BaseInterface.scrape_all(). It will take the results of the call and
attach meta data and and publish as needed.

2.55. PlatformDriverAgent 559

VOLTTRON Documentation, Release 8.1.3

Device Interaction

Requests to interact with the device via any method supported by the platform are routed to the correct Interface
instance by the Platform Driver Agent.

Most commands originate from RPC calls to the Actuator Agent and are forwarded to the Platform Driver Agent.

• A command to set the value of a point on a device results in a call to BaseInterface.
set_point().

• A request for the current value of a point on a device results in a call to BaseInterface.
get_point().

• A request to revert a point on a device to its default state results in a call to BaseInterface.
revert_point().

• A request to revert an entire device to its default state results in a call to BaseInterface.
revert_all().

Registers

The Platform Driver Agent uses the BaseInterface.get_register_names() and BaseInterface.
get_register_by_name() methods to get registers to setup meta data.

This means that its a requirement to use the BaseRegister class to store information about points on a devices.

Using the BasicRevert Mixin

If the device protocol has no support for reverting to a default state an Interface this functionality can be implemented
with the BasicRevert mixin.

When using the BasicRevert mixin you must specify it first in the list of parent classes, otherwise it won’t Python
won’t detect that the BaseInterface.revert_point() and BaseInterface.revert_all() have been
implemented.

If desired the BasicRevert.set_default() can be used by the Interface class to set values for each point to
revert to.

class platform_driver.interfaces.BaseInterface(vip=None, core=None, **kwargs)
Bases: object

Main class for implementing support for new devices.

All interfaces must subclass this.

Parameters

• vip – A reference to the PlatformDriverAgent vip subsystem.

• core – A reference to the parent driver agent’s core subsystem.

build_register_map()

abstract configure(config_dict, registry_config_str)
Configures the Interface for the specific instance of a device.

Parameters

• config_dict (dict) – The “driver_config” section of the driver configuration file.

• registry_config_str (str) – The contents of the registry configuration file.

560 Chapter 2. Features

https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str

VOLTTRON Documentation, Release 8.1.3

This method must setup register representations of all points on a device by creating instances
of BaseRegister (or a subclass) and adding them to the Interface with BaseInterface.
insert_register().

get_multiple_points(path, point_names, **kwargs)
Read multiple points from the interface.

Parameters

• path (str) – Device path

• point_names ([str]) – Names of points to retrieve

• kwargs (dict) – Any interface specific parameters

Returns Tuple of dictionaries to results and any errors

Return type (dict, dict)

abstract get_point(point_name, **kwargs)
Get the current value for the point name given.

Parameters

• point_name (str) – Name of the point to retrieve.

• kwargs – Any interface specific parameters.

Returns Point value

get_register_by_name(name)
Get a register by it’s point name.

Parameters name (str) – Point name of register.

Returns An instance of BaseRegister

Return type BaseRegister

get_register_names()
Get a list of register names. :return: List of names :rtype: list

get_register_names_view()
Get a dictview of register names. :return: Dictview of names :rtype: dictview

get_registers_by_type(reg_type, read_only)
Get a list of registers by type. Useful for an Interface that needs to categorize registers by type when
doing a scrape.

Parameters

• reg_type (str) – Register type. Either “bit” or “byte”.

• read_only (bool) – Specify if the desired registers are read only.

Returns An list of BaseRegister instances.

Return type list

insert_register(register)
Inserts a register into the Interface.

Parameters register (BaseRegister) – Register to add to the interface.

abstract revert_all(**kwargs)
Revert entire device to it’s default state

Parameters kwargs – Any interface specific parameters.

2.55. PlatformDriverAgent 561

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#list

VOLTTRON Documentation, Release 8.1.3

abstract revert_point(point_name, **kwargs)
Revert point to it’s default state.

Parameters kwargs – Any interface specific parameters.

abstract scrape_all()
Method the Platform Driver Agent calls to get the current state of a device for publication.

Returns Point names to values for device.

Return type dict

set_multiple_points(path, point_names_values, **kwargs)
Set multiple points on the interface.

Parameters

• path (str) – Device path

• point_names_values – Point names and values to be set to.

• kwargs (dict) – Any interface specific parameters

Returns Dictionary of points to any exceptions raised

Return type dict

abstract set_point(point_name, value, **kwargs)
Set the current value for the point name given.

Implementations of this method should make a reasonable effort to return the actual value the point was set
to. Some protocols/devices make this difficult. (I’m looking at you BACnet) In these cases it is acceptable
to return the value that was requested if no error occurs.

Parameters

• point_name (str) – Name of the point to retrieve.

• value – Value to set the point to.

• kwargs – Any interface specific parameters.

Returns Actual point value set.

class platform_driver.interfaces.BaseRegister(register_type, read_only, pointName,
units, description='')

Bases: object

Class for containing information about a point on a device. Should be extended to support the device protocol
to be supported.

The member variable python_type should be overridden with the equivalent python type object. Defaults to
int. This is used to generate meta data.

Parameters

• register_type (str) – Type of the register. Either “bit” or “byte”. Usually “byte”.

• read_only (bool) – Specify if the point can be written to.

• pointName (str) – Name of the register.

• units (str) – Units of the value of the register.

• description (str) – Description of the register.

The Platform Driver Agent will use BaseRegister.get_units() to populate metadata for publishing.
When instantiating register instances be sure to provide a useful string for the units argument.

562 Chapter 2. Features

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str

VOLTTRON Documentation, Release 8.1.3

get_description()

Returns Register description

Return type str

get_register_python_type()

Returns The python type of the register.

Return type type

get_register_type()

Returns (register_type, read_only)

Return type tuple

get_units()

Returns Register units

Return type str

class platform_driver.interfaces.BasicRevert(**kwargs)
Bases: object

A mixin that implements the BaseInterface.revert_all() and BaseInterface.
revert_point() methods on an Interface.

It works by tracking change to all writable points until a set_point call is made. When this happens the point
is marked dirty and the previous value is remembered. When a point is reverted via either a revert_all or
revert_point call the dirty values are set back to the clean value using the BasicRevert._set_point()
method.

As it must hook into the setting and scraping of points it implements the BaseInterface.scrape_all()
and BaseInterface.set_point() methods. It then adds BasicRevert._set_point() and
BasicRevert._scrape_all() to the abstract interface. An existing interface that wants to use this class
can simply mix it in and rename it’s set_point and scrape_all methods to _set_point and _scrape_all respec-
tively.

An BaseInterface may also override the detected clean value with its own value to revert to by call-
ing BasicRevert.set_default(). While default values can be set anytime they should be set in the
BaseInterface.configure() call.

revert_all(**kwargs)
Implementation of BaseInterface.revert_all()

Calls BasicRevert._set_point() with point_name and the value to revert the point to for every
writable point on a device.

Currently **kwargs is ignored.

revert_point(point_name, **kwargs)
Implementation of BaseInterface.revert_point()

Revert point to its default state.

Calls BasicRevert._set_point() with point_name and the value to revert the point to.

Parameters point_name (str) – Name of the point to revert.

Currently **kwargs is ignored.

scrape_all()
Implementation of BaseInterface.scrape_all()

2.55. PlatformDriverAgent 563

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#type
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/stdtypes.html#str

VOLTTRON Documentation, Release 8.1.3

set_default(point, value)
Set the value to revert a point to.

Parameters

• point (str) – name of point to set.

• value – value to set the point to.

set_point(point_name, value)
Implementation of BaseInterface.set_point()

Passes arguments through to BasicRevert._set_point()

exception platform_driver.interfaces.DriverInterfaceError
Bases: Exception

class platform_driver.interfaces.RevertTracker
Bases: object

A helper class for tracking the state of writable points on a device.

clear_dirty_point(point)
Clears the dirty flag on a point.

Parameters point (str) – Name of dirty point flag to clear.

get_all_revert_values()
Returns a dict of points to revert values.

If no default is set use the clean value, otherwise returns the default value.

If no default value is set and a no clean values have been submitted a point value will be an instance of
DriverInterfaceError.

Parameters point (str) – Name of point to get.

Returns Values to revert to.

Return type dict

get_revert_value(point)
Returns the clean value for a point if no default is set, otherwise returns the default value.

If no default value is set and a no clean values have been submitted raises DriverInterfaceError.

Parameters point (str) – Name of point to get.

Returns Value to revert to.

mark_dirty_point(point)
Sets the dirty flag on a point.

Ignores points with a default value.

Parameters point (str) – Name of point flag to dirty.

set_default(point, value)
Set the value to revert a point to. Overrides any clean value detected.

Parameters

• point (str) – name of point to set.

• value – value to set the point to.

564 Chapter 2. Features

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/exceptions.html#Exception
https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str

VOLTTRON Documentation, Release 8.1.3

update_clean_values(points)
Update all state of all the clean point values for a device.

If a point is marked dirty it will not be updated.

Parameters points (dict) – dict of point names to values.

Subpackages

platform_driver.interfaces.chargepoint package

class platform_driver.interfaces.chargepoint.AlarmRegister(read_only,
point_name, at-
tribute_name, units,
data_type, station_id,
default_value=None,
description='',
port_number=None,
username=None,
timeout=0)

Bases: platform_driver.interfaces.chargepoint.ChargepointRegister

Register designated for all attributes returned from the Chargepoint API getAlarms call.

Input parameters are the same as parent ChargepointRegister class.

Readable attributes: alarmType and alarmTime: Return the most recent alarm registered for the given station. If
a port is defined for the register, only alarms ascribed to the port will be returned. If value is None, then there
are no active alarms describing the station and/or port (depending on config).

Writeable attributes:

clearAlarms: Only accepts a write-value of 1 or True. This indicates that the Chargepoint station should be
cleared of any alarms. If a point is defined for the register, only alarms ascribed to the port will be cleared. This
value, when read, will always return None, as it does not exist as a returnable Chargepoint attribute.

attribute_list = ['alarmType', 'alarmTime', 'clearAlarms']

property value

writeable_list = ['clearAlarms']

class platform_driver.interfaces.chargepoint.ChargepointRegister(read_only,
point_name,
at-
tribute_name,
units,
data_type,
sta-
tion_id, de-
fault_value=None,
descrip-
tion='',
port_number=None,
user-
name=None,
timeout=0)

Bases: platform_driver.interfaces.BaseRegister

2.55. PlatformDriverAgent 565

https://docs.python.org/3.6/library/stdtypes.html#dict

VOLTTRON Documentation, Release 8.1.3

Base class for any Chargepoint related register

Defines init-level operations for all Chargepoint registers. Also requires abstract get and set methods for value
property.

Parameters

• read_only – True = Read-only, False = Read/Write.

• point_name – Volttron-given name of point.

• attribute_name – Name used in Chargepoint API call. Needs to syntacticly match any
value in class

‘attribute_list’ variables. :param units: Required by parent class. Not used by Chargepoint. :param data_type:
Python type of register. Used to cast API call results. :param station_id: ID of Chargepoint Station register
describes. :param default_value: Default value of register. :param description: Basic description of register.
:param port_number: (Optional) Port number of Chargepoint Station register describes. Some registers describe
port level granularity while others describe the Chargepoint Station as a whole. :param username: Username
for Chargepoint API login

get_register(result, method, port_flag=True)
Gets correct register from API response.

Parameters

• result – API result from which to grab register value.

• method – Name of Chargepoint API call that was made.

• port_flag – Flag indicating whether or not Port-level parameters can be used. GetA-
larms and

GetChargingSessionData methods use ports in their queries, but have a different reply structure than other
API method calls.

Returns Correct register value cast to appropriate python type. Returns None if there is an error.

read_only_check()

static sanitize_output(data_type, value)

abstract value(x)

class platform_driver.interfaces.chargepoint.ChargingSessionRegister(read_only,
point_name,
at-
tribute_name,
units,
data_type,
sta-
tion_id,
de-
fault_value=None,
de-
scrip-
tion='',
port_number=None,
user-
name=None,
time-
out=0)

Bases: platform_driver.interfaces.chargepoint.ChargepointRegister

566 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Register designated for all attributes returned from the Chargepoint API getChargingSessions call.

Input parameters are the same as parent ChargepointRegister class. No attribute in this register is writeable.

attribute_list = ['sessionID', 'startTime', 'endTime', 'Energy', 'rfidSerialNumber', 'driverAccountNumber', 'driverName']

property value

writeable_list = []

class platform_driver.interfaces.chargepoint.Interface(**kwargs)
Bases: platform_driver.interfaces.BasicRevert, platform_driver.interfaces.
BaseInterface

configure(config_dict, registry_config_str)
Configure interface for driver.

References global CPService object and configures with username and password if not already configured.

Parameters

• config_dict – Input from driver config.

• registry_config_str – Input from csv file.

get_point(point_name)
Get the current value for the point name given.

Parameters

• point_name (str) – Name of the point to retrieve.

• kwargs – Any interface specific parameters.

Returns Point value

parse_config(config_dict, registry_config_str)
Main method to parse the CSV registry config file.

class platform_driver.interfaces.chargepoint.LoadRegister(read_only, point_name,
attribute_name, units,
data_type, station_id,
default_value=None,
description='',
port_number=None,
username=None,
timeout=0)

Bases: platform_driver.interfaces.chargepoint.ChargepointRegister

Register designated for all attributes returned from the Chargepoint API getLoad call.

Input parameters are the same as parent ChargepointRegister class.

Writeable attributes (Note, if either allowedLoad or percentShed are set, the other will be set to None. In
addition, shedState will be set to 1 or True):

allowedLoad: Amount of load to shed in an absolute value. Limits charging to x kW. percentShed: Percent of
load to shed. Limits charging to x% of load. shedState: Only accepts a write-value of 0 or False. This indicates
that the Chargepoint station should be cleared of any load shed constraints

attribute_list = ['portLoad', 'allowedLoad', 'percentShed', 'shedState']

property value

writeable_list = ['allowedLoad', 'percentShed', 'shedState']

2.55. PlatformDriverAgent 567

https://docs.python.org/3.6/library/stdtypes.html#str

VOLTTRON Documentation, Release 8.1.3

class platform_driver.interfaces.chargepoint.StationRegister(read_only,
point_name,
attribute_name,
units, data_type,
station_id, de-
fault_value=None,
description='',
port_number=None,
username=None,
timeout=0)

Bases: platform_driver.interfaces.chargepoint.ChargepointRegister

Register designated for all attributes returned from the Chargepoint API getStations call.

Input parameters are the same as parent ChargepointRegister class. No attribute in this register is writeable.

attribute_list = ['stationID', 'stationManufacturer', 'stationModel', 'portNumber', 'stationName', 'stationMacAddr', 'stationSerialNum', 'Address', 'City', 'State', 'Country', 'postalCode', 'Lat', 'Long', 'Level', 'Reservable', 'Mode', 'Voltage', 'Current', 'Power', 'numPorts', 'Type', 'startTime', 'endTime', 'minPrice', 'maxPrice', 'unitPricePerHour', 'unitPricePerSession', 'unitPricePerKWh', 'orgID', 'unitPriceForFirst', 'unitPricePerHourThereafter', 'sessionTime', 'Description', 'mainPhone', 'organizationName', 'sgID', 'sgName', 'currencyCode', 'Connector']

property value

writeable_list = []

class platform_driver.interfaces.chargepoint.StationRightsRegister(read_only,
point_name,
at-
tribute_name,
units,
data_type,
station_id,
de-
fault_value=None,
descrip-
tion='',
port_number=None,
user-
name=None,
time-
out=0)

Bases: platform_driver.interfaces.chargepoint.ChargepointRegister

Register designated for all attributes returned from the Chargepoint API getStationRights call.

Input parameters are the same as parent ChargepointRegister class. No attribute in this register is writeable.

Unlike any other ChargepointRegister subclasses, the stationRightsProfile is of type ‘dictionary.’ This calls the
global method recursive_asdict, which takes the returned SUDS object and converts it, recursively, into a python
dictionary. As such, this register does not go through the parent class get_register method to return its value.

attribute_list = ['stationRightsProfile']

property value

writeable_list = []

568 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

class platform_driver.interfaces.chargepoint.StationStatusRegister(read_only,
point_name,
at-
tribute_name,
units,
data_type,
station_id,
de-
fault_value=None,
descrip-
tion='',
port_number=None,
user-
name=None,
time-
out=0)

Bases: platform_driver.interfaces.chargepoint.ChargepointRegister

Register designated for all attributes returned from the Chargepoint API getStationStatus call.

Input parameters are the same as parent ChargepointRegister class. No attribute in this register is writeable.

attribute_list = ['Status', 'TimeStamp']

property value

writeable_list = []

platform_driver.interfaces.chargepoint.recursive_asdict(d)
Convert Suds object into serializable format.

Credit goes to user plaes as found here: http://stackoverflow.com/questions/2412486/
serializing-a-suds-object-in-python

platform_driver.interfaces.chargepoint.async_service module

This module is used to process asynchronous requests and cache results for later use. It was written to handle Web
API calls to the Chargepoint service but could be used for any long-ish running, gevent friendly function calls.

A single queue is managed by the web_service() function. Requests are placed on the queue by client code, usually
with a call to CPRequest.request(). The web_service() function records the request in a dictionary using the method
signature (name + parameters). This dictionary maintains a set of AsyncResult objects, one for each request with the
same signature.

After recording the request in the dictionary, the web_service() executes the request method in a short-lived greenlet
(web_call()). The response is placed on the queue. When the web_service() encounters a response, it sets the values
of all the AsyncResults waiting on that request, causing the client greenlets to ‘wake-up’ on an AsyncResult.wait().

The request and response is left in the dictionary until a configurable expiration time so that subsequent requests with
the same signature can use the cached result if it has not expired. In this case, the AsyncResult is set immediately.

class platform_driver.interfaces.chargepoint.async_service.CPRequest(method,
time-
out,
*args,
**kwargs)

Bases: object

Encapsulates a method to be called asynchronously.

2.55. PlatformDriverAgent 569

http://stackoverflow.com/questions/2412486/serializing-a-suds-object-in-python
http://stackoverflow.com/questions/2412486/serializing-a-suds-object-in-python
https://docs.python.org/3.6/library/functions.html#object

VOLTTRON Documentation, Release 8.1.3

The result is returned as AsyncResult. The request() classmethod is used to create a request, queue it to the
web_service() and return an AsyncResult that the caller can wait() on.

is_request()

key()

classmethod request(method, timeout, *args, **kwargs)
Generate a new request and put it on the web service queue.

Returns the requests AsyncResult instance which will be filled in after the request has been executed.

result()

property timeout

class platform_driver.interfaces.chargepoint.async_service.CPResponse(key,
re-
sponse,
client)

Bases: object

A response to to a CPRequest invocation.

property client

is_request()

key()

response()

class platform_driver.interfaces.chargepoint.async_service.CacheItem(cache_life)
Bases: object

A cached request/response.

As responses come in, they are matched to the originating request and waiting_results are ‘set’. Subsequent
requests with the same signature (key) are satisfied immediately, if not expired, by setting the async result on
the incoming request.

property expiration

property request

property response

property waiting_results

platform_driver.interfaces.chargepoint.async_service.web_call(request, client)
Wraps the request to be executed.

This is spawned as a greenlet and puts the request result on the queue.

platform_driver.interfaces.chargepoint.async_service.web_service()
Cache/service request loop.

Reads items from the web_service_queue. It is intended to be spawned as a greenlet that runs forever.

If the de-queued item is a CPRequest, the cache is checked for an existing response. If not found, the request is
added to cache and a greenlet is spawned to complete the request.

If the de-queued item is a CPResponse, the item is found in cache and all waiting AsyncResults are set with the
response. The response will stay in cache until expiration.

570 Chapter 2. Features

https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/functions.html#object

VOLTTRON Documentation, Release 8.1.3

platform_driver.interfaces.chargepoint.credential_check module

platform_driver.interfaces.chargepoint.service module

exception platform_driver.interfaces.chargepoint.service.CPAPIException(response_code,
re-
sponse_text)

Bases: Exception

Generic Chargepoint API Exception.

Parameters

• response_code – Exception code.

• response_text – Exception description.

class platform_driver.interfaces.chargepoint.service.CPAPIGetAlarmsResponse(response)
Bases: platform_driver.interfaces.chargepoint.service.CPAPIResponse

alarmTime(port=None)

alarmType(port=None)

property alarms

clearAlarms(port=None)

class platform_driver.interfaces.chargepoint.service.CPAPIGetChargingSessionsResponse(response)
Bases: platform_driver.interfaces.chargepoint.service.CPAPIResponse

Energy(port=None)

property charging_sessions

driverAccountNumber(port=None)

driverName(port=None)

endTime(port=None)

rfidSerialNumber(port=None)

sessionID(port=None)

startTime(port=None)

class platform_driver.interfaces.chargepoint.service.CPAPIGetLoadResponse(response)
Bases: platform_driver.interfaces.chargepoint.service.CPAPIResponse

allowedLoad(port=None)

percentShed(port=None)

portLoad(port=None)

shedState(port=None)

stationLoad(port=None)

property station_data

class platform_driver.interfaces.chargepoint.service.CPAPIGetStationRightsResponse(response)
Bases: platform_driver.interfaces.chargepoint.service.CPAPIResponse

property rights

2.55. PlatformDriverAgent 571

https://docs.python.org/3.6/library/exceptions.html#Exception

VOLTTRON Documentation, Release 8.1.3

class platform_driver.interfaces.chargepoint.service.CPAPIGetStationStatusResponse(response)
Bases: platform_driver.interfaces.chargepoint.service.CPAPIResponse

Status(port=None)

TimeStamp(port=None)

property status

class platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse(response)
Bases: platform_driver.interfaces.chargepoint.service.CPAPIResponse

Address(port=None)

City(port=None)

Connector(port=None)

Country(port=None)

Current(port=None)

Description(port=None)

Lat(port=None)

Level(port=None)

Long(port=None)

Mode(port=None)

Power(port=None)

Reservable(port=None)

State(port=None)

Type(port=None)

Voltage(port=None)

currencyCode(port=None)

endTime(port=None)

mainPhone(port=None)

maxPrice(port=None)

minPrice(port=None)

numPorts(port=None)

orgID(port=None)

organizationName(port=None)

portNumber(port=None)

postalCode(port=None)

static pricing_helper(attribute, station)

sessionTime(port=None)

sgID(port=None)

sgName(port=None)

startTime(port=None)

572 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

stationID(port=None)

stationMacAddr(port=None)

stationManufacturer(port=None)

stationModel(port=None)

stationName(port=None)

stationSerialNum(port=None)

property stations

unitPriceForFirst(port=None)

unitPricePerHour(port=None)

unitPricePerHourThereafter(port=None)

unitPricePerKWh(port=None)

unitPricePerSession(port=None)

class platform_driver.interfaces.chargepoint.service.CPAPIResponse(response)
Bases: object

Response object describing a chargepoint API call

Parameters response – SOAP object containing the API response

Property responseCode API response Code. ‘100’ is a successful call.

Property responseText Short description of the designation for the API call

Method is_successful Returns Boolean value checking whether or not responseCode is set to ‘100.’

static check_output(attribute, parent_dict)
Helper method for get_port_value

static get_attr_from_response(name_string, response, portNum=None)

static get_port_value(port_number, data, attribute)
Returns data for a given port

Parameters

• port_number – Number of the port to access.

• data – Larger data structure to scan for Port data.

• attribute – Which piece of Port data to return.

Return port_data Accessed data for given port number and attribute. Else None.

static is_not_found(name)

is_successful()

property responseCode

property responseText

class platform_driver.interfaces.chargepoint.service.CPGroupManager(cps,
group,
sta-
tions)

Bases: object

Manger for a Chargepoint group and its stations.

2.55. PlatformDriverAgent 573

https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/functions.html#object

VOLTTRON Documentation, Release 8.1.3

Parameters

• cps – Chargepoint Service object.

• group – CPStationGroup object.

• stations – List of CPStation objects belonging to the CPStationGroup.

refreshGroupStationData()
For all stations belonging to group, refresh load data.

class platform_driver.interfaces.chargepoint.service.CPOrganization(cpn_id,
orga-
niza-
tion_id,
name='Unknown')

Bases: object

Represents an organization within the ChargePoint network.

Parameters

• cpn_id – Chargepoint Network ID.

• organization_id – Chargepoint Org ID.

• name –

orgID()
Returns Chargepoint orgID

Return orgID ‘cpn_id:organization_id’.

class platform_driver.interfaces.chargepoint.service.CPPort(data=None)
Bases: object

property connector

property current

property level

property portNumber

property power

property voltage

class platform_driver.interfaces.chargepoint.service.CPService(username=None,
pass-
word=None)

Bases: object

Python wrapper around the Chargepoint WebServices API.

Current Version: 5.0 Docs: ChargePoint_Web_Services_API_Guide_Ver4.1_Rev5.pdf

clearAlarms(**kwargs)
Clears the Alarms of given group or station based on given query parameters.

Parameters **kwargs – any top-level kwarg in the following query. Most frequently queried
via stationID.

Query:

574 Chapter 2. Features

https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/functions.html#object

VOLTTRON Documentation, Release 8.1.3

(clearAlarmsSearchQuery){ orgID = None organizationName = None stationID = None station-
Name = None sgID = None sgName = None startTime = None endTime = None portNumber =
None alarmType = None clearReason = None

}

:returns SOAP reply object. If successful, there will be a responseCode of ‘100’.

clearShedState(**kwargs)
Clears the shed state of given group or station.

Parameters

• (as kwarg) (stationID) – groupID of stations to clear.

• (as kwarg) – (Optional) ID of individual station to clear. If this is used, only that
station will have

a cleared shed state, even with the use of sgID.

:returns SOAP reply object. If successful, there will be a responseCode of ‘100’.

dump_methods_and_datatypes()
Debugging tool. Prints out the SOAP methods and datatypes.

getAlarms(**kwargs)
Returns any active alarms matching the search query.

Parameters **kwargs – any top-level kwarg in the following query. Most frequently queried
via stationID.

Query:

(getAlarmsSearchQuery){ orgID = None organizationName = None stationID = None stationName
= None sgID = None sgName = None startTime = None endTime = None portNumber = None
startRecord = None numTransactions = None

}

Reply:

(reply){ responseCode = “100” responseText = “API input request executed successfully.” Alarms[]
=

(oalarms){ stationID = “1:00001” stationName = “CHARGEPOINT / MAIN 001” station-
Model = “CT2100-HD-CCR” orgID = “1:ORG00001” organizationName = “My Orga-
nization Name” stationManufacturer = Chargepoint stationSerialNum = “000000000001”
portNumber = None alarmType = “Reachable” alarmTime = 2016-12-12 12:34:56+00:00
recordNumber = 1

moreFlag = 0

}

getCPNInstances()
Returns ChargePoint network objects.

Generally not useful expect that it returns the all important CPNID which is needed to construct the orgID,
described as CPNID:CompanyID.

For North America, the CPNID is ‘1’.

2.55. PlatformDriverAgent 575

VOLTTRON Documentation, Release 8.1.3

getChargingSessionData(**kwargs)
Returns a list of charging sessions based on search query.

Returns a list of Charging Sessions. If there are more than 100 records returned by the query, there will be
a MoreFlag return value of 1.

Parameters **kwargs – any top-level kwarg in the following query. Most frequently queried
via stationID.

Query:

(sessionSearchdata){ stationID = None sessionID = None stationName = None Address = None
City = None State = None Country = None postalCode = None Proximity = None proximityUnit
= None fromTimeStamp = None toTimeStamp = None startRecord = None Geo =

(geoData){ Lat = None Long = None

}

}

Reply:

(reply){ responseCode = “100” responseText = “API input request executed successfully.” Charg-
ingSessionData[] =

(sessionSearchResultdata){ stationID = “1:00001” stationName = “CHARGEPOINT /
MAIN 001” portNumber = “2” Address = “1 Main St, Oakland, California, 94607,
United States” City = “Oakland” State = “California” Country = “United States” postal-
Code = “94607” sessionID = 12345678 Energy = 12.345678 startTime = 2016-01-01
01:01:01+00:00 endTime = 2016-01-01 12:12:02+00:00 userID = “123456” recordNum-
ber = 1 credentialID = “123456789”

moreFlag = 0

}

getLoad(**kwargs)
Returns current load of charging station sessions.

Returns Load on Charging stations/groups as defined by input query. If sgID is not included, many group
level parameters will be returned as ‘None.’

Parameters **kwargs – sgID or stationID.

Reply:

(reply){

responseCode = “100” responseText = “API input request executed successfully.” numSta-
tions = None groupName = None sgLoad = None stationData[] =

(stationloaddata){ stationID = “1:000013” stationName = “CHARGEPOINT / MAIN
001” Address = “1 Main St, Oakland, California, 94607, United States” stationLoad
= 1.1 Port[] =

(stationPortData){ portNumber = “1” userID = None credentialID = None
shedState = 0 portLoad = 0.0 allowedLoad = 0.0 percentShed = “0”

}, (stationPortData){

portNumber = “2” userID = “123456” credentialID = “123456789” shed-
State = 0 portLoad = 1.1 allowedLoad = 0.0 percentShed = “0”

576 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

},

}

getOrgsAndStationGroups(**kwargs)
Returns orgnaizations and their station groups.

Get all organization and station group identifiers.
Parameters **kwargs – any top-level kwarg in the following query. Most frequently

queried via stationID.

Query:

(getOrgsAndStationGroupsSearchQuery){ orgID = None organizationName = None sgID =
None sgName = None

}
Reply:

(reply){ responseCode = “100” responseText = “API input request executed successfully.” org-
Data[] =

(ohostdata){ orgID = “1:ORG00001” organizationName = “My Organization
Name” sgData[] =

(sgData){ sgID = 00001 sgName = “Main St Garage” parent-
GroupID = “0”

}

getStationGroupDetails(sgID, *stationID)
Gives details for a given station group.

Parameters

• sgID – groupID of stations to clear.

• stationID – (Optional) ID of individual station to clear. If this is used, only
that station will be

returned in the stationData list. If this parameter is given, numStations will return 1

:returns SOAP reply object. If successful, there will be a responseCode of ‘100’.
Reply:

(reply){

responseCode = “100” responseText = “API input request executed successfully.”
groupName = “My Group Name” numStations = 1 stationData[] =

(stationGroupData){ stationID = “1:00001” stationName =
“CHARGEPOINT / MAIN 001” Address = “1 Main St, Oak-
land, California, 94607, United States”

}

getStationGroups(orgID)
Returns a list of groups and their stations belonging to an organization.

Parameters orgID – Chargepoint Organization ID

Reply:

(reply){ responseCode = “100” responseText = “API input request executed successfully.” group-
Data[] =

2.55. PlatformDriverAgent 577

VOLTTRON Documentation, Release 8.1.3

(groupsdata){ sgID = 00001 orgID = “1:ORG00001” sgName = “Main St
Garage” organizationName = “My Organization Name” stationData[] =

(stationData){ stationID = “1:00001” Geo =

(geoData){ Lat = “12.345678901234567” Long = “-
123.456789012345678”

}

}

getStationRights(**kwargs)
Returns station rights profiles as defined by the given query parameters.

It is worth noting that there ay be more than one rights profile for a given station. A profile defined the
relationship between a charge station and a group and a charge station may belong to multiple groups.

Parameters **kwargs – any top-level kwarg in the following query. Most frequently
queried via stationID.

Query:
(stationRightsSearchRequest){ stationID = None stationManufacturer = None stationModel =

None stationName = None serialNumber = None Address = None City = None State = None
Country = None postalCode = None Proximity = None proximityUnit = None Connector =
None Voltage = None Current = None Power = None demoSerialNumber =

(serialNumberData){ serialNumber[] = <empty>

}

Reservable = None Geo =

(geoData){ Lat = None Long = None

}

Level = None Mode = None Pricing =

(pricingOptions){ startTime = None Duration = None energyRequired = None
vehiclePower = None

}

orgID = None organizationName = None sgID = None sgName = None provisionDateRange
=

(provisionDateRange){ startDate = None endDate = None

}

currentFault = None portStatus = None adminStatus = None networkStatus = None provi-
sionStatus = None startRecord = None

}
Reply:

(reply){ responseCode = “100” responseText = “API input request executed successfully.” rights-
Data[] =

(rightsData){ sgID = “00001” sgName = “Main St Garage” stationRightsPro-
file = “network_manager” stationData[] =

(stationDataRights){ stationID = “1:00001” station-
Name = “CHARGEPOINT / MAIN 001” station-
SerialNum = “000000000001” stationMacAddr =
“0123:4567:89AB:CDEF”

578 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

moreFlag = 0
}

getStationStatus(station)
Get port-level charging status for a given station

Parameters station – stationID to query

Reply:
(reply){ responseCode = “100” responseText = “API input request executed successfully.” station-

Data[] =

(oStatusdata){ stationID = “1:00001” Port[] =

(portDataStatus){ portNumber = “1” Status = “AVAILABLE”
TimeStamp = 2016-12-12 12:34:56+00:00

moreFlag = 0
}

getStations(**kwargs)
Returns a list of Chargepoint Stations based on keyword query args

It is worth noting that only stations the client has access to will be returned.
Parameters **kwargs – any top-level kwarg in the following query. Most frequently

queried via stationID.

Query:
(stationSearchRequestExtended){ stationID = None stationManufacturer = None stationModel =

None stationName = None serialNumber = None Address = None City = None State = None
Country = None postalCode = None Proximity = None proximityUnit = None Connector =
None Voltage = None Current = None Power = None demoSerialNumber =

(serialNumberData){ serialNumber[] = <empty>

}

Reservable = None Geo =

(geoData){ Lat = None Long = None

}

Level = None Mode = None Pricing =

(pricingOptions){ startTime = None Duration = None energyRequired = None
vehiclePower = None

}

orgID = None organizationName = None sgID = None sgName = None stationActivationDate
= None startRecord = None numStations = None

}
Reply:

(reply){ responseCode = “100” responseText = “API input request executed successfully.” station-
Data[] =

(stationDataExtended){ stationID = “1:00001” stationManufacturer =
“ChargePoint” stationModel = “CT2100-HD-CCR” stationMacAddr =
“0123:4567:89AB:CDEF” stationSerialNum = “000000000001” station-
ActivationDate = 2016-01-01 12:23:45 Address = “1 Main St ” City =
“Oakland” State = “California” Country = “United States” postalCode =
“94607” Port[] =

2.55. PlatformDriverAgent 579

VOLTTRON Documentation, Release 8.1.3

(portData){ portNumber = “1” stationName = “CHARGE-
POINT / MAIN 001” Geo =

(geoData){ Lat = “12.345678901234567” Long = “-
123.456789012345678”

}

Description = “Use garage entrance on Main St., turn right
and follow . . . Reservable = 0 Level = “L1” Connector =
“NEMA 5-20R” Voltage = “120” Current = “16” Power =
“1.920” estimatedCost = 0.0

Pricing[] =

(pricingSpecification){ Type = “None” startTime = 00:00:00 end-
Time = 23:59:59 minPrice = 0.0 maxPrice = 0.0 unitPricePerHour
= 0.0 unitPricePerSession = 1.0 unitPricePerKWh = 0.2

},

numPorts = 2 mainPhone = “1-888-123-4567” currencyCode = “USD”
orgID = “1:ORG00001” organizationName = “My Organization Name”
sgID = “00001, 00002, 00003, 00004, 00005, 00006, 00007, 00008, 00009,
. . . sgName = “Main St Garage, Public Garages, California Stations, . . .

moreFlag = 0
}

getUsers(**kwargs)
Returns a list of Users as defined by the given query parameters

Parameters **kwargs – any top-level kwarg in the following query. Most frequently
queried via userID or credentialID.

Query:
(getUsersSearchRequest){ userID = None firstName = None lastName = None lastModified-

TimeStamp = None Connection =

(connectionDataRequest){

Status =

(connectedUserStatusTypes){ value = None

}

customInfo =

(customInfoData){ Key = None Value = None

}

}

managementRealm =

(managementRealmRequest){

Status =

(managedUserStatusTypes){ value = None

}

580 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

customInfo =

(customInfoData){ Key = None Value = None

}

}

credentialID = None startRecord = None numUsers = None
}

Reply
(reply){ responseCode = “100” responseText = “API input request executed successfully.” users =

(userParams){

user[] =

(userData){ lastModifiedTimestamp = 2016-11-11 01:23:45+00:00
userID = “123456” firstName = “John” lastName = “Doe” Con-
nection =

(connectionData){ Status = “APPROVED” requestTimeS-
tamp = 2016-11-11 01:23:45+00:00 customInfos =

(customInfosData){

customInfo[] =

(customInfoData){ Key = “Custom Key”
Value = “Custom Value”

}

}

managementRealm = “” credentialIDs =

(credentialIDsData){

credentialID[] = “123456789”, . . .

}

recordNumber = 1

moreFlag = 0

}
}

set_client(client)

set_security_token()

shedLoad(**kwargs)
Reduce load on a Charegepoint station.

Main functionality for reducing load on a chargepoint station. Can pass either allowedLoadPerStation OR
percentShedPerStation, but not both (one must be None).

Parameters **kwargs – Input parameters for shedding load. One of allowedLoadPerSta-
tion and percentshedPerStation

must be included.
Query:

(shedLoadQueryInputData){
shedGroup =

2.55. PlatformDriverAgent 581

VOLTTRON Documentation, Release 8.1.3

(shedLoadGroupInputData){ sgID = None allowedLoadPerStation = None per-
centShedPerStation = None

}
shedStation =

(shedLoadStationInputData){ stationID = None allowedLoadPerStation = None
percentShedPerStation = None Ports =

(Ports){ Port[] = <empty>

}
}

timeInterval = None
}

:returns SOAP reply object. If successful, there will be a responseCode of ‘100’.

class platform_driver.interfaces.chargepoint.service.CPStation(cps, sld=None,
sde=None)

Bases: object

Wrapper around the getStations() return by Chargepoint API.

Data surrounding a Chargepoint Station can generally be categorized as static or dynamic. Chargepoint API
has two basic calls, getLoad and getStation, that each return station data. getLoad returns the stationLoadData
SUDS object, and getStation returns the stationDataExtended SUDS object. These are each kept as separate
meta-data parameters.

Parameters
• cps – Chargepoint Service object.
• sld – stationLoadData SUDS object.
• sde – stationDataExtended SUDS object.

(stationDataExtended){ stationID = “1:00001” stationManufacturer = “ChargePoint” stationModel =
“CT2100-HD-CDMA-CCR” stationMacAddr = “0123:4567:89AB:CDEF” stationSerialNum =
“000000000001” stationActivationDate = 2016-01-01 12:23:45 Address = “1 Main St ” City =
“Oakland” State = “California” Country = “United States” postalCode = “94607” Port[] =

(portData){ portNumber = “1” stationName = “CHARGEPOINT / MAIN 001” Geo =
(geoData){ Lat = “12.345678901234567” Long = “-

123.456789012345678”

}
Description = “Use garage entrance on Main St., turn right and follow . . . Reservable
= 0 Level = “L1” Connector = “NEMA 5-20R” Voltage = “120” Current = “16” Power
= “1.920” estimatedCost = 0.0

}, (portData){
portNumber = “2” stationName = “CHARGEPOINT / MAIN 001” Geo =

(geoData){ Lat = “12.345678901234567” Long = “-
123.456789012345678”

}
Description = “Use garage entrance on Main St., turn right and follow . . .
Reservable = 0 Level = “L2” Connector = “J1772” Voltage = “240” Current
= “30” Power = “6.600” estimatedCost = 0.0

},

Pricing[] =
(pricingSpecification){ Type = “None” startTime = 00:00:00 endTime = 23:59:59 minPrice = 0.0

maxPrice = 0.0 unitPricePerHour = 0.0 unitPricePerSession = 1.0 unitPricePerKWh = 0.2
},

582 Chapter 2. Features

https://docs.python.org/3.6/library/functions.html#object

VOLTTRON Documentation, Release 8.1.3

numPorts = 2 mainPhone = “1-888-123-4567” currencyCode = “USD” orgID = “1:ORG00001” organi-
zationName = “My Organization Name” sgID = “00001, 00002, 00003, 00004, 00005, 00006, 00007,
00008, 00009, . . . sgName = “Main St Garage, Public Garages, California Stations, . . .

}
(stationloaddata){ stationID = “1:00001” stationName = “CHARGEPOINT / MAIN 001” Address = “1 Main

St, Oakland, California, 94607, United States” stationLoad = 5.43 Port[] =
(stationPortData){ portNumber = “1” userID = None credentialID = None shedState = 0

portLoad = 0.0 allowedLoad = 0.0 percentShed = “0”

}, (stationPortData){
portNumber = “2” credentialID = “ABC000123456” shedState = 0 portLoad =
5.43 allowedLoad = 0.0 percentShed = “0”

},
}

Property id sde.stationID
Property manufacturer sde.stationManufacturer
Property model sde.stationModel
Property mac sde.stationMacAddr
Property serial sde.stationSerialNum
Property activationDate sde.stationActivationDate
Property name sld.stationName
Property load sld.stationLoad

property activationDate

property id

property load

property mac

property manufacturer

property model

property name

property organization

property ports

refreshStationData()

refreshStationDataExtended()

property serial

class platform_driver.interfaces.chargepoint.service.CPStationGroup(cps,
groups-
data)

Bases: object

Wrapper around the getStationGroups() return by Chargepoint API.
Parameters

• cps – Chargepoint Service object.
• groupsdata – Returned from Chargepoint API. Defined below.

(groupsdata){ sgID = 00001 orgID = “1:ORG00001” sgName = “Main St Garage” organizationName = “My
Organization Name” stationData[] =

(stationData){ stationID = “1:00001” Geo =
(geoData){ Lat = “12.345678901234567” Long = “-

123.456789012345678”

2.55. PlatformDriverAgent 583

https://docs.python.org/3.6/library/functions.html#object

VOLTTRON Documentation, Release 8.1.3

}

}
Property id sgID
Property name sgName
Property organization CPOrganization __str__ representation
Property station_ids List of IDs for stations in belonging to the group

property id

property name

property organization

property station_ids

platform_driver.interfaces.modbus_tk package

Subpackages

platform_driver.interfaces.modbus_tk.maps package

platform_driver.interfaces.modbus_tk.tests package

Subpackages

platform_driver.interfaces.modbus_tk.tests.example_config package

platform_driver.interfaces.modbus_tk.tests.modbus_listener_agent module

platform_driver.interfaces.modbus_tk.tests.modbus_server module

platform_driver.interfaces.modbus_tk.tests.test_battery_meter module

platform_driver.interfaces.modbus_tk.tests.test_ion6200 module

platform_driver.interfaces.modbus_tk.tests.test_mixed_endian module

platform_driver.interfaces.modbus_tk.tests.test_modbus_tk_driver module

platform_driver.interfaces.modbus_tk.tests.test_scale_reg module

platform_driver.interfaces.modbus_tk.tests.test_scale_reg_pow_10 module

platform_driver.interfaces.modbus_tk.tests.test_scrape_all module

platform_driver.interfaces.modbus_tk.tests.test_watts_on module

platform_driver.interfaces.modbus_tk.tests.test_write_single_registers module

584 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

platform_driver.interfaces.modbus_tk.client module

platform_driver.interfaces.modbus_tk.config_cmd module

platform_driver.interfaces.modbus_tk.helpers module

platform_driver.interfaces.modbus_tk.server module

platform_driver.interfaces.ted_meter package

The TED Driver allows scraping of TED Pro Meters via an HTTP API

class platform_driver.interfaces.ted_meter.Interface(**kwargs)
Bases: platform_driver.interfaces.BasicRevert, platform_driver.interfaces.
BaseInterface

Create an interface for the TED device using the standard BaseInterface convention

configure(config_dict, registry_config_str)
Configure method called by the platform driver with configuration stanza and registry config file, we
ignore the registry config, as we build the registers based on the configuration collected from TED Pro
Device

get_data()
returns a tuple of ETree objects corresponding to the three aapi endpoints

get_point(point_name)
Get the current value for the point name given.

Parameters
• point_name (str) – Name of the point to retrieve.
• kwargs – Any interface specific parameters.

Returns Point value

insert_register(register)
We override the default insert_register behavior so that we can automatically create additional totalized
registers when track_totalizers is True

class platform_driver.interfaces.ted_meter.Register(volttron_point_name, units, de-
scription)

Bases: platform_driver.interfaces.BaseRegister

Generic class for containing information about a the points exposed by the TED Pro API
Parameters

• register_type (str) – Type of the register. Either “bit” or “byte”. Usually
“byte”.

• pointName (str) – Name of the register.
• units (str) – Units of the value of the register.
• description (str) – Description of the register.

The TED Meter Driver does not expose the read_only parameter, as the TED API does not support writing data.

2.55. PlatformDriverAgent 585

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str

VOLTTRON Documentation, Release 8.1.3

platform_driver.interfaces.IEEE2030_5 module

class platform_driver.interfaces.IEEE2030_5.IEEE2030_5Register(read_only,
point_name,
IEEE2030_5_resource_name,
IEEE2030_5_field_name,
units,
data_type, de-
fault_value=None,
description='')

Bases: platform_driver.interfaces.BaseRegister

Register for all IEEE 2030.5 interface attributes.

is_stale()

set_value(x)
Cast the point value to the correct data type, set the register value, update the cache timestamp.

property value

class platform_driver.interfaces.IEEE2030_5.Interface(**kwargs)
Bases: platform_driver.interfaces.BasicRevert, platform_driver.interfaces.
BaseInterface

IEEE 2030.5 device driver interface.

This driver gets, and sends, device data by issuing RPC calls to IEEE 2030.5Agent, (see its source code in
services/core/IEEE2030_5Agent), which communicates with IEEE 2030.5 devices via a web interface.

For further information about this subsystem, please see the VOLTTRON IEEE 2030.5 DER Support specifica-
tion, which is located in VOLTTRON readthedocs under specifications/IEEE2030_5_agent.html.

Test drivers for the IEEE 2030.5 interface can be configured as follows:
cd $VOLTTRON_ROOT export DRIVER_ROOT=$VOLTTRON_ROOT/services/core/PlatformDriverAgent/platform_driver
volttron-ctl config store platform.driver IEEE2030_5.csv $DRIVER_ROOT/IEEE2030_5.csv
–csv volttron-ctl config store platform.driver devices/IEEE2030_5_1
$DRIVER_ROOT/test_IEEE2030_5_1.config volttron-ctl config store platform.driver de-
vices/IEEE2030_5_2 $DRIVER_ROOT/test_IEEE2030_5_2.config echo IEEE2030_5 drivers
configured for PlatformDriver: volttron-ctl config list platform.driver

call_agent_config_points()
Issue a IEEE2030_5Agent RPC call to initialize the point configuration.

call_agent_rpc(rpc_name, point_name=None, value=None)
Issue a IEEE2030_5Agent RPC call (get_point, get_points, or set_point), and return the result.

configure(config_dict, registry_config)
Configures the Interface for the specific instance of a device.

Parameters
• config_dict (dict) – The “driver_config” section of the driver configura-

tion file.
• registry_config_str (str) – The contents of the registry configuration

file.
This method must setup register representations of all points on a device by creating instances
of BaseRegister (or a subclass) and adding them to the Interface with BaseInterface.
insert_register().

get_point(point_name, **kwargs)
Get the point value, fetching it from IEEE2030_5Agent if not already cached.

586 Chapter 2. Features

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str

VOLTTRON Documentation, Release 8.1.3

get_point_map()
Return a dictionary of all register definitions, indexed by Volttron Point Name.

get_register_value(point_name)

platform_driver.interfaces.bacnet module

class platform_driver.interfaces.bacnet.Interface(**kwargs)
Bases: platform_driver.interfaces.BaseInterface

configure(config_dict, registry_config_str)
Configures the Interface for the specific instance of a device.

Parameters
• config_dict (dict) – The “driver_config” section of the driver configura-

tion file.
• registry_config_str (str) – The contents of the registry configuration

file.
This method must setup register representations of all points on a device by creating instances
of BaseRegister (or a subclass) and adding them to the Interface with BaseInterface.
insert_register().

establish_cov_subscription(point_name, lifetime, renew=False)
Asks the BACnet proxy to establish a COV subscription for the point via RPC. If lifetime is specified,
the subscription will live for that period, else the subscription will last indefinitely. Default period of 3
minutes. If renew is True, the the core scheduler will call this method again near the expiration of the
subscription.

get_point(point_name, get_priority_array=False)
Get the current value for the point name given.

Parameters
• point_name (str) – Name of the point to retrieve.
• kwargs – Any interface specific parameters.

Returns Point value

parse_config(configDict)

ping_target()

revert_all(priority=None)
Revert entrire device to it’s default state

revert_point(point_name, priority=None)
Revert point to it’s default state

schedule_ping()

scrape_all()
Method the Platform Driver Agent calls to get the current state of a device for publication.

Returns Point names to values for device.
Return type dict

set_point(point_name, value, priority=None)
Set the current value for the point name given.

Implementations of this method should make a reasonable effort to return the actual value the point was set
to. Some protocols/devices make this difficult. (I’m looking at you BACnet) In these cases it is acceptable
to return the value that was requested if no error occurs.

Parameters
• point_name (str) – Name of the point to retrieve.

2.55. PlatformDriverAgent 587

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str

VOLTTRON Documentation, Release 8.1.3

• value – Value to set the point to.
• kwargs – Any interface specific parameters.

Returns Actual point value set.

class platform_driver.interfaces.bacnet.Register(instance_number, object_type, prop-
erty_name, read_only, point_name,
units, description='', priority=None,
list_index=None)

Bases: platform_driver.interfaces.BaseRegister

platform_driver.interfaces.dnp3 module

class platform_driver.interfaces.dnp3.DNP3Register(read_only, volttron_name,
dnp3_name, scaling, units,
data_type)

Bases: platform_driver.interfaces.BaseRegister

Register for each DNP3 interface field (point).

is_stale()
Whether it is time to refresh the register’s cached value.

set_value(x)
Cast the point value to the correct data type, set the register value, update the cache timestamp.

property value

class platform_driver.interfaces.dnp3.Interface(**kwargs)
Bases: platform_driver.interfaces.BasicRevert, platform_driver.interfaces.
BaseInterface

DNP3 device driver interface.

This driver gets, and sends, DNP3 device data by issuing RPC calls to DNP3Agent, (see its source code in
services/core/DNP3Agent), which communicates with the DNP3 master via a web interface.

Test drivers for the DNP3 interface can be configured as follows:

export VOLTTRON_ROOT=<your VOLTTRON install directory> export
DRIVER_ROOT=$VOLTTRON_ROOT/services/core/PlatformDriverAgent cd $VOLTTRON_ROOT volttron-
ctl config store platform.driver dnp3.csv $DRIVER_ROOT/example_configurations/dnp3.csv –csv volttron-ctl
config store platform.driver devices/dnp3 $DRIVER_ROOT/example_configurations/test_dnp3.config

all_registers()
Return a list of all registers. The read-only registers are placed before the read-write registers.

call_agent_config_points()
Issue a DNP3Agent RPC call to initialize the driver’s point configuration.

The point_map dictionary maps VOLTTRON point name to DNP3 point name for each point that’s con-
figured by the driver:

{ volttron_point_name_1: dnp3_point_name_1, volttron_point_name_2:
dnp3_point_name_2, . . .

}

call_agent_rpc(rpc_name, point_name=None, value=None)
Issue a DNP3Agent RPC call (get_point, get_points, or set_point), and return the result.

configure(config_dict, registry_config)
Load driver config from the registry, as set up in the VOLTTRON config store.

588 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

get_point(point_name, **kwargs)
Get a point value by (VOLTTRON) point name.

Fetch it from the DNP3Agent if it’s not already fresh in the cache.

get_register_value(point_name)

platform_driver.interfaces.ecobee module

class platform_driver.interfaces.ecobee.Hold(thermostat_identifier, read_only, readable,
point_name, point_path, units, descrip-
tion='')

Bases: platform_driver.interfaces.BaseRegister

Register to wrap around points contained in hold field of Ecobee API’s thermostat data response

get_state(ecobee_data)
Parameters ecobee_data – Ecobee data dictionary obtained from Driver HTTP Cache

agent
Returns Most recently available data for this setting register

set_state(value, access_token)
Set Ecobee thermostat hold by configured point name and provided value dictionary :param value: Arbi-
trarily specified value dictionary. Ecobee API documentation provides best practice information for each
hold. :param access_token: Ecobee access token to provide as bearer auth in request :return: request
response values from settings request

class platform_driver.interfaces.ecobee.Interface(**kwargs)
Bases: platform_driver.interfaces.BasicRevert, platform_driver.interfaces.
BaseInterface

Interface implementation for wrapping around the Ecobee thermostat API

authorize_application()

configure(config_dict, registry_config_str)
Interface configuration callback :param config_dict: Driver configuration dictionary :param reg-
istry_config_str: Driver registry configuration dictionary

get_auth_config_from_store()
Returns Fetch currently stored auth configuration info from config store, returns empty dict

if none is
present

get_data_cache(url, update_frequency)
Fetches data from cache dict if it is up to date :param url: URL to use to use as lookup value in cache dict
:param update_frequency: duration in seconds for which data in cache is considered up to date :return:
Data stored in cache if up to date, otherwise None

get_data_remote(request_type, url, **kwargs)
Make request to Ecobee remote API for “register” data, updating authorization tokens as necessary :param
request_type: HTTP request type for making request :param url: URL corresponding to “register” data
:param kwargs: HTTP request arguments :return: remote API response body

get_ecobee_data(request_type, url, update_frequency, refresh=False, **kwargs)
Checks cache for up to date Ecobee data. If none is available for the URL, makes a request to remote
Ecobee API. :param refresh: force Ecobee data to be obtained from the remote API rather than cache
:param request_type: HTTP request type for request sent to remote :param url: URL of remote Ecobee
API endpoint :param update_frequency: period for which cached data is considered up to date :param
kwargs: HTTP request arguments :return: Up to date Ecobee data for URL

2.55. PlatformDriverAgent 589

VOLTTRON Documentation, Release 8.1.3

get_point(point_name, **kwargs)
Return a point’s most recent stored value from remote API :param point_name: The name of the point
corresponding to a register to get the state of :return: register’s most recent state from remote API response

get_thermostat_data(refresh=False)
Collects most up to date thermostat object data for the configured Ecobee thermostat ID :param refresh:
whether or not to force obtaining new data from the remote Ecobee API

parse_config(config_dict)
Parse driver registry configuration and create device registers :param config_dict: Registry configuration
in dictionary representation

refresh_tokens()
Refresh Ecobee API authentication tokens via API endpoint - asks Ecobee to reset tokens then updates
config with new tokens from Ecobee

request_tokens()
Request up to date Auth tokens from Ecobee using API key and authorization code

store_remote_data(url, response)
Store response body with a timestamp for a given URL :param url: url to use to use as lookup value in
cache dict :param response: request response body to store in cache

update_auth_config()
Update the platform driver configuration for this device with new values from auth functions

update_authorization()

class platform_driver.interfaces.ecobee.Program(thermostat_identifier)
Bases: platform_driver.interfaces.BaseRegister

Wrapper register for managing Ecobee thermostat programs, and getting program status

get_state(ecobee_data)
Parameters ecobee_data – Ecobee data dictionary obtained from Driver HTTP Cache

agent
Returns List of Ecobee event objects minus vacation events

set_state(program, access_token, resume_all=False)
Set a new program, resume the next program on the programs stack, or “resume all” :param program:
Program dictionary as specified by Ecobee API docs if setting a new program, else None :param ac-
cess_token: Ecobee access token to provide as bearer auth in request :param resume_all: Whether or not
to “resume all” if using the resume program function

class platform_driver.interfaces.ecobee.Setting(thermostat_identifier, read_only, read-
able, point_name, point_path, units,
description='')

Bases: platform_driver.interfaces.BaseRegister

Register to wrap around points contained in setting field of Ecobee API’s thermostat data response

get_state(ecobee_data)
Parameters ecobee_data – Ecobee data dictionary obtained from Driver HTTP Cache

agent
Returns Most recently available data for this setting register

set_state(value, access_token)
Set Ecobee thermostat setting value by configured point name and provided value :param value: Arbitrar-
ily specified value to request as set point :param access_token: Ecobee access token to provide as bearer
auth in request :return: request response values from settings request

590 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

class platform_driver.interfaces.ecobee.Status(thermostat_identifier)
Bases: platform_driver.interfaces.BaseRegister

Status request wrapper register for Ecobee thermostats. Note: There is a single status point for each thermostat,
which is set by the device.

get_state(ecobee_data)
Returns List of currently running equipment connected to Ecobee thermostat

set_state(value, access_token)
Set state is not supported for the static Status register.

class platform_driver.interfaces.ecobee.Vacation(thermostat_identifier)
Bases: platform_driver.interfaces.BaseRegister

Wrapper register for adding and deleting vacations, and getting vacation status Note: Since vacations are tran-
sient, only 1 vacation register will be created per driver. The driver can be used to add, delete, or get the status
of all vacations for the device

get_state(ecobee_data)
Parameters ecobee_data – Ecobee data dictionary obtained from Driver HTTP Cache

agent
Returns List of vacation dictionaries returned by Ecobee remote API

set_state(vacation, access_token, delete=False)
Send delete or create vacation request to Ecobee API for the configured thermostat :param vacation:
Vacation name for delete, or vacation object dictionary for create :param access_token: Ecobee access
token to provide as bearer auth in request :param delete: Whether to delete the named vacation

platform_driver.interfaces.ecobee.call_grequest(method_name, url, **kwargs)
Make grequest calls to remote api :param method_name: method type - put/get/delete :param url: http URL
suffix :param kwargs: Additional arguments for http request :return: grequest response

platform_driver.interfaces.ecobee.make_ecobee_request(request_type, url, **kwargs)
Wrapper around making arbitrary GET and POST requests to remote Ecobee API :return: Ecobee API response
using provided request content

platform_driver.interfaces.ecobee.populate_selection_objects(access_token,
selection_type,
selection_match,
specification)

Utility method for generating set point request bodies for Ecobee remote api :param access_token: Ecobee
access token from auth steps/configuration (bearer in request header) :param selection_type: Ecobee identity
selection type :param selection_match: Ecobee identity selection match id :param specification: dictionary
specifying the Ecobee object for updating the point on the remote API :return: request body JSON as dictionary

platform_driver.interfaces.ecobee.populate_thermostat_headers(access_token)
Create populated header json as dictionary :param access_token: Ecobee “bearer” access token :return: header
json as dictionary

2.55. PlatformDriverAgent 591

VOLTTRON Documentation, Release 8.1.3

platform_driver.interfaces.fakedriver module

class platform_driver.interfaces.fakedriver.EKGregister(read_only, pointName,
units, reg_type, de-
fault_value=None, de-
scription='')

Bases: platform_driver.interfaces.BaseRegister

property value

class platform_driver.interfaces.fakedriver.FakeRegister(read_only, pointName,
units, reg_type, de-
fault_value=None,
description='')

Bases: platform_driver.interfaces.BaseRegister

class platform_driver.interfaces.fakedriver.Interface(**kwargs)
Bases: platform_driver.interfaces.BasicRevert, platform_driver.interfaces.
BaseInterface

configure(config_dict, registry_config_str)
Configures the Interface for the specific instance of a device.

Parameters
• config_dict (dict) – The “driver_config” section of the driver configura-

tion file.
• registry_config_str (str) – The contents of the registry configuration

file.
This method must setup register representations of all points on a device by creating instances
of BaseRegister (or a subclass) and adding them to the Interface with BaseInterface.
insert_register().

get_point(point_name)
Get the current value for the point name given.

Parameters
• point_name (str) – Name of the point to retrieve.
• kwargs – Any interface specific parameters.

Returns Point value

parse_config(configDict)

platform_driver.interfaces.modbus module

class platform_driver.interfaces.modbus.Interface(**kwargs)
Bases: platform_driver.interfaces.BasicRevert, platform_driver.interfaces.
BaseInterface

build_ranges_map()

configure(config_dict, registry_config_str)
Configures the Interface for the specific instance of a device.

Parameters
• config_dict (dict) – The “driver_config” section of the driver configura-

tion file.
• registry_config_str (str) – The contents of the registry configuration

file.

592 Chapter 2. Features

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str

VOLTTRON Documentation, Release 8.1.3

This method must setup register representations of all points on a device by creating instances
of BaseRegister (or a subclass) and adding them to the Interface with BaseInterface.
insert_register().

get_point(point_name)
Get the current value for the point name given.

Parameters
• point_name (str) – Name of the point to retrieve.
• kwargs – Any interface specific parameters.

Returns Point value

insert_register(register)
Inserts a register into the Interface.

Parameters register (BaseRegister) – Register to add to the interface.

merge_register_ranges()
Merges any adjacent registers for more efficient scraping. May only be called after all registers have been
inserted.

parse_config(configDict)

scrape_bit_registers(client, read_only)

scrape_byte_registers(client, read_only)

class platform_driver.interfaces.modbus.ModbusBitRegister(address, type_string,
pointName,
units, read_only,
mixed_endian=False,
description='',
slave_id=0)

Bases: platform_driver.interfaces.modbus.ModbusRegisterBase

get_register_count()

get_state(client)

parse_value(starting_address, bit_stream)

set_state(client, value)

class platform_driver.interfaces.modbus.ModbusByteRegister(address, type_string,
pointName,
units, read_only,
mixed_endian=False,
description='',
slave_id=0)

Bases: platform_driver.interfaces.modbus.ModbusRegisterBase

get_register_count()

get_state(client)

parse_value(starting_address, byte_stream)

set_state(client, value)

exception platform_driver.interfaces.modbus.ModbusInterfaceException(string)
Bases: pymodbus.exceptions.ModbusException

2.55. PlatformDriverAgent 593

https://docs.python.org/3.6/library/stdtypes.html#str

VOLTTRON Documentation, Release 8.1.3

class platform_driver.interfaces.modbus.ModbusRegisterBase(address, register_type,
read_only, point-
Name, units, descrip-
tion='', slave_id=0)

Bases: platform_driver.interfaces.BaseRegister

platform_driver.interfaces.modbus.modbus_client(address, port)

platform_driver.interfaces.obix module

class platform_driver.interfaces.obix.Interface(**kwargs)
Bases: platform_driver.interfaces.BasicRevert, platform_driver.interfaces.
BaseInterface

configure(config_dict, registry_config)
Configures the Interface for the specific instance of a device.

Parameters
• config_dict (dict) – The “driver_config” section of the driver configura-

tion file.
• registry_config_str (str) – The contents of the registry configuration

file.
This method must setup register representations of all points on a device by creating instances
of BaseRegister (or a subclass) and adding them to the Interface with BaseInterface.
insert_register().

get_point(point_name)
Get the current value for the point name given.

Parameters
• point_name (str) – Name of the point to retrieve.
• kwargs – Any interface specific parameters.

Returns Point value

parse_config(configDict, url)

class platform_driver.interfaces.obix.Register(url, point_name, obix_point_name,
obix_type_str, read_only, units, descrip-
tion='')

Bases: platform_driver.interfaces.BaseRegister

get_value_async_result(username=None, password=None)

obix_types = {'bool': <function Register.<lambda>>, 'int': <class 'int'>, 'real': <class 'float'>}

parse_result(xml_tree)

set_value_async_result(value, username=None, password=None)

platform_driver.interfaces.radiothermostat module

Copyright (c) 2016, Alliance for Sustainable Energy, LLC All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

594 Chapter 2. Features

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str

VOLTTRON Documentation, Release 8.1.3

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

class platform_driver.interfaces.radiothermostat.Interface(**kwargs)
Bases: platform_driver.interfaces.BaseInterface

configure(config_dict, registry_config_str)
Configure the Inteface

get_point(point_name)
Returns the value of a point on the device

parse_config(configDict)

ping_target(address)
Ping target function not implemented for this interface

revert_all()
Sets all points on the device to their default values

revert_point(point_name)
sets the value of a point to its default value

scrape_all()
Scrapes the device for current status of all points

set_point(point_name, value)
Sets the value of a point o the devcie

class platform_driver.interfaces.radiothermostat.Register(read_only, pointName,
device_point_name,
units, default_value)

Bases: platform_driver.interfaces.BaseRegister

Inherits from Volttron Register Class

platform_driver.interfaces.rainforesteagle module

class platform_driver.interfaces.rainforesteagle.InstantaneousDemand
Bases: platform_driver.interfaces.BaseRegister

value()

class platform_driver.interfaces.rainforesteagle.Interface(**kwargs)
Bases: platform_driver.interfaces.BasicRevert, platform_driver.interfaces.
BaseInterface

configure(config_dict, register_config)
Configures the Interface for the specific instance of a device.

Parameters

2.55. PlatformDriverAgent 595

VOLTTRON Documentation, Release 8.1.3

• config_dict (dict) – The “driver_config” section of the driver configura-
tion file.

• registry_config_str (str) – The contents of the registry configuration
file.

This method must setup register representations of all points on a device by creating instances
of BaseRegister (or a subclass) and adding them to the Interface with BaseInterface.
insert_register().

get_point(point_name)
Get the current value for the point name given.

Parameters
• point_name (str) – Name of the point to retrieve.
• kwargs – Any interface specific parameters.

Returns Point value

class platform_driver.interfaces.rainforesteagle.NetworkStatus
Bases: platform_driver.interfaces.BaseRegister

value()

class platform_driver.interfaces.rainforesteagle.PeakDelivered
Bases: platform_driver.interfaces.BaseRegister

value()

class platform_driver.interfaces.rainforesteagle.PeakReceived
Bases: platform_driver.interfaces.BaseRegister

value()

class platform_driver.interfaces.rainforesteagle.PriceCluster
Bases: platform_driver.interfaces.BaseRegister

value()

class platform_driver.interfaces.rainforesteagle.SummationDelivered
Bases: platform_driver.interfaces.BaseRegister

value()

class platform_driver.interfaces.rainforesteagle.SummationReceived
Bases: platform_driver.interfaces.BaseRegister

value()

platform_driver.interfaces.rainforesteagle.get_demand_peaks(key)

platform_driver.interfaces.rainforesteagle.get_summation(key)

platform_driver.interfaces.rainforestemu2 module

class platform_driver.interfaces.rainforestemu2.InstantaneousDemand
Bases: platform_driver.interfaces.BaseRegister

value()

class platform_driver.interfaces.rainforestemu2.Interface(**kwargs)
Bases: platform_driver.interfaces.BasicRevert, platform_driver.interfaces.
BaseInterface

configure(config_dict, register_config)
Configures the Interface for the specific instance of a device.

596 Chapter 2. Features

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str

VOLTTRON Documentation, Release 8.1.3

Parameters
• config_dict (dict) – The “driver_config” section of the driver configura-

tion file.
• registry_config_str (str) – The contents of the registry configuration

file.
This method must setup register representations of all points on a device by creating instances
of BaseRegister (or a subclass) and adding them to the Interface with BaseInterface.
insert_register().

get_point(point_name)
Get the current value for the point name given.

Parameters
• point_name (str) – Name of the point to retrieve.
• kwargs – Any interface specific parameters.

Returns Point value

class platform_driver.interfaces.rainforestemu2.NetworkInfo
Bases: platform_driver.interfaces.BaseRegister

value()

class platform_driver.interfaces.rainforestemu2.PriceCluster
Bases: platform_driver.interfaces.BaseRegister

value()

platform_driver.interfaces.restful module

class platform_driver.interfaces.restful.Interface(**kwargs)
Bases: platform_driver.interfaces.BasicRevert, platform_driver.interfaces.
BaseInterface

configure(config_dict, registry_config_str)
Configures the Interface for the specific instance of a device.

Parameters
• config_dict (dict) – The “driver_config” section of the driver configura-

tion file.
• registry_config_str (str) – The contents of the registry configuration

file.
This method must setup register representations of all points on a device by creating instances
of BaseRegister (or a subclass) and adding them to the Interface with BaseInterface.
insert_register().

get_point(point_name, **kwargs)
Get the current value for the point name given.

Parameters
• point_name (str) – Name of the point to retrieve.
• kwargs – Any interface specific parameters.

Returns Point value

parse_config(configDict)

class platform_driver.interfaces.restful.Register(read_only, volttron_point_name,
units, description, point_name)

Bases: platform_driver.interfaces.BaseRegister

2.55. PlatformDriverAgent 597

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str

VOLTTRON Documentation, Release 8.1.3

platform_driver.interfaces.thermostat_api module

Copyright (c) 2016, Alliance for Sustainable Energy, LLC All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

class platform_driver.interfaces.thermostat_api.ThermostatInterface(url)
Bases: object

Base interface to get and set values on the thermostat

energy_led(data)
Controls energy led, possible values: 0,1,2,4

fmode(data)
Sets fan’s mode

get_cool_pgm(day='')
get cool program for a week or a specific day day = {‘mon’,’tue’,’wed’,’thu’,’fri’,’sat’,’sun’}

for a specific day, say thursday: t.get_cool_pgm(‘thu’)

for a week: t.get_cool_pgm()

get_heat_pgm(day='')
get heat program for a week or a specific day day = {‘mon’,’tue’,’wed’,’thu’,’fri’,’sat’,’sun’}

for a specific day, say thursday: t.get_heat_pgm(‘thu’)

for a week: t.get_heat_pgm()

hold(data)
Sets hold controls

mode(data)
Sets operating mode

model()
Returns device model

over(data)
Sets override controls

598 Chapter 2. Features

https://docs.python.org/3.6/library/functions.html#object

VOLTTRON Documentation, Release 8.1.3

set_cool_pgm(schedules, day='')
set cool program for a week or a specific day day = {‘mon’,’tue’,’wed’,’thu’,’fri’,’sat’,’sun’}

for a spefic day, say ‘thu’ t.set_cool_pgm(‘{“360, 80, 480, 80, 1080, 80, 1320 , 80”,’thu’)
t.set_cool_pgm(‘{

“1”: [360, 70, 480, 70, 1080, 70, 1320, 70], “0”: [360, 66, 480, 58, 1080, 66, 1320,
58], “3”: [360, 66, 480, 58, 1080, 66, 1320, 58], “2”: [360, 66, 480, 58, 1080, 66,
1320, 58], “5”: [360, 66, 480, 58, 1080, 66, 1320, 58], “4”: [360, 66, 480, 58, 1080,
66, 1320, 58], “6”: [360, 66, 480, 58, 1080, 66, 1320, 58]

}’)

set_heat_pgm(schedules, day='')
set heat program for a week or a specific day day = {‘mon’,’tue’,’wed’,’thu’,’fri’,’sat’,’sun’}

for a spefic day, say ‘thu’

t.set_heat_pgm('{"360, 80, 480, 80, 1080, 80, 1320 , 80",'thu')

for a week

t.set_heat_pgm('{
"1": [360, 70, 480, 70, 1080, 70, 1320, 70],
"0": [360, 66, 480, 58, 1080, 66, 1320, 58],
"3": [360, 66, 480, 58, 1080, 66, 1320, 58],
"2": [360, 66, 480, 58, 1080, 66, 1320, 58],
"5": [360, 66, 480, 58, 1080, 66, 1320, 58],
"4": [360, 66, 480, 58, 1080, 66, 1320, 58],
"6": [360, 66, 480, 58, 1080, 66, 1320, 58]

}')

t_cool(data)
Sets cooling setpoint

t_heat(data)
Sets heating setpoint

t_setpoint(data, point, tmode='')
Sets cooling setpoint

tstat()
Returns current deicve paramenters

platform_driver.interfaces.thermostat_api.Thermostat_API(url)
Call the interface

platform_driver.interfaces.universal module

08/15/16 - Remove whitespace in config file. 10/11/16 - Pass only device_id to VehicleDriver. 03/01/17 -
Call agent.GetPoint in get_point. 04/17/17 - Updated for Volttron 4.0.

class platform_driver.interfaces.universal.Interface(**kwargs)
Bases: platform_driver.interfaces.BasicRevert, platform_driver.interfaces.
BaseInterface

configure(config_dict, registry_config_dict)
Configures the Interface for the specific instance of a device.

Parameters

2.55. PlatformDriverAgent 599

VOLTTRON Documentation, Release 8.1.3

• config_dict (dict) – The “driver_config” section of the driver configura-
tion file.

• registry_config_str (str) – The contents of the registry configuration
file.

This method must setup register representations of all points on a device by creating instances
of BaseRegister (or a subclass) and adding them to the Interface with BaseInterface.
insert_register().

get_point(point_name)
Get the current value for the point name given.

Parameters
• point_name (str) – Name of the point to retrieve.
• kwargs – Any interface specific parameters.

Returns Point value

parse_config(agent, device_type, config_dict, reg_config_str)

platform_driver.agent module

exception platform_driver.agent.OverrideError
Bases: platform_driver.interfaces.DriverInterfaceError

Error raised when the user tries to set/revert point when global override is set.

class platform_driver.agent.PlatformDriverAgent(driver_config_list, scal-
ability_test=False, scal-
ability_test_iterations=3,
driver_scrape_interval=0.02,
group_offset_interval=0.0,
max_open_sockets=None,
max_concurrent_publishes=10000,
system_socket_limit=None, pub-
lish_depth_first_all=True, pub-
lish_breadth_first_all=False,
publish_depth_first=False, pub-
lish_breadth_first=False, **kwargs)

Bases: volttron.platform.vip.agent.Agent

clear_overrides()
RPC method

Clear all overrides.

configure_main(config_name, action, contents)

derive_device_topic(config_name)

forward_bacnet_cov_value(source_address, point_name, point_values)
Called by the BACnet Proxy to pass the COV value to the driver agent for publishing :param
source_address: path of the device used for publish topic :param point_name: name of the point in the
COV notification :param point_values: dictionary of updated values sent by the device

get_multiple_points(path, point_names, **kwargs)

get_override_devices()
RPC method

Get a list of all the devices with override condition.

600 Chapter 2. Features

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str

VOLTTRON Documentation, Release 8.1.3

get_override_patterns()
RPC method

Get a list of all the override patterns.

get_point(path, point_name, **kwargs)
RPC method

Return value of specified device set point :param path: device path :type path: str :param point_name: set
point :type point_name: str :param kwargs: additional arguments for the device :type kwargs: arguments
pointer

heart_beat()
RPC method

Sends heartbeat to all devices

remove_driver(config_name, action, contents)

revert_device(path, **kwargs)
RPC method

Revert all the set point values of the device to default state/values. If global override is condition is
set, raise OverrideError exception. :param path: device path :type path: str :param kwargs: additional
arguments for the device :type kwargs: arguments pointer

revert_point(path, point_name, **kwargs)
RPC method

Revert the set point to default state/value. If global override is condition is set, raise OverrideError excep-
tion. :param path: device path :type path: str :param point_name: set point to revert :type point_name: str
:param kwargs: additional arguments for the device :type kwargs: arguments pointer

scrape_all(path)

scrape_ending(topic)

scrape_starting(topic)

set_multiple_points(path, point_names_values, **kwargs)
RPC method

Set values on multiple set points at once. If global override is condition is set,raise OverrideError excep-
tion. :param path: device path :type path: str :param point_names_values: list of points and corresponding
values :type point_names_values: list of tuples :param kwargs: additional arguments for the device :type
kwargs: arguments pointer

set_override_off(pattern)
RPC method

Turn off override condition on all the devices matching the pattern. The pattern matching is based on
bash style filename matching semantics. :param pattern: Pattern on which override condition has to be
removed. :type pattern: str

set_override_on(pattern, duration=0.0, failsafe_revert=True, staggered_revert=False)
RPC method

Turn on override condition on all the devices matching the pattern. :param pattern: Override pattern to be
applied. For example,

If pattern is campus/building1/* - Override condition is applied for all the devices under
campus/building1/. If pattern is campus/building1/ahu1 - Override condition is applied for
only campus/building1/ahu1 The pattern matching is based on bash style filename matching
semantics.

2.55. PlatformDriverAgent 601

VOLTTRON Documentation, Release 8.1.3

Parameters duration – Time duration for the override in seconds. If duration <= 0.0, it
implies as indefinite

duration. :type duration: float :param failsafe_revert: Flag to indicate if all the devices falling under the
override condition has to be set

to its default state/value immediately.

Parameters staggered_revert (boolean) – If this flag is set, reverting of devices
will be staggered.

set_point(path, point_name, value, **kwargs)
RPC method

Set value on specified device set point. If global override is condition is set, raise OverrideError exception.
:param path: device path :type path: str :param point_name: set point :type point_name: str :param value:
value to set :type value: int/float/bool :param kwargs: additional arguments for the device :type kwargs:
arguments pointer

stop_driver(device_topic)

update_driver(config_name, action, contents)

platform_driver.agent.main(argv=['/home/docs/checkouts/readthedocs.org/user_builds/volttron/envs/releases-
8.x/lib/python3.6/site-packages/sphinx/__main__.py', '-b', 'latex', '-D',
'language=en', '-d', '_build/doctrees', '.', '_build/latex'])

Main method called to start the agent.

platform_driver.agent.platform_driver_agent(config_path, **kwargs)

platform_driver.driver module

class platform_driver.driver.DriverAgent(parent, config, time_slot, driver_scrape_interval,
device_path, group, group_offset_interval,
default_publish_depth_first_all=True, de-
fault_publish_breadth_first_all=True,
default_publish_depth_first=True, de-
fault_publish_breadth_first=True, **kwargs)

Bases: volttron.platform.vip.agent.BasicAgent

find_starting_datetime(now)

get_interface(driver_type, config_dict, config_string)
Returns an instance of the interface

get_multiple_points(point_names, **kwargs)

get_paths_for_point(point)

get_point(point_name, **kwargs)

heart_beat()

periodic_read(now)

publish_cov_value(point_name, point_values)
Called in the platform driver agent to publish a cov from a point :param point_name: point which sent
COV notifications :param point_values: COV point values

revert_all(**kwargs)

revert_point(point_name, **kwargs)

scrape_all()

602 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

set_multiple_points(point_names_values, **kwargs)

set_point(point_name, value, **kwargs)

setup_device()

starting(sender, **kwargs)

update_publish_types(publish_depth_first_all, publish_breadth_first_all, publish_depth_first,
publish_breadth_first)

Setup which publish types happen for a scrape. Values passed in are overridden by settings in the specific
device configuration.

update_scrape_schedule(time_slot, driver_scrape_interval, group, group_offset_interval)

platform_driver.driver_exceptions module

exception platform_driver.driver_exceptions.DriverConfigError
Bases: platform_driver.driver_exceptions.DriverError

exception platform_driver.driver_exceptions.DriverError
Bases: Exception

platform_driver.driver_locks module

platform_driver.driver_locks.configure_publish_lock(max_connections=0)

platform_driver.driver_locks.configure_socket_lock(max_connections=0)

platform_driver.driver_locks.publish_lock()

platform_driver.driver_locks.socket_lock()

2.55.2 Platform Driver Agent

The Platform Driver agent is a special purpose agent a user can install on the platform to manage communication of
the platform with devices. The Platform driver features a number of endpoints for collecting data and sending control
signals using the message bus and automatically publishes data to the bus on a specified interval.

Dependencies

VOLTTRON drivers operated by the platform driver may have additional requirements for installation. Required
libraries:

1. BACnet driver - bacpypes

2. Modbus driver - pymodbus

3. Modbus_TK driver - modbus-tk

4. DNP3 and IEEE 2030.5 drivers - pydnp3

The easiest way to install the requirements for drivers included in the VOLTTRON repository is to use bootstrap.py

python3 bootstrap.py --drivers

2.55. PlatformDriverAgent 603

https://docs.python.org/3.6/library/exceptions.html#Exception

VOLTTRON Documentation, Release 8.1.3

Configuration

Agent Configuration

The Platform Driver Agent configuration consists of general settings for all devices. The default values of the Platform
Driver should be sufficient for most users. The user may optionally change the interval between device scrapes with
the driver_scrape_interval.

The following example sets the driver_scrape_interval to 0.05 seconds or 20 devices per second:

{
"driver_scrape_interval": 0.05,
"publish_breadth_first_all": false,
"publish_depth_first": false,
"publish_breadth_first": false,
"publish_depth_first_all": true,
"group_offset_interval": 0.0

}

1. driver_scrape_interval - Sets the interval between devices scrapes. Defaults to 0.02 or 50 devices per second.
Useful for when the platform scrapes too many devices at once resulting in failed scrapes.

2. group_offset_interval - Sets the interval between when groups of devices are scraped. Has no effect if all devices
are in the same group. In order to improve the scalability of the platform unneeded device state publishes for all
devices can be turned off. All of the following setting are optional and default to True.

3. publish_depth_first_all - Enable “depth first” publish of all points to a single topic for all devices.

4. publish_breadth_first_all - Enable “breadth first” publish of all points to a single topic for all devices.

5. publish_depth_first - Enable “depth first” device state publishes for each register on the device for all devices.

6. publish_breadth_first - Enable “breadth first” device state publishes for each register on the device for all devices.

Driver Configuration

Each device configuration has the following form:

{
"driver_config": {"device_address": "10.1.1.5",

"device_id": 500},
"driver_type": "bacnet",
"registry_config":"config://registry_configs/vav.csv",
"interval": 60,
"heart_beat_point": "heartbeat",
"group": 0

}

The following settings are required for all device configurations:

1. driver_config - Driver specific setting go here. See below for driver specific settings.

2. driver_type - Type of driver to use for this device: bacnet, modbus, fake, etc.

3. registry_config - Reference to a configuration file in the configuration store for registers on the device.

These settings are optional:

1. interval - Period which to scrape the device and publish the results in seconds. Defaults to 60 seconds.

604 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

2. heart_beat_point - A Point which to toggle to indicate a heartbeat to the device. A point with this Volttron Point
Name must exist in the registry. If this setting is missing the driver will not send a heart beat signal to the device.
Heart beats are triggered by the Actuator Agent which must be running to use this feature.

3. group - Group this device belongs to. Defaults to 0

2.56 SQLAggregateHistorian

2.56.1 sqlaggregator package

sqlaggregator.aggregator module

class sqlaggregator.aggregator.SQLAggregateHistorian(config_path, **kwargs)
Bases: volttron.platform.agent.base_aggregate_historian.AggregateHistorian

Agent to aggregate data in historian based on a specific time period. This aggregate historian aggregates data
collected by SQLHistorian.

collect_aggregate(topic_ids, agg_type, start_time, end_time)
Collect the aggregate data by querying the historian’s data store

Parameters
• topic_ids – list of topic ids for which aggregation should be performed.
• agg_type – type of aggregation
• start_time – start time for query (inclusive)
• end_time – end time for query (exclusive)

Returns a tuple of (aggregated value, count of record over which
this aggregation was computed)

configure(config_name, action, config)
Converts aggregation time period into seconds, validates configuration values and calls the collect aggre-
gate method for the first time

Parameters
• config_name – name of the config entry in store. We only use one config

store entry with the default name config
• action – “NEW or “UPDATE” code treats both the same way
• config – configuration as json object

get_agg_topic_map()
Query the aggregate_topics table and create a map of (topic name, aggregation type, aggregation time
period) to topic id. This should be done as part of init

Returns Returns a list of topic_map containing

{(agg_topic_name.lower(), agg_type, agg_time_period) :id}

get_aggregation_list()
Returns a list of supported aggregations

Returns list of supported aggregations

get_topic_map()
Query the topics table and create a map of topic name to topic id. This should be done as part of init

Returns Returns a list of topic_map containing {topic_name.lower():id}

initialize_aggregate_store(aggregation_topic_name, agg_type, agg_time_period, top-
ics_meta)

Create the data structure (table or collection) that is going to store the aggregate data for the give aggre-
gation type and aggregation time period

2.56. SQLAggregateHistorian 605

VOLTTRON Documentation, Release 8.1.3

Parameters
• aggregation_topic_name – Unique topic name for this aggregation. If

aggregation is done over multiple points it is a unique name given by user, else
it is same as topic_name for which aggregation is done

• agg_type – The type of aggregation. For example, avg, sum etc.
• agg_time_period – The time period of aggregation
• topics_meta – String that represents the list of topics across which this ag-

gregation is computed. It could be topic name pattern or list of topics. This
information should go into metadata table

Returns Return a aggregation_topic_id after inserting aggregation_topic_name into topics
table

insert_aggregate(topic_id, agg_type, period, end_time, value, topic_ids)
Insert aggregate data collected for a specific time period into database. Data is inserted into
<agg_type>_<period> table

Parameters
• agg_topic_id – If len(topic_ids) is 1. This would be the same as the

topic_ids[0]. Else this id corresponds to the unique topic name given by user
for this aggregation across multiple points.

• agg_type – type of aggregation
• agg_time_period – The time period of aggregation
• end_time – end time used for query records that got aggregated
• topic_ids – topic ids for which aggregation was computed
• value – aggregation result

update_aggregate_metadata(agg_id, aggregation_topic_name, topic_meta)
Update aggregation_topic_name and topic_meta data for the given agg_id.

Parameters
• agg_id – Aggregation topic id for which update should be done
• aggregation_topic_name – New aggregation_topic_name
• topic_meta – new topic metadata

sqlaggregator.aggregator.main(argv=['/home/docs/checkouts/readthedocs.org/user_builds/volttron/envs/releases-
8.x/lib/python3.6/site-packages/sphinx/__main__.py', '-b', 'latex',
'-D', 'language=en', '-d', '_build/doctrees', '.', '_build/latex'])

Main method called by the eggsecutable.

2.56.2 SQL Aggregate Historian

An aggregate historian computes aggregates of data stored in a given volttron historian's data store. It runs period-
ically to compute aggregate data and store it in new tables/collections in the historian's data store. Each historian
implementation would use a corresponding aggregate historian to compute and store aggregates.

Aggregates can be defined for a specific time interval and can be calculated for one or more topics. For example,
15 minute average of topic1 or 15 minute average of values of topic1 and topic2. Current version of this agent only
computes aggregates supported by underlying data store. When aggregation is done over more than one topic a unique
aggregation topic name should be configured by user. This topic name can be used in historian's query api to query
the collected aggregate data.

Note: This agent doesn't not compute dynamic aggregates. It is only useful when you know what kind of aggregate
you would need before hand and have them be collected periodically so that retrieval of that data at a later point would
be faster

606 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Data flow between historian and aggregate historian

1. Historian collects data from devices and stores it in its data store

2. Aggregate historian periodically queries historian's data store for data within configured time period.

3. Aggregate historian computes aggregates and stores it in historian's data store

4. Historian's query api queries aggregate data when used with additional parameters - agg_type, agg_period

Configuration

{
configuration from mysql historian - START
"connection": {

"type": "mysql",
"params": {

"host": "localhost",
"port": 3306,
"database": "test_historian",
"user": "historian",
"passwd": "historian"

}
},
configuration from mysql historian - END
If you are using a differnt historian(sqlite3, mongo etc.) replace the
above with connection details from the corresponding historian.
the rest of the configuration would be the same for all aggregate
historians

"aggregations":[
list of aggregation groups each with unique aggregation_period and
list of points that needs to be collected. value of "aggregations" is
a list. you can configure this agent to collect multiple aggregates.
aggregation_time_periiod + aggregation topic(s) together uniquely
identify an aggregation

{
can be minutes(m), hours(h), weeks(w), or months(M)

"aggregation_period": "1m",

Should aggregation period align to calendar time periods.
Default False
Example,
if "aggregation_period":"1h" and "use_calendar_time_periods": False
example periods: 10.15-11.15, 11.15-12.15, 12.15-13.15 etc.
if "aggregation_period":"1h" and "use_calendar_time_periods": True
example periods: 10.00-11.00, 11.00-12.00, 12.00-13.00 etc.

"use_calendar_time_periods": "true",

topics to be aggregated

"points": [
{
here since aggregation is done over a single topic name

(continues on next page)

2.56. SQLAggregateHistorian 607

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

same topic name is used for the aggregation topic
"topic_names": ["device1/out_temp"],
"aggregation_type": "sum",
#minimum required records in the aggregation time period for

→˓aggregate to be recorded
"min_count": 2
},
{
"topic_names": ["device1/in_temp"],
"aggregation_type": "sum",
"min_count": 2
}

]
},
{

"aggregation_period": "2m",
"use_calendar_time_periods": "false",
"points": [

{
aggregation over more than one topic so aggregation_topic_name

→˓should be specified
"topic_names": ["Building/device/point1", "Building/device/point2"],
"aggregation_topic_name":"building/device/point1_2/month_sum",
"aggregation_type": "avg",
"min_count": 2

}
]

}
]

}

See Also

AggregateHistorianSpec

2.57 SQLHistorian

2.57.1 sqlhistorian package

sqlhistorian.historian module

class sqlhistorian.historian.MaskedString
Bases: str

class sqlhistorian.historian.SQLHistorian(connection, tables_def=None, **kwargs)
Bases: volttron.platform.agent.base_historian.BaseHistorian

This is a historian agent that writes data to a SQLite or Mysql database based on the connection parameters in
the configuration. .. seealso:

- :py:mod:`volttron.platform.dbutils.basedb`
- :py:mod:`volttron.platform.dbutils.mysqlfuncts`
- :py:mod:`volttron.platform.dbutils.sqlitefuncts`

608 Chapter 2. Features

https://volttron.readthedocs.io/en/develop/developing-volttron/developing-agents/specifications/aggregate.html
https://docs.python.org/3.6/library/stdtypes.html#str

VOLTTRON Documentation, Release 8.1.3

get_dbfuncts_object()

historian_setup()
Optional setup routine, run in the processing thread before main processing loop starts. Gives the Historian
a chance to setup connections in the publishing thread.

manage_db_size(history_limit_timestamp, storage_limit_gb)
Optional function to manage database size.

publish_to_historian(to_publish_list)
Main publishing method for historian Agents.

Parameters to_publish_list (list) – List of records
to_publish_list takes the following form:

[
{

'timestamp': timestamp1.replace(tzinfo=pytz.UTC),
'source': 'scrape',
'topic': "pnnl/isb1/hvac1/thermostat",
'value': 73.0,
'meta': {"units": "F", "tz": "UTC", "type": "float"}

},
{

'timestamp': timestamp2.replace(tzinfo=pytz.UTC),
'source': 'scrape',
'topic': "pnnl/isb1/hvac1/temperature",
'value': 74.1,
'meta': {"units": "F", "tz": "UTC", "type": "float"}

},
...

]

The contents of meta is not consistent. The keys in the meta data values can be different and can change
along with the values of the meta data. It is safe to assume that the most recent value of the “meta”
dictionary are the only values that are relevant. This is the way the cache treats meta data.

Once one or more records are published either BaseHistorianAgent.report_all_handled()
or BaseHistorianAgent.report_handled() must be called to report records as being pub-
lished.

query_aggregate_topics()
This function is called by BaseQueryHistorianAgent.get_aggregate_topics() to find out
the available aggregates in the data store

Returns List of tuples containing (topic_name, aggregation_type, aggregation_time_period,
metadata)

Return type list

query_historian(topic, start=None, end=None, agg_type=None, agg_period=None, skip=0,
count=None, order='FIRST_TO_LAST')

This function is called by BaseQueryHistorianAgent.query() to actually query the data store
and must return the results of a query in the following format:

Single topic query:

{
"values": [(timestamp1, value1),

(timestamp2:,value2),
...],

"metadata": {"key1": value1,

(continues on next page)

2.57. SQLHistorian 609

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"key2": value2,
...}

}

Multiple topics query:

{
"values": {topic_name:[(timestamp1, value1),

(timestamp2:,value2),
...],

topic_name:[(timestamp1, value1),
(timestamp2:,value2),
...],
...}

"metadata": {} #empty metadata
}

Timestamps must be strings formatted by volttron.platform.agent.utils.
format_timestamp().

“metadata” is not required. The caller will normalize this to {} for you if it is missing.
Parameters

• topic (str or list) – Topic or list of topics to query for.
• start (datetime) – Start of query timestamp as a datetime.
• end (datetime) – End of query timestamp as a datetime.
• agg_type – If this is a query for aggregate data, the type of aggregation (for

example, sum, avg)
• agg_period – If this is a query for aggregate data, the time period of aggre-

gation
• skip (int) – Skip this number of results.
• count (int) – Limit results to this value. When the query is for multiple topics,

count applies to individual topics. For example, a query on 2 topics with count=5
will return 5 records for each topic

• order (str) – How to order the results, either “FIRST_TO_LAST” or
“LAST_TO_FIRST”

Returns Results of the query
Return type dict

query_topic_list()
This function is called by BaseQueryHistorianAgent.get_topic_list() to actually topic
list from the data store.

Returns List of topics in the data store.
Return type list

query_topics_by_pattern(topic_pattern)
Find the list of topics and its id for a given topic_pattern

Returns returns list of dictionary object {topic_name:id}

query_topics_metadata(topics)
This function is called by BaseQueryHistorianAgent.get_topics_metadata() to find out
the metadata for the given topics

Parameters topics (str or list) – single topic or list of topics
Returns dictionary with the format

{topic_name: {metadata_key:metadata_value, ...},
topic_name: {metadata_key:metadata_value, ...} ...}

610 Chapter 2. Features

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#list

VOLTTRON Documentation, Release 8.1.3

Return type dict

version()
Return the current version number of the historian :return: version number

sqlhistorian.historian.historian(config_path, **kwargs)
This method is called by the sqlhistorian.historian.main() to parse the passed config file or con-
figuration dictionary object, validate the configuration entries, and create an instance of SQLHistorian :param
config_path: could be a path to a configuration file or can be a

dictionary object

Parameters kwargs – additional keyword arguments if any
Returns an instance of sqlhistorian.historian.SQLHistorian

sqlhistorian.historian.main(argv=['/home/docs/checkouts/readthedocs.org/user_builds/volttron/envs/releases-
8.x/lib/python3.6/site-packages/sphinx/__main__.py', '-b', 'latex',
'-D', 'language=en', '-d', '_build/doctrees', '.', '_build/latex'])

Main entry point for the agent.

2.57.2 SQLHistorian

This is a historian agent that writes data to a SQLite, Mysql, Postgres, TimeScale, or Redshift database based on the
connection parameters in the configuration. The sql historian has been programmed to allow for inconsistent network
connectivity (automatic re-connection to tcp based databases). All additions to the historian are batched and wrapped
within a transaction with commit and rollback functions properly implemented. This allows the maximum throughput
of data with the most protection

Common Configurations

All SQLHistorians support two parameters

1. connection - This is a mandatory parameter with type indicating the type of sql historian (ex. mysql, sqlite, etc.)
and params containing the connection parameters specific to the connecting database type.

2. tables_def - Optional parameter to provide custom table names for topics, data, and metadata. This is useful
when you want to use more than one instance of sqlhistorian with the same database

Example:

JSON format :

{
"connection": {

type should be sqlite
"type": "sqlite",
"params": {

"database": "data/historian.sqlite",
}

}
"tables_def": {

prefix for data, topics, and (in version < 4.0.0 metadata tables)
default is ""
"table_prefix": "",
table name for time series data. default "data"
"data_table": "data",
table name for list of topics. default "topics"
"topics_table": "topics",

(continues on next page)

2.57. SQLHistorian 611

https://docs.python.org/3.6/library/stdtypes.html#dict

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

table name mapping topic to metadata. default "meta"
In sqlhistorian version >= 4.0.0 metadata is stored in topics table
"meta_table": "meta"

}
}

MySQL

Installation notes

1. In order to support timestamp with microseconds you need at least MySql 5.6.4. Please see this MySql docu-
mentation for more details

2. The mysql user must have SELECT INSERT, and DELETE privileges to the historian database tables.

3. SQLHistorianAgent can create the database tables the first time it runs if the database user has CREATE privi-
leges. But we recommend this only for development/test environments. For all other use cases, use the mysql-
create*.sql script to create the tables and then start agent. This way database user used by VOLTTRON historian
can work with minimum required privileges

Dependencies

In order to use mysql one must install the mysql-python connector

From an activated shell execute

pip install mysql-connector-python-rf

On Ubuntu 16.04

pip install does not work. Please download the connector from https://launchpad.net/ubuntu/xenial/
+package/python-mysql.connector and follow instructions on README

Configuration

The following is a minimal configuration file for using a MySQL based historian. Other options are available and
are documented http://dev.mysql.com/doc/connector-python/en/connector-python-connectargs.html. Not all mysql
connection parameters have been tested, use at your own risk. The configurations can be provided in JSON format
or yml format

JSON format :

{
"connection": {

type should be "mysql"
"type": "mysql",
additional mysql connection parameters could be added but
have not been tested
"params": {

"host": "localhost",
"port": 3306,
"database": "volttron",
"user": "user",

(continues on next page)

612 Chapter 2. Features

http://dev.mysql.com/doc/refman/5.6/en/fractional-seconds.html
http://dev.mysql.com/doc/refman/5.6/en/fractional-seconds.html
https://launchpad.net/ubuntu/xenial/+package/python-mysql.connector
https://launchpad.net/ubuntu/xenial/+package/python-mysql.connector
http://dev.mysql.com/doc/connector-python/en/connector-python-connectargs.html

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"passwd": "pass"
}

}
}

YML format :

connection:
type: mysql
params:

host: localhost
port: 3306
database: test_historian
user: historian
passwd: historian

SQLite3

An Sqlite historian provides a convenient solution for under powered systems. The database parameter is a location on
the file system. By default it is relative to the agents installation directory, however it will respect a rooted or relative
path to the database.

Configuration

{
"connection": {

type should be sqlite
"type": "sqlite",
"params": {

"database": "data/historian.sqlite",
}

}
}

PostgreSQL and Redshift

Installation notes

1. The PostgreSQL database driver supports recent PostgreSQL versions. It was tested on 10.x, but should work
with 9.x and 11.x.

2. The user must have SELECT, INSERT, and UPDATE privileges on historian tables.

3. The tables in the database are created as part of the execution of the SQLHistorianAgent, but this will fail if the
database user does not have CREATE privileges.

4. Care must be exercised when using multiple historians with the same database. This configuration may be used
only if there is no overlap in the topics handled by each instance. Otherwise, duplicate topic IDs may be created,
producing strange results.

5. Redshift databases do not support unique constraints. Therefore, it is possible that tables may contain some
duplicate data. The Redshift driver handles this by using distinct queries. It does not remove duplicates from
the tables.

2.57. SQLHistorian 613

VOLTTRON Documentation, Release 8.1.3

Dependencies

The PostgreSQL and Redshift database drivers require the psycopg2 Python package.

From an activated shell execute:

pip install psycopg2-binary

Configuration

The following are minimal configuration files for using a psycopg2-based historian. Other options are available and
are documented http://initd.org/psycopg/docs/module.html Not all parameters have been tested, use at your own
risk.

Local PostgreSQL Database

The following snippet demonstrates how to configure the SQLHistorianAgent to use a PostgreSQL database on the
local system that is configured to use Unix domain sockets. The user executing volttron must have appropriate privi-
leges.

{
"connection": {

"type": "postgresql",
"params": { "dbname": "volttron" }

}
}

Remote PostgreSQL Database

The following snippet demonstrates how to configure the
SQLHistorianAgent to use a remote PostgreSQL database.

{
"connection": {

"type": "postgresql",
"params": {

"dbname": "volttron",
"host": "historian.example.com",
"port": 5432,
"user": "volttron",
"password": "secret" }

}
}

614 Chapter 2. Features

http://initd.org/psycopg/docs/module.html

VOLTTRON Documentation, Release 8.1.3

TimescaleDB Support

Both of the above PostgreSQL connection types can make use of TimescaleDB's high performance Hypertable backend
for the primary timeseries table. The agent assumes you have completed the TimescaleDB installation and setup the
database by following the instructions here: https://docs.timescale.com/latest/getting-started/setup To use, simply add
'timescale_dialect: true' to the connection params in the Agent Config as below

{
"connection": {

"type": "postgresql",
"params": {

"dbname": "volttron",
"host": "historian.example.com",
"port": 5432,
"user": "volttron",
"password": "secret" ,
"timescale_dialect": true }

}

}

Redshift Database

The following snippet demonstrates how to configure the SQLHistorianAgent to use a Redshift database.

{
"connection": {

"type": "redshift",
"params": {

"dbname": "volttron",
"host": "historian.example.com",
"port": 5432,
"user": "volttron",
"password": "secret" }

}
}

Notes

Do not use the "identity" setting in configuration file. Instead use the new method provided by the platform to set an
agent's identity. See scripts/core/make-sqlite-historian.sh for an example of how this is done. Setting a historian's VIP
IDENTITY from its configuration file will not be supported after VOLTTRON 4.0. Using the identity configuration
setting will override the value provided by the platform. This new value will not be reported correctly by 'volttron-ctl
status'

2.57. SQLHistorian 615

https://docs.timescale.com/latest/getting-started/setup

VOLTTRON Documentation, Release 8.1.3

2.58 SQLiteTaggingService

2.58.1 sqlite package

sqlite.tagging module

class sqlite.tagging.SQLiteTaggingService(connection, table_prefix=None, **kwargs)
Bases: volttron.platform.agent.base_tagging.BaseTaggingService

This is a tagging service agent that writes data to a SQLite database.

insert_topic_tags(tags, update_version=False)
Add tags to multiple topics.

Parameters
• tags (dict) – dictionary object or file containing the topic and the tag details.

dictionary object or the file content should be of the format:

<topic_name or prefix or topic_name pattern>: {<valid
tag>:<value>, ... }, ... }

• update_version (bool) – True/False. Default to False. If set to True and if
any of the tags update an existing tag value the older value would be preserved
as part of tag version history. Note: this feature is not implemented in the current
version of sqlite and mongodb tagging service.

load_tag_refs()
Called right after setup to load a dictionary of reference tags and its corresponding parent tag. Implement-
ing methods should load self.tag_refs with tag and parent tag information

load_valid_tags()
Called right after setup to load a dictionary of valid tags. It should load self.valid_tags with tag and type
information

query_categories(include_description=False, skip=0, count=None, order='FIRST_TO_LAST')
Get the available list tag categories. category can have multiple tags and tags could belong to multiple
categories

Parameters
• include_description (bool) – indicate if result should include available

description for categories returned
• skip (int) – number of tags to skip. usually used with order
• count (int) – limit on the number of tags to return
• order (str) – order of result - “FIRST_TO_LAST” or “LAST_TO_FIRST”

Returns list of category names if include_description is False, list of (category name, de-
scription) if include_description is True

Return type list

query_tags_by_category(category, include_kind=False, include_description=False, skip=0,
count=None, order='FIRST_TO_LAST')

Get the list of tags for a given category name. category can have multiple tags and tags could belong to
multiple categories

Parameters
• category (str) – name of the category for which associated tags should be

returned
• include_kind (bool) – indicate if result should include the kind/datatype

for tags returned
• include_description (bool) – indicate if result should include available

description for tags returned

616 Chapter 2. Features

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool

VOLTTRON Documentation, Release 8.1.3

• skip (int) – number of tags to skip. usually used with order
• count (int) – limit on the number of tags to return
• order (str) – order of result - “FIRST_TO_LAST” or “LAST_TO_FIRST”

Returns

Will return one of the following
• list of tag names
• list of (tags, its data type/kind) if include_kind is True
• list of (tags, description) if include_description is True
• list of (tags, its data type/kind, description) if include_kind is True and in-

clude_description is true
Return type list

query_tags_by_topic(topic_prefix, include_kind=False, include_description=False, skip=0,
count=None, order='FIRST_TO_LAST')

Get the list of tags for a given topic prefix or name.
Parameters

• topic_prefix (str) – topic_prefix for which associated tags should be re-
turned

• include_kind (bool) – indicate if result should include the kind/datatype
for tags returned

• include_description (bool) – indicate if result should include available
description for tags returned

• skip (int) – number of tags to skip. usually used with order
• count (int) – limit on the number of tags to return
• order (str) – order of result - “FIRST_TO_LAST” or “LAST_TO_FIRST”

Returns

Will return one of the following
• list of (tag name, value)
• list of (tag name, value, data type/kind) if include_kind is True
• list of (tag name, value, description) if include_description is True
• list of (tags, value, data type/kind, description) if include_kind is True and in-

clude_description is true
Return type list

query_topics_by_tags(ast, skip=0, count=None, order=None)
Get list of topic names and topic name prefixes based on query condition. Query condition is passed as
an abstract syntax tree.

Parameters
• ast (tuple) – Abstract syntax tree that represents conditional statement to be

used for matching tags. The abstract syntax tree represents query condition that
is created using the following specification

Query condition is a boolean expression that contains one or more query con-
ditions combined together with an “AND” or “OR”. Query conditions can be
grouped together using parenthesis. Each condition in the expression should
conform to one of the following format:

1. <tag name/ parent.tag_name> <binary_operator> <value>
2. <tag name/ parent.tag_name>
3. <tag name/ parent.tag_name> LIKE <regular expression within single

quotes
4. the word NOT can be prefixed before any of the above three to negate the

condition.
5. expressions can be grouped with parenthesis. For example

2.58. SQLiteTaggingService 617

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#tuple

VOLTTRON Documentation, Release 8.1.3

condition="(tag1 = 1 or tag1 = 2) and (tag2 < '' and
→˓tag2 >
'') and tag3 and (tag4 LIKE '^a.*b$')"
condition="NOT (tag5='US' OR tag5='UK') AND NOT tag3
→˓AND
NOT (tag4 LIKE 'a.*')"
condition="campusRef.geoPostalCode='20500' and equip
→˓and
boiler"

• skip (int) – number of tags to skip. usually used with order
• count (int) – limit on the number of tags to return
• order (str) – order of result - “FIRST_TO_LAST” or “LAST_TO_FIRST”

Returns list of topics/topic_prefix that match the given query conditions
Return type list

setup()
Called on start of agent Method to establish database connection, do any initial bootstrap necessary.
Example - load master list of tags, units, categories etc. into data store/memory

sqlite.tagging.main(argv=['/home/docs/checkouts/readthedocs.org/user_builds/volttron/envs/releases-
8.x/lib/python3.6/site-packages/sphinx/__main__.py', '-b', 'latex', '-D', 'lan-
guage=en', '-d', '_build/doctrees', '.', '_build/latex'])

Main entry point for the agent.
Parameters argv –
Returns

sqlite.tagging.tagging_service(config_path, **kwargs)
This method is called by the service.tagging.main() to parse the passed config file or configuration
dictionary object, validate the configuration entries, and create an instance of SQLTaggingService

Parameters
• config_path – could be a path to a configuration file or can be a dictionary object
• kwargs – additional keyword arguments if any

Returns an instance of service.tagging.SQLTaggingService

2.58.2 SQLite Tagging Service

SQLite tagging service provide APIs to tag both topic names(device points) and topic name prefixes (campus, building,
unit/equipment, sub unit) and then query for relevant topics based on saved tag names and values. The SQLite tagging
services stores the tags in a sqlite3 database and hence provides a way to use this feature in VOLTTRON out of the
box.

Tags used by this agent are not user defined. They have to be pre-defined in a resource file at volt-
tron_data/tagging_resources. The agent validates against this predefined list of tags every time user add tags to topics.
Tags can be added to one topic at a time or multiple topics by using a topic name pattern(regular expression). This
agent uses tags from project haystack. and adds a few custom tags for campus and VOLTTRON point name.

Each tag has an associated value and users can query for topic names based tags and its values using a simplified sql-
like query string. Queries can specify tag names with values or tags without values for boolean tags(markers). Queries
can combine multiple conditions with keyword AND and OR, and use the keyword NOT to negate a conditions.

618 Chapter 2. Features

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#list
https://project-haystack.org/

VOLTTRON Documentation, Release 8.1.3

Dependencies and Limitations

1. When adding tags to topics this agent calls the platform.historian's get_topic_list and hence requires the plat-
form.historian to be running but it doesn't require the historian to use sqlite or any specific database. It does not
require platform.historian to be running for using its query APIs.

2. Resource files that provides the list of valid tags is mandatory and should be in volt-
tron_data/tagging_reosurces/tags.csv

3. Tagging service only provides APIs query for topic names based on tags. Once the list of topic names is
retrieved, users should use the historian APIs to get the data corresponding to those topics.

4. Since RDMS is not a natural fit for tagname=value kind of data, performance of queries will not be high if
you have several thousands of topics and several hundreds tags for each topic and perform complex queries.
For intermediate level data and query complexity, performance can be improved by increasing the page limit of
sqlite.

5. Current version of tagging service does not support versioning of tag/values. When tags values set using tagging
service APIs update/overwrite any existing tag entries in the database

Configuration Options

The following JSON configuration file shows all the options currently supported by this agent.

{
sqlite connection parameters
"connection": {

"type": "sqlite",
"params": {

"database": "~/.volttron/data/volttron.tags.sqlite"
}

},
optional. Specify if collections created for tagging should have names
starting with a specific prefix <given prefix>_<collection_name>
"table_prefix":"volttron",

optional. Specify if you want tagging service to query the historian
with this vip identity. defaults to platform.historian
"historian_vip_identity": "crate.historian"

}

2.58. SQLiteTaggingService 619

VOLTTRON Documentation, Release 8.1.3

See Also

TaggingServiceSpec

2.59 VolttronCentral

2.59.1 rpc_test_client module

rpc_test_client.do_rpc(method, params=None)

rpc_test_client.exec_method(platform_uuid, agent_uuid, method, params)

rpc_test_client.get_dict(text)

rpc_test_client.inspect_agent(platform_uuid, agent_uuid)

rpc_test_client.inspect_method(platform_uuid, agent_uuid, method)

rpc_test_client.list_agents(platform_uuid)

rpc_test_client.register_instance(discovery_address)

rpc_test_client.register_platform(address, identity)

2.59.2 volttroncentral package

volttroncentral.agent module

The VolttronCentral(VCA) agent is used to manage remote VOLTTRON instances. The VCA exposes a JSON-RPC
based web api and a web enabled visualization framework. The web enabled framework is known as VOLTTRON
Central Management Console (VCMC).

In order for an instance to be able to be managed by VCMC a vcplatform.agent.
VolttronCentralPlatform must be executing on the instance. If there is a vcplatform.agent.
VolttronCentralPlatform running on the same instance as VCA it will be automatically registered as a
managed instance. Otherwise, there are two different paths to registering an instance with VCA.

1. Through the web api a call to the JSON-RPC method register_instance.

2. From an external platform through pub/sub. this secondary method is preferred when deploying instances in the
field that need to “phone home” to VCA after being deployed.

class volttroncentral.agent.Platform(instance_name, serverkey, vip_address)
Bases: tuple

property instance_name
Alias for field number 0

property serverkey
Alias for field number 1

property vip_address
Alias for field number 2

class volttroncentral.agent.RequiredArgs(id, session_user, platform_uuid)
Bases: tuple

property id
Alias for field number 0

620 Chapter 2. Features

https://volttron.readthedocs.io/en/develop/developing-volttron/developing-agents/specifications/tagging-service.html
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#tuple

VOLTTRON Documentation, Release 8.1.3

property platform_uuid
Alias for field number 2

property session_user
Alias for field number 1

class volttroncentral.agent.VolttronCentralAgent(webroot='/home/docs/checkouts/readthedocs.org/user_builds/volttron/checkouts/releases-
8.x/services/core/VolttronCentral/volttroncentral/webroot',
users={}, topic_replace_list=[],
**kwargs)

Bases: volttron.platform.vip.agent.Agent

Agent for managing many volttron instances from a central web ui.

During the

configure_platforms(config_name, action, contents)

get_publickey()
RPC method allowing the caller to retrieve the publickey of this agent.

This method is available for allowing VolttronCentralPlatform agents to allow this agent to be
able to connect to its instance.

Returns The publickey of this volttron central agent.
Return type str

get_setting(session_user, params)
Retrieve a value from the passed setting key. The params object must contain a “key” to return from the
settings store.

Parameters
• session_user – Unused
• params – Dictionary that must contain a ‘key’ key.

Returns The value or a jsonrpc error object.

get_setting_keys(session_user, params)
Returns a list of all of the settings keys so the caller can know what settings to request.

Parameters
• session_user – Unused
• params – Unused

Returns A list of settings available to the caller.

is_registered(address_hash=None, address=None)

jsonrpc(env, data)
The main entry point for ^jsonrpc data

This method will only accept rpcdata. The first time this method is called, per session, it must be using
get_authorization. That will return a session token that must be included in every subsequent request. The
session is tied to the ip address of the caller.

Parameters
• env (object) – Environment dictionary for the request.
• data (object) – The JSON-RPC 2.0 method to call.

Return object An JSON-RPC 2.0 response.

open_authenticate_ws_endpoint(fromip, endpoint)
Callback method from when websockets are opened. The endpoint must be ‘/’ delimited with the second
to last section being the session of a logged in user to volttron central itself.

Parameters
• fromip –
• endpoint – A string representing the endpoint of the websocket.

Returns

2.59. VolttronCentral 621

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/functions.html#object

VOLTTRON Documentation, Release 8.1.3

send_management_message(type, data={})
Send a message to any socket that has connected to the management socket.

The payload sent to the client is like the following:

{
"type": "UPDATE_DEVICE_STATUS",
"data": "this is data that was passed"

}

Parameters
• type (str) – A string defining a unique type for sending to the websockets.
• data (serializable) – An object that str can be called on.

set_setting(session_user, params)
Sets or removes a setting from the config store. If the value is None then the item will be removed from
the store. If there is an error in saving the value then a jsonrpc.json_error object is returned.

Parameters
• session_user – Unused
• params – Dictionary that must contain ‘key’ and ‘value’ keys.

Returns A ‘SUCCESS’ string or a jsonrpc.json_error object.

volttroncentral.agent.init_volttron_central(config_path, **kwargs)

volttroncentral.agent.main(argv=['/home/docs/checkouts/readthedocs.org/user_builds/volttron/envs/releases-
8.x/lib/python3.6/site-packages/sphinx/__main__.py', '-b', 'latex', '-D',
'language=en', '-d', '_build/doctrees', '.', '_build/latex'])

Main method called by the eggsecutable.
Parameters argv –
Returns

volttroncentral.authenticate module

A simple authorization for authenticating users with known credentials.

@author: Craig Allwardt

class volttroncentral.authenticate.Authenticate(user_map)
Bases: object

authenticate(username, password)
Authenticate that the user is known to the system.

Return groups of the user if the user is known otherwise returns None. :param username: :param pass-
word: :return: list(groups) or None

volttroncentral.platforms module

class volttroncentral.platforms.PlatformHandler(vc, vip_identity)
Bases: object

This class is a wrapper around the communication between VC and a corresponding VCP on either this instance
or another instance.

add_event_listener(callback)

property address

622 Chapter 2. Features

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/functions.html#object

VOLTTRON Documentation, Release 8.1.3

static address_hasher(address)
Hashes the passed address.

Parameters address –
Returns

call(platform_method, *args, **kwargs)
Calls a method on a vcp platform.

Parameters
• platform_method –
• args –
• kwargs –

Returns

property config_store_name
Each platform has a specific entry for its data. In order to get that entry the config store needs a config
name. This property returns the config store name for this platform.

Returns config store name
Return type str

delete_agent_config(session_user, params)

property display_name

get_agent_config(session_user, params)

get_agent_config_list(session_user, params)

get_agent_list(session_user, params)

get_devices(session_user, params)

get_stats(stat_type)

property health
Returns a Status object as a dictionary. This will be populated by the heartbeat from the external instance
that this object is monitoring, unless it has been over 10 seconds since the instance has been reached. In
that case the health will be BAD.

Returns

property platforms
Returns a link to the object that created this handler.

Returns

route_to_agent_method(id, agent_method, params)

status_agents(session_user, params)

store_agent_config(session_user, params)

property vip_identity

class volttroncentral.platforms.Platforms(vc)
Bases: object

A class to manage the connections and interactions with external instances.

add_platform(vip_identity)
Add a platform based upon the vip_identity to the “known list” of platforms.

Parameters vip_identity –
Returns

disconnect_platform(vip_identity)
Remove a platform based upon vip_identity from the “known list” of platforms.

2.59. VolttronCentral 623

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#object

VOLTTRON Documentation, Release 8.1.3

Parameters vip_identity –
Returns

get_performance_list(session_user, params)
Retrieve a list of all of the platforms stats available.

This function returns a list of platform status such as the following:

[
{

"topic": "datalogger/platforms/f6e675fb36989f97c3b0f25227aaf02e/
→˓status/cpu",

"last_published_utc": "2017-01-12T18:58:47.894296+00:00",
"points":
[

"times_percent/guest_nice",
"times_percent/system",
"percent",
"times_percent/irq",
"times_percent/steal",
"times_percent/user",
"times_percent/nice",
"times_percent/iowait",
"times_percent/idle",
"times_percent/guest",
"times_percent/softirq"

]
},

...
]

Parameters
• session_user –
• params –

Returns dictionary containing lookup topic and last publish time.

get_platform(platform_uuid, default=None)
Get a specific PlatformHandler associated with the passed address_hash. If the hash is not available then
the default parameter is returned.

Parameters
• address_hash – string associated with a specific platform
• default – a default to be returned if not in the collection.

Returns a PlatformHandler or default

get_platform_hashes()
Returns a list of all the address hashes that are currently registered with VC.

Returns list of str

get_platform_list(session_user, params)
Retrieve the platform list and respond in a manner that can be sent back to the web service.

The response will be formatted as follows:
[

{
“health”: { “status”: “GOOD”, “last_updated”: “2017-02-24T19:18:52.723445+00:00”,

“context”: “Platform here!”
}, “name”: “tcp://127.0.0.1:22916”, “uuid”: “vcp-f6e675fb36989f97c3b0f25227aaf02e”

}
]

624 Chapter 2. Features

tcp://127.0.0.1:22916

VOLTTRON Documentation, Release 8.1.3

Parameters
• session_user –
• params –

Returns A list of dictionaries each representing a platform.

get_platform_vip_identities()
Get the “known list” of connected vcp platforms. This returns a set of keys that are available.

Returns

is_registered(platform_uuid)
Returns true if the platform is currently known.

Return type Boolean
Returns Whether the platform is known or not.

register_platform(address, address_type, serverkey=None, display_name=None)
DEPRECATED VOLTTRON 7.0 Allows an volttron central platform (vcp) to register with vc. Note that
if the address has already been used then the same PlatformHandler object reference will be returned to
the caller.

Parameters
• address – An address or resolvable domain name with port.
• address_type – A string consisting of ipc or tcp.

Param serverkey: str: The router publickey for the vcp attempting to register.
Param display_name: str: The name to be shown in volttron central.
Returns platform_hash and platform object as a tuple.

property vc

volttroncentral.sessions module

class volttroncentral.sessions.SessionHandler(authenticator)
Bases: object

A handler for dealing with authentication of sessions

The SessionHandler requires an authenticator to be handed in to this object in order to authenticate user. The
authenticator must implement an interface that expects a method called authenticate with parameters username
and password. The return value must be either a list of groups the user belongs two or None.

If successful then the a session token is generated and added to a cache of validated users to be able to be
checked against. The user’s ip address is stored with the token for further checking of authentication.

authenticate(username, password, ip)
Authenticates a user with the authenticator.

This is the main login function for the system.

check_session(token, ip)
Check if a user token has been authenticated.
@return: A users session information or False.

clear()

2.59. VolttronCentral 625

https://docs.python.org/3.6/library/functions.html#object

VOLTTRON Documentation, Release 8.1.3

2.59.3 VOLTTRON Central Agent

The VOLTTRON Central agent allows the control of remote VOLTTRON platforms through the registered platform
agents. The registration of platforms can be initiated from a remote platform agent. Once a platform agent is registered
the allowed operations are start, stop, install, and run methods on the registered platform's agents.

2.59.4 Configuration

The agentid does not have to be unique. It is what will be used as a human readable name on volttron central. If it is
not set the default 'volttron central' will be used. The default config file is pasted below. in the following.

By default the webroot will be relative to the installation directory
of the agent when it is installed. One can override this by specifying
the root directory here.
"webroot": "path/to/webroot",

2.59.5 Security Considerations

When deploying any web agent, including VOLTTRON Central, it is important to consider security. Please refer to
the documentation for Security Considerations of Deployment. In particular, it would be recommended to consider the
use of a reverse proxy.

2.60 VolttronCentralPlatform

2.60.1 vcplatform package

vcplatform.agent module

vcplatform.vcconnection module

class vcplatform.vcconnection.VCConnection(**kwargs)
Bases: volttron.platform.vip.agent.Agent

This agent will connect to an instance with volttron.central agent connected to it. The volttron.central agent will
use this agent to communicate with the platform.agent(vcp) running on the current instance of the platform.

agent_status(agent_uuid)
Retrieves the status of a particular agent executing on the vcp instance. The agent does not have to be
executing in order to receive it’s status.

Parameters agent_uuid –
Returns

call(platform_method, *args, **kwargs)

delete_agent_config(agent_identity, config_name)
Deletes the configuration from the config store of the passed agent identity.

Parameters
• agent_identity –
• config_name –

Returns The stored configuration.

get_agent_config(agent_identity, config_name, raw=True)
Retrieve the configuration from the config store of the passed agent identity.

626 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Parameters
• agent_identity –
• config_name –
• raw –

Returns The stored configuration.

get_devices()
Retrieves configuration entries from the config store that begin with ‘devices’.

Returns dictionary of devices.

get_health()
Retrieve the health of the vcp agent.

Returns

get_instance_name()

get_instance_uuid()
Retrieve the instance uuid for the vcp agent’s instance.

Returns

get_vip_addresses()
Retrieves the vip addresses that were specified in the configuration file or via command line.

Returns

install_agent(local_wheel_file)
Installs :param local_wheel_file: :return:

is_connected()

is_peer_connected(peer='volttron.central')

kill()
Dummy method to use install_agent_vctl

list_agent_configs(agent_identity)
List the agent configuration files stored on the volttron instance associated with this agent.

Parameters agent_identity – Agent identity to retrieve configuration from.
Returns A list of the configuration names.

list_agents()
Calls list_agents method on the vcp main agent instance.

Note: This method only valid for installed agents not dynamic agents.

Returns

publish_bacnet_props(proxy_identity, publish_topic, address, device_id, filter=[])

publish_to_vc(topic, message=None, headers={})
This method allows the main_agent to publish a message up to the volttron.central instance.

Parameters
• topic –
• message –
• headers –

restart(agent_uuid)
Performs the stop and start operations on the vcp instance for an agent.

Parameters agent_uuid –
Returns

2.60. VolttronCentralPlatform 627

VOLTTRON Documentation, Release 8.1.3

restart_agent(agent_uuid)
Calls restart method on the vcp main agent instance.

Note: This method only valid for installed agents not dynamic agents.

Parameters agent_uuid –
Returns

route_to_agent_method(id, agent_method, params)
Calls a method on an installed agent running on the platform.

Note: This method only valid for installed agents not dynamic agents.

Parameters
• id –
• agent_method –
• params –

Returns

set_main_agent(main_agent)
The main agent is the VCP that is using this agent to connect to the remote volttron instance.

Parameters main_agent – the agent that instantiated this one.

start_agent(agent_uuid)
Start an agent that is already present on the vcp instance.

Parameters agent_uuid –
Returns

start_bacnet_scan(iam_topic, proxy_identity, low_device_id=None, high_device_id=None, tar-
get_address=None, scan_length=5)

Starts a bacnet scan using the the named proxy_identity as the callee.
Parameters

• iam_topic –
• proxy_identity –
• low_device_id –
• high_device_id –
• target_address –
• scan_length –

Returns

status_agents()
Return all of the installed agents’ statuses for the vcp instance.

Returns

stop_agent(agent_uuid)
Stop an agent already running on the vcp instance.

Parameters agent_uuid –
Returns

store_agent_config(agent_identity, config_name, raw_contents, config_type='raw')
Store an agent configuration on the volttron instance associated with this agent.

Parameters
• agent_identity –
• config_name –
• raw_contents –
• config_type –

628 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Returns None

subscribe_to_vcp(prefix, prefix_on_vc)
Allows volttron.central to listen to the message bus on vcp instance.

Parameters
• prefix – The prefix to listen for.
• prefix_on_vc – The prefix to publish to on volttron central instance.

2.60.2 Volttron Central Platform (VCP)

The VCP exposes a VOLTTRON instance to a Volttron Central (VC) agent. The VC agent can either be on the same
or a different VOLTTRON instance. The VCP agent will, once authenticated (with the VC agent's instance), auto
connect to the VC agent's instance and register itself on startup. The VCP instance will attempt to reconnect to the
VC agent's instance if connection is disrupted. VCP has many configuration options available that can be set via the
configuration store and/or initial configuration file.

Publish Specifications

During connection to the VC agent's instance the instance-name from the VCP will be used to connect to the VC
agent's instance. It will have the form vcp-instancename with all invalid characters replaced with an underscore.
See volttron.platform.agent.util.normalize_identity()for how the instance name is normalized
into a identity.

FAQ / Notes

• VCP agent has an identity of 'platform.agent' this cannot be changed.

• There may only be a single agent connected to a VOLTTRON instances with the identiy of 'platform.agent'

• VCP will publish to VC under the topic platforms/vcp-(normalized instance name)/

• VC communicates through the vcplatform.vcconnection.VCConnection rpc methods.

• VCP uses the :pyvcplatform.vcconnection.VCConnection to connect with the VC agent's instance.

Configuration Options

The following JSON configuration file shows all the options currently supported by the VCP agent. By default an
empty config file is used.

{
The volttron-central-address, volttron-central-serverkey and
instance-name may be set in the VCP instance configuration file or
or as command line parameters to the VOLTTRON instance.
#
The volttron-central-address is either an http address or a tcp
address. If it is an http address vc must be running at the resolution
of http://ip:port/discovery/. VCP will use the tcp address and
serverkey in the response payload to connect to the VC agent instance.
#
If the specified address is a tcp address then the configuration
must also contain a volttron-central-serverkey.
"volttron-central-address": "http://ip<host>:port" or "tcp://ip:port",

(continues on next page)

2.60. VolttronCentralPlatform 629

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

The serverkey of the VC agent's instance.
"volttron-central-serverkey" "VC agent's instance serverkey",

interval at which VCP will attempt to connect to the VC agent's
instance when a disconnection occurs.
"volttron-central-reconnect-interval": 5,

The name of instance to be sent to volttron central for displaying
on the interface.
"instance-name": "name of instances (VC agent's instance ip address as default)",

VCP will publish health statistics of the instance at a specified
interval.
"stats-publish-interval": 30,

The VCP provides a topic/replace mapping for the platform. It is
available via rpc function so that sensitive information won't be
published through forwarding.
#
The topic-replace-map is used to search/replace all of the topics
published from ForwardHistorians and other agents that connect with
external instances.
"topic-replace-map": {

"from": "to",
"from1": "to1"

}
}

2.61 WeatherDotGov

2.61.1 weatherdotgov package

weatherdotgov.agent module

class weatherdotgov.agent.WeatherDotGovAgent(**kwargs)
Bases: volttron.platform.agent.base_weather.BaseWeatherAgent

Concrete implementation of the base weather agent for querying the NOAA/weather.gov weather api.

static generate_response_error(url, response_code)
raises a descriptive runtime error based on the response code returned by a service. :param url: actual
url used for requesting data from weather.gov :param response_code: Http response code returned by a
service following a request

get_api_description(service_name)
Provides the api description string for a given api service. Primarily used during concrete agent startup.
:param service_name: name of the api service :return: string describing the function of the api endpoint,
along with rpc call usage for the weather agent.

static get_gridpoints_str(location_dict)
Converts a location dictionary using gridpoints format into string format to be used in a request url.
:param location_dict: location dictionary for the upcoming request. Expects gridpoint format :return: url
formatted location string

630 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

static get_lat_long_str(location_dict)
Converts a location dictionary using lat/long format into string format to be used in a request url. :param
location_dict: location dictionary for the upcoming request. Expects lat/long :return: url formatted loca-
tion string

get_location_string(location)
Generic conversion of location dictionary into corresponding string format for request url. :param lo-
cation: location dictionary formatted as for a specific request. :return: string representation of location
dictionary for request url.

get_point_name_defs_file()
Constructs the point name mapping dict from the mapping csv. :return: dictionary containing a mapping
of service point names to standard point names with optional

static get_station_str(location_dict)
Converts a location dictionary using station format into string format to be used in a request url. :param
location_dict: location dictionary for the upcoming request. Expects station id :return: url formatted
location string

get_update_interval(service_name)
Get the timedelta between api service updates. :param service_name: name of service stored in
api_services :return: datetime.timedelta object representing the time between the api’s service updates

query_current_weather(location)
Abstract method for sending/receiving requests for current weather data from an api service :param loca-
tion: location for which to query the remote api :return: dictionary containing a single record of current
weather data

query_forecast_service(service, location, quantity, forecast_start)
Queries a remote api service. Available services are determined per weather agent implementation :param
service: The desired service end point to query :param location: The desired location for retrieval of
weather records :param quantity: number of records to fetch from the service :param forecast_start: fore-
cast results that are prior to this

timestamp will be filtered by base weather agent

Returns A list of time series forecast records to be processed and

stored

query_hourly_forecast(location)
Abstract method for sending/receiving requests for forecast weather data from an api service :param
location: location for which to query the remote api :return: list of dictionaries containing weather data
corresponding to forecast timestamp

query_hourly_historical(location, start_date, end_date)
Unimplemented method stub :param location: no format currently determined for history. :param
start_date: Starting date for historical weather period. :param end_date: Ending date for historical weather
period. :return: NotImplementedError

validate_location(service_name, location)
Intermediate method for validating location dicts passed by rpc calls. Validity depends on the service be-
ing requested. :param service_name: name of the api service which the location dictionary is intended to
be used for. :param location: location dictionary to validate for the api service :return: boolean indicating
whether the location/service combination is valid for the weather api.

validate_location_formats(accepted_formats, location)
Regular expression comparision to validate the various location dictionary formats :param ac-
cepted_formats: string representations of the acceptable location formats for an api service :param lo-
cation: location dictionary to validate for the api service :return: boolean representing the validity of the
location

2.61. WeatherDotGov 631

VOLTTRON Documentation, Release 8.1.3

weatherdotgov.agent.main()
” Main entry point for the agent.

weatherdotgov.agent.weather_agent(config_path, **kwargs)
Used for instantiating the WeatherDotGov agent. :param config_path: string formatted file path to use for
configuring the agent. :param kwargs: keyword arguments passed during instantiation. :return: an instance of
the WeatherDotGov Agent

2.61.2 WeatherDotgov Agent

This agent provides the ability to query for current and forecast weather data from NOAA. The agent extends
BaseWeatherAgent that provides caching of recently requested data, as well as mapping of weather point names
from NOAA's naming scheme to the standardized CF-conventions scheme.

Requirements

The WeatherDotgov agent requires the Pint package. This package can be installed in an activated environment with:

pip install pint

Configuration

The following is an example configuration for the Weather.gov agent. All configuration parameters are optional.

Parameters

1. "database_file" - sqlite database file for weather data caching. Defaults to "weather.sqlite" in the agent's data
directory

2. "max_size_gb" - maximum size of cache database. When cache exceeds this size, data will get purged from
cache until the cache is within the configured size.

3. "poll_locations" - list of locations to periodically poll for current data

4. "poll_interval" - polling frequency or the number of seconds between each poll.

{
"database_file": "weather.sqlite",
"max_size_gb": 1,
"poll_locations": [{"station": "KLAX"}, {"station": "KPHX"}],
"poll_interval": 60

}

2.61.3 Registry Configuration

The registry configuration file for this agent can be found in agent's data directory. This configuration provides the
point name mapping from NOAA's point scheme to the CF-conventions scheme by default. The file leaves the unit
name columns for each point blank, as this agent does not include unit conversion. Points that do not specify 'Stan-
dard_Point_Name' were found to not have a logical match to any point found in the CF-Conventions. For these points
NOAA point names (Service_Point_Name) will be used.

632 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Notes

The WeatherDotGov agent does not utilize an API key, as NOAA allows users to gather weather data for free, and
does not provide nor require keys.

This implementation of the weather agent does not include historical weather data, as NOAA does not provide an
accessible endpoint from which historical data may be obtained.

Data provided by NOAA is in a nested dictionary format. The base weather agent does not handle unit conversion for
arbitrary nested dictionary format and hence this agent does not support unit conversion at this time.

2.62 AgentWatcher

2.62.1 watcher package

watcher.agent module

class watcher.agent.AgentWatcher(config_path, **kwargs)
Bases: volttron.platform.vip.agent.Agent

onstart(sender, **kwargs)

watch_agents()

watcher.agent.main()

2.62.2 Agent Watcher

The Agent Watcher is used to monitor agents running on a VOLTTRON instance. Specifically it monitors whether a
set of VIP identities (peers) are connected to the instance. If any of the peers in the set are not present then an alert
will be sent.

Configuration

The agent has two configuration values:

• watchlist: a list of VIP identities to watch on the platform instance

• check-period: interval in seconds between the agent watcher checking the platform peerlist and publishing alerts

{
"watchlist": [

"platform.driver",
"platform.actuator"

],
"check-period": 10

}

2.62. AgentWatcher 633

VOLTTRON Documentation, Release 8.1.3

Example Publish

The following is an example publish from a platform with an instance of the Platform Driver installed but not running.

Peer: pubsub
Sender: watcheragent-0.1_1
Bus:
Topic: alerts/AgentWatcher/james_watcheragent-0_1_1
Headers: {'alert_key': 'AgentWatcher', 'min_compatible_version': '3.0', 'max_
→˓compatible_version': ''}
Message: ('{"status": "BAD", "context": "Agent(s) expected but but not running '

'[\'platform.driver\']", "last_updated": "2021-01-25T23:25:43.065109+00:00
→˓"}')

2.63 EmailerAgent

2.63.1 emailer package

emailer.agent module

class emailer.agent.EmailerAgent(config_path, **kwargs)
Bases: volttron.platform.vip.agent.Agent

configure_main(config_name, action, contents)
The main configuration callback.

Parameters
• config_name –
• action –
• contents –

on_alert_message(peer, sender, bus, topic, headers, message)
Callback for alert messages that come into the platform.

Parameters
• peer –
• sender –
• bus –
• topic –
• headers –
• message –

on_email_message(peer, sender, bus, topic, headers, message)
Callback used for sending email messages through the pubsub bus.

Either the from_address and to_addresses can be ommitted if they are specified in the configuration
store/file. If they are to be used the following block shows the format for usage.

{
"from-address": 'foo@bar.com',
"to-addresses": ['alpha.beta@fo.com', 'bob-and-joe@bim.com']

}

** In the above code to-addresses can be a singe email address as well**

The message must be a dictionary containing a subject and a message. In addition, an optional to-
addresses entry can be added for sending to a specific group of users.

634 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

{
"subject": "I am a happy camper",
"message": "This is a big long string message that I am sending"
-- OPTIONAL --
"to-addresses": ['yabba@daba.com']

}

Parameters
• peer –
• sender –
• bus –
• topic –
• headers –
• message –

send_email(from_address, to_addresses, subject, message)
RPC Method allowing a platform to send an email address.

One can also send an email through the pubsub mechanism.
Parameters

• from_address –
• to_addresses –
• subject –
• message –

emailer.agent.main(argv=['/home/docs/checkouts/readthedocs.org/user_builds/volttron/envs/releases-
8.x/lib/python3.6/site-packages/sphinx/__main__.py', '-b', 'latex', '-D', 'lan-
guage=en', '-d', '_build/doctrees', '.', '_build/latex'])

Main method called by the aip.

2.63.2 Emailer

The Emailer agent allows an instance of the VOLTTRON platform to send email. When used in combination with the
Alert agent, alerts from unpublished configured devices will automatically be sent. In addition, agents are able to send
emails directly through the pub/sub interface.

Agents needing to send an email through the instance can do so by sending the following header and message to the
platform/send_email topic which is monitored by the Emailer agent. The following is the expected payload
for the message body and the optional header.

Optional Headers

Emails by default will be sent to the initial configured email addresses. The below headers will overwrite those
properties for the current email being sent.

{
"from-address": 'foo@bar.com',
"to-addresses": ['alpha.beta@foo.com', 'bob-and-joe@bar.com']

}

2.63. EmailerAgent 635

VOLTTRON Documentation, Release 8.1.3

Required Message Body

{
"subject": "I am a happy camper",
"message": "This is a big long string message that I am sending"

}

Example Sending of Email

headers = {
"from-address": 'foo@bar.com',
"to-addresses": ['alpha.beta@foo.com', 'bob-and-joe@bar.com']

}

message = {
"subject": "I am a happy camper",
"message": "This is a big long string message that I am sending"

}

self.vip.pubsub.publish('pubsub', topic='platform/send_email',
headers=headers, message=message)

Configuration Options

The following JSON configuration file shows all the options currently supported by the Forward Historian agent.

{
The smtp-address (Simple Mail Transfer Protocol) to ship the email
from (the "from-address" to each of the recipients).
"smtp-address": "smtp.example.com",

The smtp-username is to provide the username of the SMTP server
which is being used for sending the messages.
"smtp-username":"<smtp-username>",

The smtp-password is to provide the password of the SMTP server
corresponding to the username which is being used for sending the messages.
"smtp-password":"<smtp-password>",

The smtp-port is to provide the port of the SMTP server.
"smtp-port":"<smtp-port>",

The smtp-tls yes or no if we want to use TLS.
"smtp-tls":<true/false>,

The sending address of the email. This value will be listed in the
FROM attributed of the message envelop. It will also be show in the
reply of the message when a recipient chooses reply from their
email client.
"from-address": "no-reply@example.com",

A list of default email addresses for sending alerts to. Each
address will be sent a copy of the email as if from a mailing list.
"to-addresses": [

(continues on next page)

636 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

"admin1@example.com"
],

When an alert is sent typically it can have the effect of being
sent many times. This setting throttles the sending of email only
after a specific number of minutes.
#
DEFAULT: "allow-frequency-minutes": 60
"allow-frequency-minutes": 120

}

2.64 FileWatchPublisher

2.64.1 filewatchpublisher package

filewatchpublisher.agent module

class filewatchpublisher.agent.FileWatchPublisher(config, **kwargs)
Bases: volttron.platform.vip.agent.Agent

Monitors files from configuration for changes and publishes added lines on corresponding topics. Ignores if a
file does not exist and move to next file in configuration with an error message. Exists if all files does not exist.
:param config: Configuration dict :type config: dict

Example configuration:

{
"publish_file": [

{
"file": "/var/log/syslog",
"topic": "platform/syslog",

},
{

"file": "/home/volttron/tempfile.txt",
"topic": "temp/filepublisher",

}
]

}

get_end_position(f)

publish_file(line, topic)

read_file(file)

starting(sender, **kwargs)

filewatchpublisher.agent.file_watch_publisher(config_path, **kwargs)
Load the FileWatchPublisher agent configuration and returns and instance of the agent created using that con-
figuration. :param config_path: Path to a configuration file. :type config_path: str :returns: FileWatchPublisher
agent instance :rtype: FileWatchPublisher agent

filewatchpublisher.agent.main(argv=['/home/docs/checkouts/readthedocs.org/user_builds/volttron/envs/releases-
8.x/lib/python3.6/site-packages/sphinx/__main__.py', '-b', 'latex',
'-D', 'language=en', '-d', '_build/doctrees', '.', '_build/latex'])

Main method called by the platform.

2.64. FileWatchPublisher 637

VOLTTRON Documentation, Release 8.1.3

2.64.2 File Watch Publisher Agent

The File Watch Publisher agent watches files listed in its configuration for changes. The agent will detect changes to
those files and publish those changes line-by-line on the topic the user has associated with the file in the configuration.

The user should be careful about what files are being watched, and which historians are being used with the File Watch
Publisher. Very long lines being output in individual messages on the message bus can result in some performance
degradation. Some configurations of the File Watch Publisher can affect the system (such as using I/O resources when
a fast-moving log is being captured in a SQLite Historian), so the user should be intentional about which files the agent
is configured to watch and the topics used for publishes.

Example Usage

The user wants to record logging information from the “myservice” service into a historian agent.

The user can configure the File Watch Publisher to point at the “myservice.log” file with a corresponding “record” topic
- for example “record/myservice/logs”. As “myservice” adds logging entries to its log file, the File Watch Publisher
will capture each new log message and publish it to the “record/myservice/logs” topics on the message bus.

Below is a File Watch Publisher example configuration to match the above scenario.

Configuration

{
"files": [

{
"file": "/opt/myservice/logs/myservice.log",
"topic": "record/myservice/logs"

}
]

}

Example Publish

The following is an example publish by the File Watch Publisher installed with the above configuration.

Peer: pubsub
Sender: platform.filewatchpublisher1
Bus:
Topic: record/myservice/logs
Headers: {'min_compatible_version': '3.0', 'max_compatible_version': ''}
Message: {'line': 'test text', 'timestamp': '2021-01-25T22:54:43.474352Z'}

638 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

2.65 LogStatisticsAgent

2.65.1 logstatisticsagent package

logstatisticsagent.agent module

class logstatisticsagent.agent.LogStatisticsAgent(config, **kwargs)
Bases: volttron.platform.vip.agent.Agent

LogStatisticsAgent reads volttron.log file size every hour, compute the size delta from previous hour and publish
the difference with timestamp. It also publishes standard deviation every 24 hours. :param config: Configuration
dict :type config: dict Example configuration: .. code-block:: python

{ “file_path” : “/home/volttron/volttron.log”, “analysis_interval_sec” : 60, “publish_topic” : “plat-
form/log_statistics”, “historian_topic” : “analysis/log_statistics” }

get_file_size()

publish_analysis()
Publishes file’s size increment in previous time interval (60 minutes) with timestamp. Also publishes
standard deviation of file’s hourly size differences every 24 hour.

starting(sender, **kwargs)

logstatisticsagent.agent.log_statistics(config_path, **kwargs)
Load the LogStatisticsAgent agent configuration and returns and instance of the agent created using that con-
figuration. :param config_path: Path to a configuration file. :type config_path: str :returns: LogStatisticsAgent
agent instance :rtype: LogStatisticsAgent agent

logstatisticsagent.agent.main(argv=['/home/docs/checkouts/readthedocs.org/user_builds/volttron/envs/releases-
8.x/lib/python3.6/site-packages/sphinx/__main__.py', '-b', 'latex',
'-D', 'language=en', '-d', '_build/doctrees', '.', '_build/latex'])

Main method called by the platform.

2.65.2 Log Statistics Agent

The Log Statistics agent periodically reads the “volttron.log” file based on the configured interval, computes the
size delta from the previous hour and publishes the difference in bytes with a timestamp. It also publishes standard
deviation of the size delta every 24 hours. This agent can be useful for detecting unexpected changes to the system
which may be an indication of some sort of failure or breach.

Configuration

The Log Statistics agent has 4 required configuration values:

• file_path: This should be the path to the “volttron.log” file

• analysis_interval_secs: The interval in seconds between publishing the size delta statistic to the mes-
sage bus

• publish_topic: Can be used to specify a topic to publish log statistics to which does not get captured by
the historian framework (topics not prefixed by any of: “datalogger”, “record”, “analysis”, “devices”)

• historian_topic: Can be used to specify a topic to publish log statistics to which gets captured by the
historian framework (“datalogger”, “record”, “analysis”, “devices”)

The following is an example configuration file:

2.65. LogStatisticsAgent 639

VOLTTRON Documentation, Release 8.1.3

{
"file_path" : "~/volttron/volttron.log",
"analysis_interval_min" : 60,
"publish_topic" : "platform/log_statistics",
"historian_topic" : "record/log_statistics"

}

Periodic Publish

The Log Statistics agent will run statistics publishes automatically based on the configured intervals.

The following is an example of a periodic size delta publish:

Peer: pubsub
Sender: platform.logstatisticsagent1
Bus:
Topic: platform/log_statistics
Headers: {'min_compatible_version': '3.0', 'max_compatible_version': ''}
Message: {'log_size_delta': 902, 'timestamp': '2021-01-25T22:48:16.924135Z'}

2.66 SysMonAgent

2.66.1 sysmon package

sysmon.agent module

class sysmon.agent.SysMonAgent(config, **kwargs)
Bases: volttron.platform.vip.agent.Agent

Monitor utilization of system resources (CPU, memory, disk)

The percent usage of each system resource can be queried via RPC and they are published periodically to
configured topics.

Parameters config (dict) – Configuration dict
Example configuration:

{
"base_topic": "datalogger/log/platform",
"cpu_check_interval": 5,
"memory_check_interval": 5,
"disk_check_interval": 5,
"disk_path": "/"

}

cpu_percent()
Return CPU usage percentage

disk_percent()
Return usage of disk mounted at configured path

memory_percent()
Return memory usage percentage

reconfigure(**kwargs)
Reconfigure the agent

640 Chapter 2. Features

https://docs.python.org/3.6/library/stdtypes.html#dict

VOLTTRON Documentation, Release 8.1.3

start(sender, **kwargs)
Set up periodic publishing of system resource data

sysmon.agent.main(argv=['/home/docs/checkouts/readthedocs.org/user_builds/volttron/envs/releases-
8.x/lib/python3.6/site-packages/sphinx/__main__.py', '-b', 'latex', '-D', 'lan-
guage=en', '-d', '_build/doctrees', '.', '_build/latex'])

Main method called by the platform.

sysmon.agent.sysmon_agent(config_path, **kwargs)
Load the SysMon Agent configuration and returns and instance of the agent created using that configuration.

Parameters config_path (str) – Path to a configuration file.
Returns SysMonAgent instance
Return type SysMonAgent

2.66.2 System Monitoring (SysMon) Agent

The System Monitoring Agent (colloquially “SysMon”) can be installed on the platform to monitor system resource
metrics, including percent CPU utilization, percent system memory (RAM) utilization, and percent storage (disk)
utilization based on disk path.

Configuration

The SysMon agent has 5 configuration values, all of which are optional:

• “base_topic”: Topic prefix used to publish all system metric points, is formatted with the metric function name
in publishes (i.e. “base/topic/prefix/cpu_percent”) - default “datalogger/log/platform”

• “cpu_check_interval”: Interval in seconds between publishes of % all core CPU utilization - default 5

• “memory_check_interval”: Interval in seconds between publishes of % system memory (RAM) utilization -
default 5

• “disk_check_interval”: Interval in seconds between publishes of % disk utilization for the configured disk -
default 5

• “disk_path”: Directory path used as the root directory for a mounted disk (Currently, the SysMon agent supports
collecting metrics for only 1 disk at a time) - default “/”

{
"base_topic": "datalogger/log/platform",
"cpu_check_interval": 5,
"memory_check_interval": 5,
"disk_check_interval": 5,
"disk_path": "/"

}

Periodic Publish

At the interval specified by the configuration option for each resource, the agent will automatically query the system for
the resource utilization statistics and publish it to the message bus using the topic as previously described. The message
content for each publish will contain only a single numeric value for that specific topic. Currently, “scrape_all” style
publishes are not supported.

The following are example publishes as captured by the Listener agent into the VOLTTRON log:

2.66. SysMonAgent 641

https://docs.python.org/3.6/library/stdtypes.html#str

VOLTTRON Documentation, Release 8.1.3

2020-03-10 11:20:33,755 (listeneragent-3.3 7993) listener.agent INFO: Peer: pubsub,
→˓Sender: platform.sysmon:, Bus: , Topic: datalogger/log/platform/cpu_percent,
→˓Headers: {'min_compatible_version': '3.0', 'max_compatible_version': ''}, Message:
4.8
2020-03-10 11:20:33,804 (listeneragent-3.3 7993) listener.agent INFO: Peer: pubsub,
→˓Sender: platform.sysmon:, Bus: , Topic: datalogger/log/platform/memory_percent,
→˓Headers: {'min_compatible_version': '3.0', 'max_compatible_version': ''}, Message:
35.6
2020-03-10 11:20:33,809 (listeneragent-3.3 7993) listener.agent INFO: Peer: pubsub,
→˓Sender: platform.sysmon:, Bus: , Topic: datalogger/log/platform/disk_percent,
→˓Headers: {'min_compatible_version': '3.0', 'max_compatible_version': ''}, Message:
65.6

JSON RPC Methods

• cpu_percent: Returns current % all core CPU utilization, takes no parameters

• memory_percent: Returns current % system memory (RAM) utilization, takes no parameters

• disk_percent: Returns current % disk (ROM) utilization for the configured disk, takes no parameters

2.67 ThresholdDetectionAgent

2.67.1 thresholddetection package

thresholddetection.agent module

class thresholddetection.agent.ThresholdDetectionAgent(config, **kwargs)
Bases: volttron.platform.vip.agent.Agent

Listen to topics and publish alerts when thresholds are passed.

The agent’s configuration specifies which topics to watch, the topic’s threshold, and the message to send in an
alert. Topics can specify a maximum and minimum threshold. Non-numberic data will be ignored.

Example configuration:

{
"datalogger/log/platfor/cpu_percent": {

"threshold_max": 99,
},
"some/temperature/topic": {

"threshold_min": 0,
},
"devices/some/device/topic/all": {

"some_point": {
"threshold_max": 42,
"threshold_min": 0

}
}

}

642 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

thresholddetection.agent.main(argv=['/home/docs/checkouts/readthedocs.org/user_builds/volttron/envs/releases-
8.x/lib/python3.6/site-packages/sphinx/__main__.py', '-b', 'latex',
'-D', 'language=en', '-d', '_build/doctrees', '.', '_build/latex'])

Main method called by the platform.

thresholddetection.agent.thresholddetection_agent(config_path, **kwargs)
Load configuration for ThresholdDetectionAgent

Parameters config_path (str) – Path to a configuration file.
Returns ThresholdDetectionAgent instance
Return type ThresholdDetectionAgent

2.67.2 Threshold Detection Agent

The ThresholdDetectionAgent will publish an alert when a value published to a topic exceeds or falls below a config-
ured value.

The agent subscribes to the topics listed in the configuration file and publishes alerts when the callback receives a
value for the point above the max (if configured) or below the min (if configured) corresponding to the point in the
configuration file.

Configuration

The Threshold Detection agent supports observing individual point values from their respective topics or from a
device’s all publish. Points to watch are configured as JSON key-value pairs as follows:

• Key: The key is the point topic for the point to watch, or the device’s “all” topic if watching points from the
all publish (i.e. “devices/campus/building/device/point” or “devices/campus/building/device/all” if using the all
topic)

• Value: Using point topic: JSON object specifying the min (‘threshold_min’) and max (‘threshold_max) thresh-
old values for the point. Only one of the thresholds are required, but both may be used.

Example:

{
"point0": {

"threshold_max": 10,
"threshold_min": 0

},
"point1": {

"threshold_max": 42
}

}

Using device “all” topic: JSON object with the key as the point name and value being the threshold object described
above

Example

{
"devices/some/device/all": {

"point0": {
"threshold_max": 10,
"threshold_min": 0

},
"point1": {

"threshold_max": 42
(continues on next page)

2.67. ThresholdDetectionAgent 643

https://docs.python.org/3.6/library/stdtypes.html#str

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

}
}

}

Example configuration:

{
"datalogger/log/platform/cpu_percent": {
"threshold_max": 99

},
"datalogger/log/platform/memory_percent": {
"threshold_max": 99

},
"datalogger/log/platform/disk_percent": {
"threshold_max": 97

},
"devices/campus/building/fake/all": {

"EKG_Sin": {
"threshold_max": 0.1,
"threshold_min": -0.1

}
}

}

Example Publish

This example publish uses the example config above along with a fake driver running on the platform.

Peer: pubsub
Sender: platform.thresholddetection
Bus:
Topic: alerts/ThresholdDetectionAgent/james_platform_thresholddetection
Headers: {'alert_key': 'devices/campus/building/fake/all', 'min_compatible_version':
→˓'3.0', 'max_compatible_version': ''}
Message: ('{"status": "BAD", "context": "devices/campus/building/fake/all(EKG_Sin) '

'value (-0.4999999999999997)is below acceptable limit (-0.1)", '
'"last_updated": "2021-01-25T22:39:35.035606+00:00"}')

2.68 TopicWatcher

2.68.1 topic_watcher package

topic_watcher.agent module

class topic_watcher.agent.AlertAgent(config_path, **kwargs)
Bases: volttron.platform.vip.agent.Agent

create_alert_group(group_name, config)

decrement_ttl()
Periodic call

Used to maintain the time since each topic’s last publish. Sends an alert if any topics are missing.

644 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

ignore_topic(group, topic)
RPC method

Remove a topic from agent’s watch list. Alerts will no longer be sent if a topic stops being published.
Parameters

• group (str) – Group that should ignore the topic.
• topic (str) – Topic to remove from the watch list.

onstart(sender, **kwargs)
Setup database tables for persistent logs

onstop(sender, **kwargs)

property remote_agent

reset_remote_agent()

watch_device(group, topic, timeout, points)
RPC method

Watch a device’s ALL topic and expect points. If the given group is new creates and starts an instance of
group agent for the new group. The group onstart will start watching for the given device points

Pararm group Group that should watch the device.
Parameters

• topic (str) – Topic expected to be published.
• timeout (int) – Seconds before an alert is sent.
• points ([str]) – Points to expect in the publish message.

watch_topic(group, topic, timeout)
RPC method

Listen for a topic to be published within a given number of seconds or send alerts. If the given group is
new creates and starts an instance of AlertGroup agent for the new group. The alert group agent, onstart,
will start watching for the given topics

Pararm group Group that should watch the topic.
Parameters

• topic (str) – Topic expected to be published.
• timeout (int) – Seconds before an alert is sent.

class topic_watcher.agent.AlertGroup(group_name, config, connection, main_agent, pub-
lish_local=True, publish_remote=False)

Bases: object

static get_topic_name(parts)
Return the input parameter if input parameter is a string. If input parameter is a tuple, expects an all topic
as the first list element and point name as the second element of the tuple. strips “all” from the end of
topic name and add the point name to it to get point topic string :param parts: topic name or (all topic,
point name) :type parts: str or list :return: topic string :rtype: str

ignore_topic(topic)
Remove a topic from the group watchlist

Parameters topic (str) – Topic to remove from the watch list.

log_time_up(up_time, log_topics)
Log into topic_log table when the alert agent found publishes to a topic after the last time it timed out.
:param up_time: Time when message was published to the topic. Note that this need not be the same as
the timestamp in message header which gets recorded in the historian. For example, when older device
scrapes are replayed. :param log_topics: The list of configured topics for which message was received.
Entries in this list can either be topic string or a tuple containing an all topic and a point name. :type
up_time: datetime :type log_topics: list

2.68. TopicWatcher 645

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/stdtypes.html#str

VOLTTRON Documentation, Release 8.1.3

log_timeout(log_topics)
logs into database the last time a topic was seen before a time out or current time if topic was never seen
from the time of alert agent start. :param log_topics: The list of configured topics for which message was
received. Entries in this list can either be topic string or a tuple containing an all topic and a point name.
:type log_topics: list

parse_config()

reset_time(peer, sender, bus, topic, headers, message)
Callback for topic subscriptions

Resets the timeout for topics and devices when publishes are received.

restart_timer()
Reset timer for all topics in this alert group. Should be called when a new topic is added to a currently
active alert group

send_alert(unseen_topics)
Send an alert for the group, summarizing missing topics.

Parameters unseen_topics (list) – List of topics that were expected but not received

watch_device(topic, timeout, points)
Watch a device’s ALL topic and expect points. This method calls the watch topic method so both methods
don’t need to be called.

Parameters
• topic (str) – Topic expected to be published.
• timeout (int) – Seconds before an alert is sent.
• points ([str]) – Points to expect in the publish message.

watch_topic(topic, timeout)
Listen for a topic to be published within a given number of seconds or send alerts.

Parameters
• topic (str) – Topic expected to be published.
• timeout (int) – Seconds before an alert is sent.

topic_watcher.agent.main()

2.68.2 Topic Watcher Agent

The Topic Watcher Agent listens to a set of configured topics and publishes an alert if they are not published within
some time limit. In addition to for individual messages or data points, the Topic Watcher Agent supports inspecting
device “all” topics. This can be useful when a device contains volatile points that may not be published.

Configuration

Topics are organized by groups in a JSON structure with the group’s identifier as the key. Any alerts raised will
summarize all missing topics in the group.

There are two configuration options for watching topics. For single message topics (such as a single device point),
configuration consists of a key value pair of the topic to its time limit.

{
"groupname: {

"devices/campus/building/point": 10
}

}

646 Chapter 2. Features

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int

VOLTTRON Documentation, Release 8.1.3

For points published in an “all” style publish, configuration consts of a key mapping to an object as follows: A
seconds key for the time limit in seconds, and a points key consisting of a list of individual points in the all
publish.

The following is an example “all” publish configuration which configures the Topic Watcher to check for the
temperature and PowerState points which are expected to be inside the “all” publishes.

{
"groupname": {

"devices/fakedriver1/all": {
"seconds": 10,
"points": ["temperature", "PowerState"]

}
}

}

It is possible to configure the Topic Watcher to handle both “all” topics and single point topics for the same group:

{
"groupname": {

"devices/fakedriver0/all": 10,
"devices/fakedriver1/all": {

"seconds": 10,
"points": ["temperature", "PowerState"]

}
}

}

Example Publish

The following is an example publish from the Topic Watcher Agent using the above configuration.

Peer: pubsub
Sender: platform.topic_watcher
Bus:
Topic: alerts/AlertAgent/james_platform_topic_watcher
Headers: {'alert_key': 'AlertAgent Timeout for group group1', 'min_compatible_version
→˓': '3.0', 'max_compatible_version': ''}
Message: ('{"status": "BAD", "context": "Topic(s) not published within time limit: '

'[\'devices/fakedriver0/all\']", "last_updated": '
'"2021-01-25T23:10:07.905633+00:00"}')

2.69 VOLTTRON Releases

This section includes individual documents describing important changes to platform components. For information on
specific release, please refer to the corresponding document.

2.69. VOLTTRON Releases 647

VOLTTRON Documentation, Release 8.1.3

2.69.1 Release History

VOLTTRON Release Documentation for version 5.1.0 and above is found on GitHub. https://github.com/
VOLTTRON/volttron/releases

VOLTTRON 8.1.1 Maintenance Release

https://github.com/VOLTTRON/volttron/releases/tag/8.1.1

VOLTTRON 8.1 Release

https://github.com/VOLTTRON/volttron/releases/tag/8.1

VOLTTRON 8.0 Full Release

https://github.com/VOLTTRON/volttron/releases/tag/8.0.0

VOLTTRON 7.0.1 Update

https://github.com/VOLTTRON/volttron/releases/tag/7.0.1

VOLTTRON 8.0 Release Candidate

https://github.com/VOLTTRON/volttron/releases/tag/8.0rc1

VOLTTRON 7.0 Release

https://github.com/VOLTTRON/volttron/releases/tag/7.0

VOLTTRON 7.0 Release Candidate

https://github.com/VOLTTRON/volttron/releases/tag/7.0rc1

VOLTTRON 6.0 Release

https://github.com/VOLTTRON/volttron/releases/tag/6.0

VOLTTRON 6.0 Release Candidate

https://github.com/VOLTTRON/volttron/releases/tag/6.0rc1

648 Chapter 2. Features

https://github.com/VOLTTRON/volttron/releases
https://github.com/VOLTTRON/volttron/releases
https://github.com/VOLTTRON/volttron/releases/tag/8.1.1
https://github.com/VOLTTRON/volttron/releases/tag/8.1
https://github.com/VOLTTRON/volttron/releases/tag/8.0.0
https://github.com/VOLTTRON/volttron/releases/tag/7.0.1
https://github.com/VOLTTRON/volttron/releases/tag/8.0rc1
https://github.com/VOLTTRON/volttron/releases/tag/7.0
https://github.com/VOLTTRON/volttron/releases/tag/7.0rc1
https://github.com/VOLTTRON/volttron/releases/tag/6.0
https://github.com/VOLTTRON/volttron/releases/tag/6.0rc1

VOLTTRON Documentation, Release 8.1.3

VOLTTRON 5.1.0 Release

https://github.com/VOLTTRON/volttron/releases/tag/5.1.0

VOLTTRON 5.0 Release

• Tagging service for attaching metadata to topics for simpler retrieval

• Message bus performance improvement

• Multi-platform publish/subscribe for simpler coordination across platforms

• Drivers contributed back for SEP 2.0 and ChargePoint EV

VOLTTRON 4.0 Release

• Documentation moved to ReadTheDocs

• VOLTTRON Configuration Wizard

• Configuration store to dynamically configure agents

• Aggregator agent for aggregating topics

• More reliable remote install mechanism

• UI for device configuration

• Automatic registration of VOLTTRON instances with management agent

VOLTTRON 3.0 Release

• Modularize Data Historian

• Modularize Device Drivers

• Secure and accountable communication using the VIP

• Web Console for Monitoring and Administering VOLTTRON Deployments

VOLTTRON 2.0 Release

• Advanced Security Features

• Guaranteed resource allocation to agents using execution contracts

• Signing and verification of agent packaging

• Agent mobility

• Admin can send agents to another platform

• Agent can request to move

• Enhanced command framework

2.69. VOLTTRON Releases 649

https://github.com/VOLTTRON/volttron/releases/tag/5.1.0

VOLTTRON Documentation, Release 8.1.3

VOLTTRON 1.0 – 1.2

• Agent execution platform

• Message bus

• Modbus and BACnet drivers

• Historian

• Data logger

• Device scheduling

• Device actuation

• Multi-node communication

• Weather service

2.69.2 Upgrading Existing Deployments

It is often recommended that users upgrade to the latest stable release of VOLTTRON for their deployments. Major
releases include helpful new features, bug fixes, and other improvements. Please see the guides below for upgrading
your existing deployment to the latest version.

VOLTTRON 8

VOLTTRON 8 introduces three changes that require an explict upgrade step when upgrading from a earlier VOLT-
TRON version

1. Dynamic RPC authorization feature - This requires a modification to the auth file. If you have a pre-existing
instance of VOLTTRON running on an older version, the auth file will need to be updated.

2. Historian agents now store the cache database (backup.sqlite file) in <volttron home>/agents/<agent
uuid>/<agentname-version>/<agentname-version>.agent-data directory instead of <volttron
home>/agents/<agent uuid>/<agentname-version> directory. In future all core agents will write data
only to the <agentname-version>.agent-data subdirectory. This is because vctl install –force backs up and
restores only the contents of this directory.

3. SQLHistorians (historian version 4.0.0 and above) now use a new database schema where metadata is stored
in topics table instead of separate metadata table. SQLHistorians with version >= 4.0.0 can work with existing
database with older schema however the historian agent code should be upgraded to newer version (>=4.0.0) to
run with VOLTTRON 8 core.

To upgrade:

1. If upgrading historian, make sure historians are not in auto start mode. To remove any historian from auto start
mode use the command ‘vctl disable <uuid of historian that is currently enabled>. This is necessary so that the
old sqlhistorian does not automatically start after step 5.

2. Update volttron source code version to VOLTTRON 8

3. activate the volttron environment, and run `python bootstrap.py --force`. If you have any addi-
tional bootstrap options that you need (rabbitmq, web, drivers, etc.) include these in the above command.

4. Run `volttron-upgrade` to update the auth file and move historian cache files into agent-data directory.
Note that the upgrade script will only move the backup.sqlite file and will not move sqlite historian’s db file
if they are within the install directory. If using a SQLite historian, please backup the database file of sqlite
historian before upgrading to the latest historian version.

650 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

5. Start VOLTTRON

6. Run `vctl install --force --vip-identity <vip id of existing historian>
--agent-config <config>` to upgrade to the latest historian version. vctl install –force will backup the
cache in <agent-version>.agent-data folder, installs the latest version of the historian and restore the contents of
<agent-version>.agent-data folder.

Upgrading aggregate historians

VOLTTRON 8 also comes with updated SQL aggregate historian schema. However, there is no automated upgrade
path for aggregate historian. To upgrade an existing aggregate historian please refer to the CHANGELOG.md within
SQLAggregateHistorian source directory

VOLTTRON 7

VOLTTRON 7 includes a migration from Python 2.7 to Python 3.6, as well as security features, new agents, and more.

From 6.x

From version 6.x to 7.x important changes have been made to the virtual environment as well as VOLTTRON_HOME.
Take the following steps to upgrade:

Note: The following instructions are for debian based Linux distributions (including Ubuntu and Linux Mint). For
Red Hat, Arch or other distributions, please use the corresponding package manager and commands.

1. Install the VOLTTRON dependencies using the following command:

sudo apt install python3-dev python3-venv libffi-dev

Note: This assumes you have existing 6.x dependencies installed. If you’re unsure, refer to the platform
installation instructions.

2. Remove your existing virtual environment and run the bootstrap process.

To remove the virtual environment, change directory to the VOLTTRON project root and run the rm command
with the -r option.

cd $VOLTTRON_ROOT/
rm -r env

Now you can use the included bootstrap.py script to set up the new virtual environment. For information on
how to install dependencies for VOLTTRON integrations, run the script with the --help option.

python3 bootstrap.py <options>

Note: Because the new environment uses a different version of Python, using the --force option with
bootstrap will throw errors. Please follow the above instructions when upgrading.

2.69. VOLTTRON Releases 651

VOLTTRON Documentation, Release 8.1.3

3. Make necessary VOLTTRON_HOME changes

Warning: It is possible that some existing agents may continue to operate after the platform upgrade,
however this is not true for most agents, and it is recommended to reinstall the agent to ensure the agent
wheel is compatible and that there are no side-effects.

A. Reinstall Agents

It is recommended to reinstall all agents that exist on the platform to ensure the agent wheel is compatible with
Python3 VOLTTRON. In many cases, the configurations for version 7.x are backwards compatible with 6.x,
requiring no additional changes from the user. For information on individual agent configs, please read through
that agent’s documentation.

B. Modify Agent Directories

Note: Modifying the agent directories is only necessary if not reinstalling agents.

To satisfy the security requirements of the secure agents feature included with VOLTTRON 7, changes have
been made to the agent directory structure.

1. Keystore.json

The agent keystore file has been moved from the agent’s agent-data directory to the agent’s dist-
info directory. To move the file, change directory to the agents install directory and use the mv
command.

cd $VOLTTRON_HOME/agents/<agent uuid>/<agent dir>
mv <agent>agent.agent-data/keystore.json <agent>agent.dist-info/

2. Historian Database

Historians with a local database file have had their default location change do the data direc-
tory inside of the agent’s install directory. It is recommended to relocate the file from $VOLT-
TRON_HOME/data to the agent’s data directory. Alternatively, a path can be used if the user the
agent is run as (the VOLTTRON user for deployments not using the secure agents feature) has
read-write permissions for the file.

mv $VOLTTRON_HOME/data/historian.sqlite $VOLTTRON_HOME/agents/<agent
→˓uuid>/<agent>/data

Warning: If not specifying a path to the database, the database will be created in the agent’s
data directory. This is important if removing or uninstalling the historian as the database file will
be removed when the agent dir is cleaned up. Copy the database file to a temporary directory,
reinstall the agent, and move the database file back to the agent’s data directory

4. Forward Historian

For deployments which are passing data from 6.x VOLTTRON to the latest 7.x release, some users will ex-
perience timeout issues with the Forward Historian. By updating the 6.x deployment to the latest from the
releases/6.x branch, and restarting the platform and forwarder, this issue can be resolved.

. env/bin/activate

./stop-volttron

(continues on next page)

652 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

git pull
git checkout releases/6.x
./start-volttron
vctl start <forward id or tag>

2.70 Troubleshooting

This section contains individual documents intended to help the user troubleshoot various platform components. For
troubleshooting of individual agents and drivers please refer to the corresponding document for each.

2.70.1 RabbitMQ Troubleshooting

Check the status of the federation connection

$RABBITMQ_HOME/sbin/rabbitmqctl eval 'rabbit_federation_status:status().'

If everything is properly configured, then the status is set to running. If not look for the error status. Some of the
typical errors are:

a. failed_to_connect_using_provided_uris - Check if RabbitMQ user is created in downstream server node. Re-
fer to step 3-b of federation setup

b. unknown ca - Check if the root CAs are copied to all the nodes correctly. Refer to step 2 of federation setup

c. no_suitable_auth_mechanism - Check if the AMPQ/S ports are correctly configured.

Check the status of the shovel connection

RABBITMQ_HOME/sbin/rabbitmqctl eval 'rabbit_shovel_status:status().'

If everything is properly configured, then the status is set to running. If not look for the error status. Some of the
typical errors are:

a. failed_to_connect_using_provided_uris - Check if RabbitMQ user is created in subscriber node. Refer to step
3-b of shovel setup

b. unknown ca - Check if the root CAs are copied to remote servers correctly. Refer to step 2 of shovel setup

c. no_suitable_auth_mechanism - Check if the AMPQ/S ports are correctly configured.

Check the RabbitMQ logs for any errors

tail -f <volttron source dir>/rabbitmq.log

2.70. Troubleshooting 653

VOLTTRON Documentation, Release 8.1.3

Rabbitmq startup hangs

a. Check for errors in the RabbitMQ log. There is a rabbitmq.log file in your VOLTTRON source directory that is
a symbolic link to the RabbitMQ server logs.

b. Check for errors in syslog (/var/log/syslog or /var/log/messages)

c. If there are no errors in either of the logs, restart the RabbitMQ server in foreground and see if there are any
errors written on the console. Once you find the error you can kill the process by entering Ctl+C, fix the error
and start rabbitmq again using ./start-rabbitmq from VOLTTRON source directory.

./stop-volttron

./stop-rabbitmq
@RABBITMQ_HOME/sbin/rabbitmq-server

SSL trouble shooting

There are few things that are essential for SSL certificates to work right.

a. Please use a unique common-name for CA certificate for each VOLTTRON instance. This is configured under
certificate-data in the rabbitmq_config.yml or if no yml file is used while configuring a VOLTTRON single
instance (using vcfg rabbitmq single). Certificate generated for agent will automatically get agent’s
VIP identity as the certificate’s common-name

b. The host name in the SSL certificate should match hostname used to access the server. For example, if the fully
qualified domain name was configured in the certificate-data, you should use the fully qualified domain name
to access RabbitMQ’s management url.

c. Check if your system time is correct especially if you are running virtual machines. If the system clock is not
right, it could lead to SSL certificate errors

DataMover troubleshooting

If output from volttron.log is not as expected check for {'alert_key': 'historian_not_publishing'}
in the callee node’s volttron.log. Most likely cause is the historian is not running properly or credentials between caller
and callee nodes was not set properly.

2.71 Applications

These resources summarize the use of the sample applications that have been created by VOLTTRON users. For
detailed information on these applications, refer to the report Transactional Network Platform.

Note, as of VOLTTRON 4.0, applications are now in their own repository at: https://github.com/VOLTTRON/
volttron-applications

654 Chapter 2. Features

http://www.pnl.gov/main/publications/external/technical_reports/PNNL-22941.pdf.
https://github.com/VOLTTRON/volttron-applications
https://github.com/VOLTTRON/volttron-applications

VOLTTRON Documentation, Release 8.1.3

2.71.1 Acquiring Third Party Agent Code

Add the volttron-applications repository under the volttron/applications directory by using following command:

git subtree add –prefix applications https://github.com/VOLTTRON/volttron-applications.git develop
–squash

Passive Automated Fault Detection and Diagnostic Agent

The Passive Automated Fault Detection and Diagnostic (Passive AFDD) agent is used to identify problems in the
operation and performance of air-handling units (AHUs) or packaged rooftop units (RTUs). Air-side economizers
modulate controllable dampers to use outside air to cool instead of (or to supplement) mechanical cooling, when
outdoor-air conditions are more favorable than the return-air conditions. Unfortunately, economizers often do not
work properly, leading to increased energy use rather than saving energy. Common problems include incorrect control
strategies, diverse types of damper linkage and actuator failures, and out-of-calibration sensors. These problems can
be detected using sensor data that is normally used to control the system.

The Passive AFDD requires the following data fields to perform the fault detection and diagnostics:

• Outside-air temperature

• Return-air temperature

• Mixed-air temperature

• Outside-air damper position/signal

• Supply fan status

• Mechanical cooling status

• Heating status.

The AFDD supports both real-time data via a Modbus or BACnet device, or input of data from a csv style text
document.

The following section describes how to configure the Passive AFDD agent, methods for data input (real-time data from
a device or historical data in a comma separated value formatted text file), and launching the Passive AFDD agent.

Note: A proactive version of the Passive AFDD exists as a PNNL application (AFDDAgent). This application requires
active control of the RTU for fault detection and diagnostics to occur. The Passive AFDD was created to allow more
users a chance to run diagnostics on their HVAC equipment without the need to actively modify the controls of the
system.

Configuring the Passive AFDD Agent

Before launching the Passive AFDD agent, several parameters require configuration. The AFDD utilizes the same
JSON style configuration file used by the Actuator, Listener, and Weather agents. The threshold parameters used for
the fault detection algorithms are pre-configured and will work well for most RTUs or AHUs. Figure 1 shows an
example configuration file for the AFDD agent.

The parameters boxed in black (in Figure 1) are the pre-configured fault detection thresholds; these do not require any
modification to run the Passive AFDD agent. The parameters in the example configuration that are boxed in red will
require user input. The following list describes each user configurable parameter and their possible values:

• agentid – This is the ID used when making schedule, set, or get requests to the Actuator agent; usually a string
data type.

• campus – Campus name as configured in the sMAP driver. This parameter builds the device path that allows
the Actuator agent to set and get values on the device; usually a string data type.

2.71. Applications 655

https://github.com/VOLTTRON/volttron-applications.git

VOLTTRON Documentation, Release 8.1.3

• building – Building name as configured in the sMAP driver. This parameter builds the device path that allows
the Actuator agent to set and get values on the device; usually a string data type.

• unit – Device name as configured in the sMAP driver. This parameter builds the device path that allows the
Actuator agent to set and get values on the device; usually a string data type. Note: The campus, building,
and unit parameters are used to build the device path (campus/building/unit). The device path is used for
communication on the message bus.

• controller point names – When using real-time communication, the Actuator agent identifies what registers or
values to set or get by the point name you specify. This name must match the “Point Name” given in the Modbus
registry file, as specified in VOLTTRON Core Services.

• aggregate_data – When using real-time data sampled at an interval of less than 1 hour or when inputting data
via a csv file sampled at less than 1 hour intervals, set this flag to “1.” Value should be an integer or floating-point
number (i.e., 1 or 1.0)

• csv_input – Flag to indicate if inputting data from a csv text file. Set to “0” for use with real-time data from a
device or “1” if data is input from a csv text file. It should be an integer or floating point number (i.e., 1 or 1.0)

• EER – Energy efficiency ratio for the AHU or RTU. It should be an integer or floating-point number (i.e., 10 or
10.0)

• tonnage – Cooling capacity of the AHU or RTU in tons of cooling. It should be an integer or floating-point
number (i.e., 10 or 10.0)

• economizer_type – This field indicates what type of economizer control is used. Set to “0” for differential
dry-bulb control or to “1” for high limit dry-bulb control. It should be an integer or floating-point number.

• high_limit – If the economizer is using high-limit dry-bulb control, this value indicates what the outside-air
temperature high limit should be. The input should be floating-point number (i.e., 60.0)

• matemp_missing – Flag used to indicate if the mixed-air temperature is missing for this system. If utilizing
csv data input, simply set this flag to “1” and replace the mixed-air temperature column with discharge-air
temperature data. If using real-time data input, change the field “mat_point_name” under Point Names section
to the point name indicating the discharge-air temperature. It should be an integer or floating-point number (i.e.,
1 or 1.0)

• OAE6 – This section contains the schedule information for the AHU or RTU. The default is to indicate a 24-
hour schedule for each day of the week. To modify this, change the numbers in the bracketed list next to the
corresponding day with which you are making operation schedule modifications. For example: “Saturday”:
[0,0] (This indicates the system is off on Saturdays).

656 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Figure 1. Example Passive AFDD Agent Configuration File

2.71. Applications 657

VOLTTRON Documentation, Release 8.1.3

Launching the Passive AFDD Agent

The Passive AFDD agent performs passive diagnostics on AHUs or RTUs, monitors and utilizes sensor data, but does
not actively control the devices. Therefore, the agent does not require interaction with the Actuator agent. Steps for
launching the agent are provided below.

In a terminal window, enter the following commands:

1. Run pack_install script on Passive AFDD agent:

$. scripts/core/pack_install.sh applications/PassiveAFDD applications/PassiveAFDD/
→˓passiveafdd.launch.json passive-afdd

Upon successful completion of this command, the terminal output will show the install directory, the agent UUID
(unique identifier for an agent; the UUID shown in red is only an example and each instance of an agent will have a
different UUID), and the agent name (blue text):

Installed /home/volttron-user/.volttron/packaged/passiveafdd-0.1-py2-none-any.whl as
→˓5df00517-6a4e-4283-8c70-5f0759713c64 passiveafdd-0.1

2. Start the agent:

$ vctl start --tag passive-afdd

3. Verify that the agent is running:

$ vctl status
$ tail -f volttron.log

If changes are made to the Passive AFDD agent’s configuration file after the agent is launched, it is necessary to stop
and reload the agent. In a terminal, enter the following commands:

$ vctl stop --tag passive-afdd
$ vctl remove --tag passive-afdd

Then re-build and start the updated agent.

When the AFDD agent is monitoring a device via the message bus, the agent relies on the periodic data published
from the sMAP driver. The AFDD agent then aggregates this data each hour and performs the diagnostics on the
average hourly data. The result is written to a csv text file, which is appended if the file already exists. This file
is in a folder titled “Results” under the (<project directory>/applications/pnnl/PassiveAFDD/
passiveafdd) directory. Below is a key that describes how to interpret the diagnostic results:

Diagnostic Code Code Message
AFDD-1 (Temperature Sensor Fault)
20 No faults detected
21 Temperature sensor fault
22 Conditions not favorable for diagnostic
23 Mixed-air temperature outside of expected range
24 Return-air temperature outside of expected range
25 Outside-air temperature outside of expected range
27 Missing data necessary for fault detection
29 Unit is off (No Fault)
AFDD-2 (RTU Economizing When it Should)
30 No faults detected

continues on next page

658 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Table 33 – continued from previous page
Diagnostic Code Code Message
31 Unit is not currently cooling or conditions are not favorable for economizing (No Fault)
32 Insufficient outdoor air when economizing (Fault)
33 Outdoor-air damper is not fully open when the unit should be economizing (Fault)
36 OAD is open but conditions were not favorable for OAF calculation (No Fault)
37 Missing data necessary for fault detection (No Fault)
38 OAD is open when economizing but OAF calculation led to an unexpected value (No Fault)
39 Unit is off (No Fault)
AFDD-3 (Unit Economizing When it Should)
40 No faults detected
41 Damper should be at minimum position but is not (Fault)
42 Damper is at minimum for ventilation (No Fault)
43 Conditions favorable for economizing (No Fault)
47 Missing data necessary for fault detection (No Fault)
49 Unit is off (No Fault)
AFDD-4 (Excess Outdoor-air Intake)
50 No faults detected
51 Excessive outdoor-air intake
52 Damper is at minimum but conditions are not favorable for OAF calculation (No Fault)
53 Damper is not at minimum (Fault)
56 Unit should be economizing (No Fault)
57 Missing data necessary for fault detection (No Fault)
58 Damper is at minimum but OAF calculation led to an unexpected value (No Fault)
59 Unit is off (No Fault)
AFDD-5 (Insufficient Outdoor-air Ventilation)
60 No faults detected
61 Insufficient outdoor-air intake (Fault)
62 Damper is at minimum but conditions are not favorable for OAF calculation (No Fault)
63 Damper is not at minimum when is should not be (Fault)
66 Unit should be economizing (No Fault)
67 Missing data necessary for fault detection (No Fault)
68 Damper is at minimum but conditions are not favorable for OAF calculation (No Fault)
69 Unit is off (No Fault)
AFDD-6 (Schedule)
70 Unit is operating correctly based on input on/off time (No Fault)
71 Unit is operating at a time designated in schedule as “off” time
77 Missing data

Launching the AFDD for CSV Data Input

When utilizing the AFDD agent and inputting data via a csv text file, set the csv_input parameter, contained in the
AFDD configuration file, to “1.”

• Launch the agent normally.

• A small file input box will appear. Navigate to the csv data file and select the csv file to input for the diagnostic.

• The result will be created for this RTU or AHU in the results folder described.

Figure 2 shows the dialog box that is used to input the csv data file.

2.71. Applications 659

VOLTTRON Documentation, Release 8.1.3

Figure 2 File Selection Dialog Box when Inputting Data in a csv File

If “Cancel” is pushed on the file input dialog box, the AFDD will acknowledge that no file was selected. The Passive
AFDD must be restarted to run the diagnostics. If a non-csv file is selected, the AFDD will acknowledge the file
selected was not a csv file. The AFDD must be restarted to run the diagnostics.

Figure 3 shows a sample input data in a csv format. The header, or name for each column from the data input csv file
used for analysis, should match the name given in the configuration file, as shown in Figure 1, boxed in red.

Figure 3 Sample of CSV Data for Passive AFDD Agent

660 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

The Demand Response (DR) Agent

Many utilities around the country have or are considering implementing dynamic electrical pricing programs that use
time-of-use (TOU) electrical rates. TOU electrical rates vary based on the demand for electricity. Critical peak pricing
(CPP), also referred to as critical peak days or event days, is an electrical rate where utilities charge an increased price
above normal pricing for peak hours on the CPP day. CPP times coincide with peak demand on the utility; these
CPP events are generally called between 5 to 15 times per year and occur when the electrical demand is high and
the supply is low. Customers on a flat standard rate who enroll in a peak time rebate program receive rebates for
using less electricity when a utility calls for a peak time event. Most CPP events occur during the summer season
on very hot days. The initial implementation of the DR agent addresses CPP events where the RTU would normally
be cooling. This implementation can be extended to handle CPP events for heating during the winter season as well.
This implementation of the DR agent is specific to the CPP, but it can easily be modified to work with other incentive
signals (real-time pricing, day ahead, etc.).

The main goal of the building owner/operator is to minimize the electricity consumption during peak summer periods
on a CPP day. To accomplish that goal, the DR agent performs three distinct functions:

• Step 1 – Pre-Cooling: Prior to the CPP event period, the cooling and heating (to ensure the RTU is not driven
into a heating mode) set points are reset lower to allow for pre-cooling. This step allows the RTU to cool the
building below its normal cooling set point while the electrical rates are still low (compared to CPP events). The
cooling set point is typically lowered between 3 and 5oF below the normal. Rather than change the set point to
a value that is 3 to 5oF below the normal all at once, the set point is gradually lowered over a period of time.

• Step 2 – Event: During the CPP event, the cooling set point is raised to a value that is 4 to 5oF above the
normal, the damper is commanded to a position that is slightly below the normal minimum (half of the normal
minimum), the fan speed is slightly reduced (by 10% to 20% of the normal speed, if the unit has a variable-
frequency drive (VFD)), and the second stage cooling differential (time delay between stage one and stage two
cooling) is increased (by few degrees, if the unit has multiple stages). The modifications to the normal set points
during the CPP event for the fan speed, minimum damper position, cooling set point, and second stage cooling
differential are user adjustable. These steps will reduce the electrical consumption during the CPP event. The
pre-cooling actions taken in step 1 will allow the temperature to slowly float up to the CPP cooling temperature
set point and reduce occupant discomfort during the attempt to shed load.

• Step 3 – Post-Event: The DR agent will begin to return the RTU to normal operations by changing the cooling
and heating set points to their normal values. Again, rather than changing the set point in one step, the set point
is changed gradually over a period of time to avoid the “rebound” effect (a spike in energy consumption after
the CPP event when RTU operations are returning to normal).

The following section will detail how to configure and launch the DR agent.

2.71. Applications 661

VOLTTRON Documentation, Release 8.1.3

Configuring DR Agent

Before launching the DR agent, several parameters require configuration. The DR utilizes the same JSON style
configuration file that the Actuator, Listener, and Weather agent use. A notable limitation of the DR agent is that the
DR agent requires active control of an RTU/AHU. The DR agent modifies set points on the controller or thermostat to
reduce electrical consumption during a CPP event. The DR agent must be able to set certain values on the RTU/AHU
controller or thermostat via the Actuator agent. Figure 4 shows a sample configuration file for the DR agent:

662 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Figure 4 Example Configuration File for the DR Agent

The parameters boxed in black (Figure 4) are the demand response parameters; these may require modification to
ensure the DR agent and corresponding CPP event are executed as one desires. The parameters in the example
configuration that are boxed in red are the controller or thermostat points, as specified in the Modbus or BACnet
(depending on what communication protocol your device uses) registry file, that the DR agent will set via the Actuator
agent. These device points must be writeable, and configured as such, in the registry (Modbus or BACnet) file. The
following list describes each user configurable parameter:

• agentid - This is the ID used when making schedule, set, or get requests to the Actuator agent; usually a string
data type.

• campus - Campus name as configured in the sMAP driver. This parameter builds the device path that allows the
Actuator agent to set and get values on the device; usually a string data type.

• building - Building name as configured in the sMAP driver. This parameter builds the device path that allows
the Actuator agent to set and get values on the device; usually a string data type.

• unit - Device name as configured in the sMAP driver. This parameter builds the device path that allows the
Actuator agent to set and get values on the device; usually a string data type. Note: The campus, building,
and unit parameters are used to build the device path (campus/building/unit). The device path is used for
communication on the message bus.

• csp_pre - Pre-cooling space cooling temperature set point.

• csp_cpp - CPP event space cooling temperature set point.

• normal_firststage_fanspeed - Normal operations, first stage fan speed set point.

• normal_secondstage_fanspeed - Normal operations, second stage fan speed set point.

• normal_damper_stpt - Normal operations, minimum outdoor-air damper set point.

• normal_coolingstpt - Normal operations, space cooling temperature set point.

• normal_heatingstpt - Normal operations, space heating temperature set point.

2.71. Applications 663

VOLTTRON Documentation, Release 8.1.3

• fan_reduction - Fractional reduction in fan speeds during CPP event (default: 0.1-10%).

• damper_cpp - CPP event, minimum outdoor-air damper set point.

• max_precool_hours - Maximum allotted time for pre-cooling, in hours.

• cooling_stage_differential - Difference in actual space temperature and set-point temperature before second
stage cooling is activated.

• schedule - Day of week occupancy schedule “0” indicate unoccupied day and “1” indicate occupied day (e.g.,
[1,1,1,1,1,1,1] = [Mon, Tue, Wed, Thu, Fri, Sat, Sun]).

OpenADR (Open Automated Demand Response)

Open Automated Demand Response (OpenADR) is an open and standardized way for electricity providers and system
operators to communicate DR signals with each other and with their customers using a common language over any
existing IP-based communications network, such as the Internet. Lawrence Berkeley National Laboratory created an
agent to receive DR signals from an external source (e.g., OpenADR server) and publish this information on the
message bus. The DR agent subscribes to the OpenADR topic and utilizes the contents of this message to coordinate
the CPP event.

The OpenADR signal is formatted as follows:

'openadr/event',{'Content-Type': ['application/json'], 'requesterID': 'openadragent'},
→˓ {'status': 'near',
'start_at': '2013-6-15 14:00:00', 'end_at': '2013-10-15 18:00:00', 'mod_num': 0, 'id':
'18455630-a5c4-4e4a-9d53-b3cf989ccf1b','signals': 'null'}

The red text in the signal is the topic associated with CPP events that are published on the message bus. The text in
dark blue is the message; this contains the relevant information on the CPP event for use by the DR agent.

If one desires to test the behavior of a device when responding to a DR event, such an event can be simulated by
manually publishing a DR signal on the message bus. From the base VOLTTRON directory, in a terminal window,
enter the following commands:

1. Activate project:

$ source env/bin/activate

2. Start Python interpreter:

$ python

3. Import VOLTTRON modules:

$ from volttron.platform.vip.agent import Core, Agent

4. Import needed Python library:

$ import gevent

5. Instantiate agent (agent will publish OpenADR message):

$ agent = Agent(address='ipc://@/home/volttron-user/.volttron/run/vip.socket')

6. Ensure the setup portion of the agent run loop is executed:

664 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

$ gevent.spawn(agent.core.run).join(0)

7. Publish simulated OpenADR message:

$ agent.vip.pubsub.publish(peer='pubsub', topic='openadr/event',headers={},
message={'id': 'event_id','status': 'active', 'start_at': 10-30-15 15:00', 'end_at':
→˓'10-30-15
18:00'})

To cancel this event, enter the following command:

$ agent.vip.pubsub.publish(peer='pubsub', topic='openadr/event',headers={}, message={
→˓'id':
'event_id','status': 'cancelled', 'start_at': 10-30-15 15:00', 'end_at': '10-30-15
→˓18:00'})

The DR agent will use the most current signal for a given day. This allows utilities/OpenADR to modify the signal up
to the time prescribed for pre-cooling.

DR Agent Output to sMAP

After the DR agent has been configured, the agent can be launched. To launch the DR agent from the base VOLTTRON
directory, enter the following commands in a terminal window:

1. Run pack_install script on DR agent:

$. scripts/core/pack_install.sh applications/DemandResponseAgent
applications/DemandResponseAgent/demandresponse.launch.json dr-agent

Upon successful completion of this command, the terminal output will show the install directory, the agent UUID
(unique identifier for an agent; the UUID shown in red is only an example and each instance of an agent will have a
different UUID) and the agent name (blue text):

Installed
/home/volttron-user/.volttron/packaged/DemandResponseagent-0.1-py2-none-
any.whlas 5b1706d6-b71d-4045-86a3-8be5c85ce801
DemandResponseagent-0.1

2. Start the agent:

$ vctl start --tag dr-agent

3. Verify that agent is running:

$ vctl status
$ tail -f volttron.log

If changes are made to the DR agent’s configuration file after the agent is launched, it is necessary to stop and reload
the agent. In a terminal, enter the following commands:

$ vctl stop --tag dr-agent
$ vctl remove --tag dr-agent

Then re-build and start the updated agent.

2.71. Applications 665

VOLTTRON Documentation, Release 8.1.3

2.71.2 Simulation Subsystem

The simulation subsystem includes a set of device simulators and a clock that can run faster (or slower) than real time.
It can be used to test VOLTTRON agents or drivers. It could be particularly useful when simulating multi-agent and/or
multi-driver scenarios.

The source code for the agents and drivers comprising this subsystem resides in the https://github.com/VOLTTRON/
volttron-applications github repository.

This subsystem is designed to be extended easily. Its initial delivery includes a set of simulated energy devices that
report status primarily in terms of power (kilowatts) produced and consumed. It could easily be adapted, though, to
simulate and report data for devices that produce, consume and manage resources other than energy.

Three agents work together to run a simulation:

1. SimulationClockAgent. This agent manages the simulation’s clock. After it has been supplied with a start
time, a stop time, and a clock-speed multiplier, and it has been asked to start a simulation, it provides the current
simulated time in response to requests. If no stop time has been provided, the SimulationClockAgent continues
to manage the simulation clock until the agent is stopped. If no clock-speed multiplier has been provided, the
simulation clock runs at normal wall-clock speed.

2. SimulationDriverAgent. Like PlatformDriverAgent, this agent is a front-end manager for device drivers. It
handles get_point/set_point requests from other agents, and it periodically “scrapes” and publishes each driver’s
points. If a device driver has been built to run under PlatformDriverAgent, with a few minor modifications
(detailed below) it can be adapted to run under SimulationDriverAgent.

3. SimulationAgent. This agent configures, starts, and reports on a simulation. It furnishes a variety of configura-
tion parameters to the other simulation agents, starts the clock, subscribes to scraped driver points, and generates
a CSV output file.

Four device drivers have been provided:

1. storage (simstorage). The storage driver simulates an energy storage device (i.e., a battery). When it receives a
power dispatch value (positive to charge the battery, negative to discharge it), it adjusts its charging behavior ac-
cordingly. Its reported power doesn’t necessarily match the dispatch value, since (like an actual battery) it stays
within configured max-charge/max-discharge limits, and its power dwindles as its state of charge approaches a
full or empty state.

2. pv (simpv). The PV driver simulates a photovoltaic array (solar panels), reporting the quantity of solar power
produced. Solar power is calculated as a function of (simulated) time, using a data file of incident-sunlight
metrics. A year’s worth of solar data has been provided as a sample resource.

3. load (simload). The load driver simulates the behavior of a power consumer such as a building, reporting the
quantity of power consumed. It gets its power metrics as a function of (simulated) time from a data file of power
readings. A year’s worth of building-load data has been provided as a sample resource.

4. meter (simmeter). The meter driver simulates the behavior of a circuit’s power meter. This driver, as delivered,
is actually just a shell of a simulated device. It’s able to report power as a function of (simulated) time, but it
has no built-in default logic for deciding what particular power metrics to report.

666 Chapter 2. Features

https://github.com/VOLTTRON/volttron-applications
https://github.com/VOLTTRON/volttron-applications

VOLTTRON Documentation, Release 8.1.3

Linux Installation

The following steps describe how to set up and run a simulation. They assume that VOLTTRON / volttron
and VOLTTRON / volttron-applications repositories have been downloaded from github, and that Linux
shell variables $VOLTTRON_ROOT and $VOLTTRON_APPLICATIONS_ROOT point at the root directories of these
repositories.

First, create a soft link to the applications directory from the volttron directory, if that hasn’t been done already:

$ cd $VOLTTRON_ROOT
$ ln -s $VOLTTRON_APPLICATIONS_ROOT applications

With VOLTTRON running, load each simulation driver’s configuration into a “simulation.driver” config store:

$ export SIMULATION_DRIVER_ROOT=$VOLTTRON_ROOT/applications/kisensum/Simulation/
→˓SimulationDriverAgent

$ vctl config store simulation.driver simload.csv $SIMULATION_DRIVER_ROOT/simload.csv
→˓--csv
$ vctl config store simulation.driver devices/simload $SIMULATION_DRIVER_ROOT/simload.
→˓config

$ vctl config store simulation.driver simmeter.csv $SIMULATION_DRIVER_ROOT/simmeter.
→˓csv --csv
$ vctl config store simulation.driver devices/simmeter $SIMULATION_DRIVER_ROOT/
→˓simmeter.config

$ vctl config store simulation.driver simpv.csv $SIMULATION_DRIVER_ROOT/simpv.csv --
→˓csv
$ vctl config store simulation.driver devices/simpv $SIMULATION_DRIVER_ROOT/simpv.
→˓config

$ vctl config store simulation.driver simstorage.csv $SIMULATION_DRIVER_ROOT/
→˓simstorage.csv --csv
$ vctl config store simulation.driver devices/simstorage $SIMULATION_DRIVER_ROOT/
→˓simstorage.config

Install and start each simulation agent:

$ export SIMULATION_ROOT=$VOLTTRON_ROOT/applications/kisensum/Simulation
$ export VIP_SOCKET="ipc://$VOLTTRON_HOME/run/vip.socket"

$ python scripts/install-agent.py \
--vip-identity simulation.driver \
--tag simulation.driver \
--agent-source $SIMULATION_ROOT/SimulationDriverAgent \
--config $SIMULATION_ROOT/SimulationDriverAgent/simulationdriver.config \
--force \
--start

$ python scripts/install-agent.py \
--vip-identity simulationclock \
--tag simulationclock \
--agent-source $SIMULATION_ROOT/SimulationClockAgent \
--config $SIMULATION_ROOT/SimulationClockAgent/simulationclock.config \
--force \
--start

(continues on next page)

2.71. Applications 667

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

$ python scripts/install-agent.py \
--vip-identity simulationagent \
--tag simulationagent \
--agent-source $SIMULATION_ROOT/SimulationAgent \
--config $SIMULATION_ROOT/SimulationAgent/simulationagent.config \
--force \
--start

SimulationAgent Configuration Parameters

This section describes SimulationAgent’s configurable parameters. Each of these has a default value and behavior,
allowing the simulation to be run “out of the box” without configuring any parameters.

668 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Type Param Name Data
Type

Default Comments

Gen-
eral

agent_id str simulation

Gen-
eral

heartbeat_period int
sec

5

Gen-
eral

sim_driver_list list of
str

[simload, simmeter, simpv, simstor-
age]

Allowed keywords are simload, sim-
meter, simpv, simstorage.

Clock sim_start date-
time
str

2017-02-02 13:00:00

Clock sim_end date-
time
str

None If None, sim doesn’t stop.

Clock sim_speed float
sec

180.0 This is a multiplier, e.g. 1 sec actual
time = 180 sec sim time.

Load load_timestamp_column_headerstr local_date
Load load_power_column_headerstr load_kw
Load load_data_frequency_minint

min
15

Load load_data_year str 2015
Load load_csv_file_path str ~/repos/volttron-

applications/kisensum/ Simula-
tion/SimulationAgent/data/load_an
d_pv.csv

~ and shell variables in the pathname
will be expanded. The file must exist.

PV pv_panel_area float
m2

50.0

PV pv_efficiency float
0.0-
1.0

0.75

PV pv_data_frequency_minint
min

30

PV pv_data_year str 2015
PV pv_csv_file_path str ~/repos/volttron-

applications/kisensum/ Simula-
tion/SimulationAgent/data/nrel_pv
_readings.csv

~ and shell variables in the pathname
will be expanded. The file must exist.

Stor-
age

stor-
age_soc_kwh

float
kWh

30.0

Stor-
age

stor-
age_max_soc_kwh

float
kWh

50.0

Stor-
age

stor-
age_max_charge_kw

float
kW

15.0

Stor-
age

stor-
age_max_discharge_kw

float
kW

12.0

Stor-
age

stor-
age_reduced_charge_soc
_threshold

float
0.0-
1.0

0.80 Charging will be reduced when SOC
% > this value.

Stor-
age

stor-
age_reduced_discharge_s
oc_threshold

float
0.0-
1.0

0.20 Discharging will be reduced when
SOC % < this value.

Dis-
patch

stor-
age_setpoint_rule

str
key-
word

oscillation See below.

Dis-
patch

posi-
tive_dispatch_kw

float
kW
>=
0.0

15.0

Dis-
patch

nega-
tive_dispatch_kw

float
kW
<=
0.0

-15.0

Dis-
patch

go_positive_if_belowfloat
0.0-
1.0

0.1

Dis-
patch

go_negative_if_abovefloat
0.0-
1.0

0.9

Re-
port

report_interval int
sec-
onds

14

Re-
port

report_file_path str $VOLT-
TRON_HOME/run/simulation_out.csv

~ and shell variables in the pathname
will be expanded. If the file exists, it
will be overwritten.

2.71. Applications 669

VOLTTRON Documentation, Release 8.1.3

The oscillation setpoint rule slowly oscillates between charging and discharging based on the storage device’s state of
charge (SOC):

If SOC < (``go_positive_if_below`` * ``storage_max_soc_kwh``):
dispatch power = ``positive_dispatch_kw``

If SOC > (``go_negative_if_above`` * ``storage_max_soc_kwh``)
dispatch power = ``negative_dispatch_kw``

Otherwise:
dispatch power is unchanged from its previous value.

The alternate setpoint rule is used when storage_setpoint_rule has been configured with any value other
than oscillation. It simply charges at the dispatched charging value (subject to the constraints of the other parameters,
e.g. storage_max_discharge_kw):

dispatch power = ``positive_dispatch_kw``

Driver Parameters and Points

Load Driver

The load driver’s parameters specify how to look up power metrics in its data file.

Type Name Data
Type

Default Comments

Param/Point csv_file_path string This parameter must be supplied by the
agent.

Param/Point times-
tamp_column_header

string lo-
cal_date

Param/Point power_column_header string load_kw
Param/Point data_frequency_min int 15
Param/Point data_year string 2015
Point power_kw float 0.0
Point last_timestamp datetime

670 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Meter Driver

Type Name Data Type Default Comments
Point power_kw float 0.0
Point last_timestamp datetime

PV Driver

The PV driver’s parameters specify how to look up sunlight metrics in its data file, and how to calculate the power
generated from that sunlight.

Type Name Data Type Default Comments
Param/Point csv_file_path string This parameter must be supplied by the agent.
Param/Point max_power_kw float 10.0
Param/Point panel_area float 50.0
Param/Point efficiency float 0.75
Param/Point data_frequency_min int 30
Param/Point data_year string 2015
Point power_kw float 0.0
Point last_timestamp datetime

Storage Driver

The storage driver’s parameters describe the device’s power and SOC limits, its initial SOC, and the SOC thresh-
olds at which charging and discharging start to be reduced as its SOC approaches a full or empty state. This
reduced power is calculated as a straight-line reduction: charging power is reduced in a straight line from
reduced_charge_soc_threshold to 100% SOC, and discharging power is reduced in a straight line from
reduced_discharge_soc_threshold to 0% SOC.

Type Name Data Type Default Comments
Param/Point max_charge_kw float 15.0
Param/Point max_discharge_kw float 15.0
Param/Point max_soc_kwh float 50.0
Param/Point soc_kwh float 25.0
Param/Point reduced_charge_soc_threshold float 0.8
Param/Point reduced_discharge_soc_threshold float 0.2
Point dispatch_kw float 0.0
Point power_kw float 0.0
Point last_timestamp datetime

2.71. Applications 671

VOLTTRON Documentation, Release 8.1.3

Working with the Sample Data Files

The Load and PV simulation drivers report power readings that are based on metrics from sample data files. The
software distribution includes sample Load and PV files containing at least a year’s worth of building-load and sunlight
data.

CSV files containing different data sets of load and PV data can be substituted by specifying their paths in Simulation-
Agent’s configuration, altering its other parameters if the file structures and/or contents are different.

Load Data File

load_and_pv.csv contains building-load and PV power readings at 15-minute increments from 01/01/2014
- 12/31/2015. The data comes from a location in central Texas. The file’s data columns are: utc_date,
local_date, time_offset, load_kw, pv_kw. The load driver looks up the row with a matching lo-
cal_date and returns its load_kw value.

Adjust the following SimulationAgent configuration parameters to change how load power is derived from the data
file:

• Use load_csv_file_path to set the path of the sample data file

• Use load_data_frequency_min to set the frequency of the sample data

• Use load_data_year to set the year of the sample data

• Use load_timestamp_column_header to indicate the header name of the timestamp column

• Use load_power_column_header to indicate the header name of the power column

PV Data File

nrel_pv_readings.csv contains irradiance data at 30-minute increments from 01/01/2015 - 12/31/2015, down-
loaded from NREL’s National Solar Radiation Database, https://nsrdb.nrel.gov. The file’s data columns are: Year,
Month, Day, Hour, Minute, DHI, DNI, Temperature. The PV driver looks up the row with a match-
ing date/time and uses its DHI (diffuse horizontal irradiance) to calculate the resulting solar power produced:

power_kw = irradiance * panel_area * efficiency / elapsed_time_hrs

Adjust the following SimulationAgent configuration parameters to change how solar power is derived from the data
file:

• Use pv_csv_file_path to set the path of the sample data file

• Use pv_data_frequency_min to set the frequency of the sample data

• Use pv_data_year to set the year of the sample data

• Use pv_panel_area and pv_efficiency to indicate how to transform an irradiance measurement in
wh/m2 into a power reading in kw.

If a PV data file will be used that has a column structure which differs from the one in the supplied sample, an
adjustment may need to be made to the simpv driver software.

672 Chapter 2. Features

https://nsrdb.nrel.gov

VOLTTRON Documentation, Release 8.1.3

Running the Simulation

One way to monitor the simulation’s progress is to look at debug trace in VOLTTRON’s log output, for example:

2017-05-01 15:05:42,815 (simulationagent-1.0 9635) simulation.agent DEBUG: 2017-05-01
→˓15:05:42.815484 Initializing drivers
2017-05-01 15:05:42,815 (simulationagent-1.0 9635) simulation.agent DEBUG:
→˓Initializing Load: timestamp_column_header=local_date, power_column_header=load_kw,
→˓data_frequency_min=15, data_year=2015, csv_file_path=/Users/robcalvert/repos/
→˓volttron-applications/kisensum/Simulation/SimulationAgent/data/load_and_pv.csv
2017-05-01 15:05:42,823 (simulationagent-1.0 9635) simulation.agent DEBUG:
→˓Initializing PV: panel_area=50, efficiency=0.75, data_frequency_min=30, data_
→˓year=2015, csv_file_path=/Users/robcalvert/repos/volttron-applications/kisensum/
→˓Simulation/SimulationAgent/data/nrel_pv_readings.csv
2017-05-01 15:05:42,832 (simulationagent-1.0 9635) simulation.agent DEBUG:
→˓Initializing Storage: soc_kwh=30.0, max_soc_kwh=50.0, max_charge_kw=15.0, max_
→˓discharge_kw=12.0, reduced_charge_soc_threshold = 0.8, reduced_discharge_soc_
→˓threshold = 0.2
2017-05-01 15:05:42,844 (simulationagent-1.0 9635) simulation.agent DEBUG: 2017-05-01
→˓15:05:42.842162 Started clock at sim time 2017-02-02 13:00:00, end at 2017-02-02
→˓16:00:00, speed multiplier = 180.0
2017-05-01 15:05:57,861 (simulationagent-1.0 9635) simulation.agent DEBUG: 2017-05-01
→˓15:05:57.842164 Reporting at sim time 2017-02-02 13:42:00
2017-05-01 15:05:57,862 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simload/power_kw = 486.1
2017-05-01 15:05:57,862 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simpv/power_kw = -0.975
2017-05-01 15:05:57,862 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simstorage/dispatch_kw = 0.0
2017-05-01 15:05:57,862 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simstorage/last_timestamp = 2017-02-02 13:33:00
2017-05-01 15:05:57,862 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simstorage/power_kw = 0.0
2017-05-01 15:05:57,862 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simstorage/soc_kwh = 30.0
2017-05-01 15:05:57,862 (simulationagent-1.0 9635) simulation.agent DEBUG: net_power_
→˓kw = 485.125
2017-05-01 15:05:57,862 (simulationagent-1.0 9635) simulation.agent DEBUG: report_
→˓time = 2017-02-02 13:42:00
2017-05-01 15:05:57,862 (simulationagent-1.0 9635) simulation.agent DEBUG:
→˓Setting storage dispatch to 15.0 kW
2017-05-01 15:06:12,901 (simulationagent-1.0 9635) simulation.agent DEBUG: 2017-05-01
→˓15:06:12.869471 Reporting at sim time 2017-02-02 14:30:00
2017-05-01 15:06:12,901 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simload/power_kw = 467.5
2017-05-01 15:06:12,901 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simpv/power_kw = -5.925
2017-05-01 15:06:12,901 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simstorage/dispatch_kw = 15.0
2017-05-01 15:06:12,901 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simstorage/last_timestamp = 2017-02-02 14:27:00
2017-05-01 15:06:12,901 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simstorage/power_kw = 15.0
2017-05-01 15:06:12,901 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simstorage/soc_kwh = 43.5
2017-05-01 15:06:12,901 (simulationagent-1.0 9635) simulation.agent DEBUG: net_power_
→˓kw = 476.575
2017-05-01 15:06:12,901 (simulationagent-1.0 9635) simulation.agent DEBUG: report_
→˓time = 2017-02-02 14:30:00 (continues on next page)

2.71. Applications 673

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

2017-05-01 15:06:12,901 (simulationagent-1.0 9635) simulation.agent DEBUG:
→˓Setting storage dispatch to 15.0 kW
2017-05-01 15:06:27,931 (simulationagent-1.0 9635) simulation.agent DEBUG: 2017-05-01
→˓15:06:27.907951 Reporting at sim time 2017-02-02 15:15:00
2017-05-01 15:06:27,931 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simload/power_kw = 474.2
2017-05-01 15:06:27,931 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simpv/power_kw = -11.7
2017-05-01 15:06:27,932 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simstorage/dispatch_kw = 15.0
2017-05-01 15:06:27,932 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simstorage/last_timestamp = 2017-02-02 15:03:00
2017-05-01 15:06:27,932 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simstorage/power_kw = 5.362
2017-05-01 15:06:27,932 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simstorage/soc_kwh = 48.033
2017-05-01 15:06:27,932 (simulationagent-1.0 9635) simulation.agent DEBUG: net_power_
→˓kw = 467.862
2017-05-01 15:06:27,932 (simulationagent-1.0 9635) simulation.agent DEBUG: report_
→˓time = 2017-02-02 15:15:00
2017-05-01 15:06:27,932 (simulationagent-1.0 9635) simulation.agent DEBUG:
→˓Setting storage dispatch to -15.0 kW
2017-05-01 15:06:42,971 (simulationagent-1.0 9635) simulation.agent DEBUG: 2017-05-01
→˓15:06:42.939181 Reporting at sim time 2017-02-02 16:00:00
2017-05-01 15:06:42,971 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simload/power_kw = 469.5
2017-05-01 15:06:42,971 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simpv/power_kw = -9.375
2017-05-01 15:06:42,971 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simstorage/dispatch_kw = -15.0
2017-05-01 15:06:42,971 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simstorage/last_timestamp = 2017-02-02 15:57:00
2017-05-01 15:06:42,971 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simstorage/power_kw = -12.0
2017-05-01 15:06:42,971 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/
→˓simstorage/soc_kwh = 37.233
2017-05-01 15:06:42,971 (simulationagent-1.0 9635) simulation.agent DEBUG: net_power_
→˓kw = 448.125
2017-05-01 15:06:42,971 (simulationagent-1.0 9635) simulation.agent DEBUG: report_
→˓time = 2017-02-02 16:00:00
2017-05-01 15:06:42,971 (simulationagent-1.0 9635) simulation.agent DEBUG:
→˓Setting storage dispatch to -15.0 kW
2017-05-01 15:06:58,001 (simulationagent-1.0 9635) simulation.agent DEBUG: The
→˓simulation has ended.

674 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Report Output

The SimulationAgent also writes a CSV output file so that simulation results can be reported by spreadsheets, for
example this graph of the simulated storage device following an oscillating dispatch:

Using the Simulation Framework to Test a Driver

If you’re developing a VOLTTRON driver, and you intend to add it to the drivers managed by PlatformDriverAgent,
then with a few tweaks, you can adapt it so that it’s testable from this simulation framework.

As with drivers under PlatformDriverAgent, your driver should be go in a .py module that implements a Register class
and an Interface class. In order to work within the simulation framework, simulation drivers need to be adjusted as
follows:

• Place the module in the interfaces directory under SimulationDriverAgent.

• The module’s Register class should inherit from SimulationRegister.

• The module’s Interface class should inherit from SimulationInterface.

• If the driver has logic that depends on time, get the simulated time by calling self.sim_time().

Add files with your driver’s config and point definitions, and load them into the config store:

2.71. Applications 675

VOLTTRON Documentation, Release 8.1.3

$ vctl config store simulation.driver \
yourdriver.csv \
$VOLTTRON_ROOT/applications/kisensum/Simulation/SimulationDriverAgent/yourdriver.

→˓csv --csv
$ vctl config store simulation.driver \

devices/yourdriver \
$VOLTTRON_ROOT/applications/kisensum/Simulation/SimulationDriverAgent/yourdriver.

→˓config

To manage your driver from the SimulationAgent, first add the driver to the sim_driver_list in that agent’s config:

"sim_driver_list": ["simload", "simpv", "simstorage", "youdriver"]

Then, if you choose, you can also revise SimulationAgent’s config and logic to scrape and report your driver’s points,
and/or send RPC requests to your driver.

For Further Information

If you have comments or questions about this simulation support, please contact Rob Calvert at Kisensum, Inc.:

• (github) @rob-calvert

• (email) rob@kisensum.com

2.71.3 Open ADR

OpenADR (Automated Demand Response) is a standard for alerting and responding to the need to adjust electric
power consumption in response to fluctuations in grid demand. OpenADR communications are conducted between
Virtual Top Nodes (VTNs) and Virtual End Nodes (VENs).

In this implementation, a VOLTTRON agent, OpenADRVenAgent, is made available as a VOLTTRON service. It
acts as a VEN, communicating with its VTN via EiEvent and EiReport services in conformance with a subset of the
OpenADR 2.0b specification.

A VTN server has also been implemented, with source code in the kisensum/openadr folder of the volttron-applications
git repository. As has been described below, it communicates with the VEN and provides a web user interface for
defining and reporting on Open ADR events.

The OpenADR 2.0b specification (http://www.openadr.org/specification) is available from the OpenADR Alliance.
This implementation also generally follows the DR program characteristics of the Capacity Program described in
Section 9.2 of the OpenADR Program Guide (http://www.openadr.org/assets/openadr_drprogramguide_v1.0.pdf).

The OpenADR Capacity Bidding program relies on a pre-committed agreement about the VEN’s load shed capacity.
This agreement is reached in a bidding process transacted outside of the OpenADR interaction, typically with a long-
term scope, perhaps a month or longer. The VTN can “call an event,” indicating that a load-shed event should occur
in conformance with this agreement. The VTN indicates the level of load shedding desired, when the event should
occur, and for how long. The VEN responds with an “optIn” acknowledgment. (It can also “optOut,” but since it has
been pre-committed, an “optOut” may incur penalties.)

676 Chapter 2. Features

mailto:rob@kisensum.com
http://www.openadr.org/specification
http://www.openadr.org/assets/openadr_drprogramguide_v1.0.pdf

VOLTTRON Documentation, Release 8.1.3

Reference Application

This reference application for VOLTTRON’s OpenADR Virtual End Node (VEN) and its Simulation Subsystem
demonstrates interactions between the VOLTTRON VEN agent and simulated devices. It employs a Virtual Top
Node (VTN) server, demonstrating the full range of interaction and communication in a VOLTTRON implementation
of the OpenADR (Automated Demand Response) standard.

The simulation subsystem, described in more detail in Simulated Subsystem, includes a set of device simulators and
a clock that can run faster (or slower) than real time (using ReferenceApp’s default configuration, the clock runs at
normal speed).

Eight VOLTTRON agents work together to run this simulation:

1. ReferenceAppAgent. This agent configures, starts, and reports on a simulation. It furnishes a variety of con-
figuration parameters to the other simulation agents, starts the clock, subscribes to scraped driver points, and
generates a CSV output file. The ReferenceApp also serves as the mediator between the simulated device drivers
and the VEN, adjusting driver behavior (particularly the behavior of the “simstorage” battery) while an Ope-
nADR event is in progress, and aggregating and relaying relevant driver metrics to the VEN for reporting to the
VTN.

2. SimulationClockAgent. This agent manages the simulation’s clock. After it has been supplied with a start
time, a stop time, and a clock-speed multiplier, and it has been asked to start a simulation, it provides the current
simulated time in response to requests. If no stop time has been provided (this is the default behavior while the
ReferenceApp is managing the clock), the SimulationClockAgent runs the simulation until the agent is stopped.
If no clock-speed multiplier has been provided, the simulation clock runs at normal wallclock speed.

3. SimulationDriverAgent. Like PlatformDriverAgent, this agent is a front-end manager for device drivers. It
handles get_point/set_point requests from other agents, and it periodically “scrapes” and publishes each driver’s
points. If a device driver has been built to run under PlatformDriverAgent, with a few minor modifications
(detailed below) it can be adapted to run under SimulationDriverAgent.

4. ActuatorAgent. This agent manages write access to device drivers. Another agent may request a scheduled
time period, called a Task, during which it controls a device.

5. OpenADRVenAgent. This agent implements an OpenADR Virtual End Node (VEN). It receives demand-
response event notifications from a Virtual Top Node (VTN), making the event information available to the
ReferenceAppAgent and other interested VOLTTRON agents. It also reports metrics to the VTN based on
information furnished by the ReferenceAppAgent.

6. SQLHistorian. This agent, a “platform historian,” captures metrics reported by the simulated devices, storing
them in a SQLite database.

7. VolttronCentralPlatform. This agent makes the platform historian’s device metrics available for reporting by
the VolttronCentralAgent.

8. VolttronCentralAgent. This agent manages a web user interface that can produce graphical displays of the
simulated device metrics captured by the SQLHistorian.

Three simulated device drivers are used:

1. storage (simstorage). The storage driver simulates an energy storage device (i.e., a battery). When it receives
a power dispatch value (positive to charge the battery, negative to discharge it), it adjusts the storage unit’s
charging behavior accordingly. Its reported power doesn’t necessarily match the dispatch value, since (like an
actual battery) it stays within configured max-charge/max-discharge limits, and power dwindles as its state of
charge approaches a full or empty state.

2. pv (simpv). The PV driver simulates a photovoltaic array (solar panels), reporting the quantity of solar power
produced. Solar power is calculated as a function of (simulated) time, using a data file of incident-sunlight
metrics. A year’s worth of solar data has been provided as a sample resource.

2.71. Applications 677

VOLTTRON Documentation, Release 8.1.3

3. load (simload). The load driver simulates the behavior of a power consumer such as a building, reporting the
quantity of power consumed. It gets its power metrics as a function of (simulated) time from a data file of power
readings. A year’s worth of building-load data has been provided as a sample resource.

Linux Installation

The following steps describe how to set up and run a simulation. They assume that the VOLTTRON / volttron
and VOLTTRON / volttron-applications repositories have been downloaded from github.

Installing and running a simulation is walked through in the Jupyter notebook in $VOLTTRON_ROOT/examples/
JupyterNotebooks/ReferenceAppAgent.ipynb. In order to run this notebook, install Jupyter and start the
Jupyter server:

$ cd $VOLTTRON_ROOT
$ source env/bin/activate
$ pip install jupyter
$ jupyter notebook

By default, a browser will open with the Jupyter Notebook dashboard at
http://localhost:8888. Run the notebook by navigating in the Jupyter Notebook dashboard to
http://localhost:8888/tree/examples/JupyterNotebooks/ReferenceAppAgent.ipynb.

ReferenceAppAgent Configuration Parameters

This section describes ReferenceAppAgents’s configurable parameters. Each of these has a default value and behavior,
allowing the simulation to be run “out of the box” without configuring any parameters.

Type Param Name Data Type Default Comments
General agent_id str reference_app
General heartbeat_period int sec 5
General sim_driver_list list of str [simload, simpv, simstorage] Allowed keywords are simload, simmeter, simpv, simstorage.
General opt_type str optIn The ReferenceApp will automatically “opt in” to each DR events it receives from the VEN. Change this to “optOut” if the ReferenceApp should opt out of events instead.
General report_interval_secs int sec 30 How often the ReferenceApp will send telemetry to the VEN.
General baseline_power_kw int kw 500 Power consumption (in kw) that will be reported to the VTN as the baseline power that would have been consumed if there were no DR adjustment.
Clock sim_start datetime str 2017-04-30 13:00:00 Simulated clock time when the simulation begins.
Clock sim_end datetime str None Simulated clock time when the simulation stops. If None, the simulation runs until the agent is stopped.
Clock sim_speed float sec 1.0 Simulation clock speed. This is a multiplier. To run a simulation in which a minute of simulated time equals a second of elapsed time, set this to 60.0.
Load load_timestamp_column_header str local_date
Load load_power_column_header str load_kw
Load load_data_frequency_min int min 15
Load load_data_year str 2015
Load load_csv_file_path str ~/repos/volttron-applications/kisensum/ ReferenceAppAgent/data/load_an d_pv.csv ~ and shell variables in the pathname will be expanded. The file must exist.
PV pv_panel_area float m2 1000.0
PV pv_efficiency float 0.0-1.0 0.75
PV pv_data_frequency_min int min 30
PV pv_data_year str 2015
PV pv_csv_file_path str ~/repos/volttron-applications/kisensum/ ReferenceAppAgent/data/nrel_pv _readings.csv ~ and shell variables in the pathname will be expanded. The file must exist.
Storage storage_soc_kwh float kWh 450.0
Storage storage_max_soc_kwh float kWh 500.0
Storage storage_max_charge_kw float kW 150.0
Storage storage_max_discharge_kw float kW 150.0

continues on next page

678 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Table 34 – continued from previous page
Type Param Name Data Type Default Comments
Storage storage_reduced_charge_soc _threshold float 0.0-1.0 0.80 Charging will be reduced when SOC % > this value.
Storage storage_reduced_discharge_s oc_threshold float 0.0-1.0 0.20 Discharging will be reduced when SOC % < this value.
Dispatch positive_dispatch_kw float kW >= 0.0 150.0
Dispatch negative_dispatch_kw float kW <= 0.0 -150.0
Dispatch go_positive_if_below float 0.0-1.0 0.1
Dispatch go_negative_if_above float 0.0-1.0 0.9
Report report_interval int seconds 15
Report report_file_path str $VOLTTRON_HOME/run/simulation_out.csv ~ and shell variables in the pathname will be expanded. If the file exists, it will be overwritten.
Actuator actuator_id str simulation.actuator
VEN venagent_id str venagent

Driver Parameters and Points

Load Driver

The load driver’s parameters specify how to look up power metrics in its data file.

Type Name Data
Type

Default Comments

Param/Point csv_file_path string This parameter must be supplied by the
agent.

Param/Point times-
tamp_column_header

string lo-
cal_date

Param/Point power_column_header string load_kw
Param/Point data_frequency_min int 15
Param/Point data_year string 2015
Point power_kw float 0.0
Point last_timestamp datetime

PV Driver

The PV driver’s parameters specify how to look up sunlight metrics in its data file, and how to calculate the power
generated from that sunlight.

Type Name Data Type Default Comments
Param/Point csv_file_path string This parameter must be supplied by the agent.
Param/Point max_power_kw float 10.0
Param/Point panel_area float 50.0
Param/Point efficiency float 0.75
Param/Point data_frequency_min int 30
Param/Point data_year string 2015
Point power_kw float 0.0
Point last_timestamp datetime

2.71. Applications 679

VOLTTRON Documentation, Release 8.1.3

Storage Driver

The storage driver’s parameters describe the device’s power and SOC limits, its initial SOC, and the SOC thresh-
olds at which charging and discharging start to be reduced as its SOC approaches a full or empty state. This
reduced power is calculated as a straight-line reduction: charging power is reduced in a straight line from
reduced_charge_soc_threshold to 100% SOC, and discharging power is reduced in a straight line from
reduced_discharge_soc_threshold to 0% SOC.

Type Name Data Type Default Comments
Param/Point max_charge_kw float 15.0
Param/Point max_discharge_kw float 15.0
Param/Point max_soc_kwh float 50.0
Param/Point soc_kwh float 25.0
Param/Point reduced_charge_soc_threshold float 0.8
Param/Point reduced_discharge_soc_threshold float 0.2
Point dispatch_kw float 0.0
Point power_kw float 0.0
Point last_timestamp datetime

VEN Configuration

The VEN may be configured according to its documentation here.

Running the Simulation

There are three main ways to monitor the ReferenceApp simulation’s progress.

One way is to look at debug trace in VOLTTRON’s log output, for example:

2018-01-08 17:41:30,333 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: 2018-
→˓01-08 17:41:30.333260 Initializing drivers
2018-01-08 17:41:30,333 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ Initializing Load: timestamp_column_header=local_date, power_column_header=load_
→˓kw, data_frequency_min=15, data_year=2015, csv_file_path=/home/ubuntu/repos/
→˓volttron-applications/kisensum/ReferenceAppAgent/data/load_and_pv.csv
2018-01-08 17:41:30,379 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ Initializing PV: panel_area=50.0, efficiency=0.75, data_frequency_min=30, data_
→˓year=2015, csv_file_path=/home/ubuntu/repos/volttron-applications/kisensum/
→˓ReferenceAppAgent/data/nrel_pv_readings.csv
2018-01-08 17:41:30,423 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ Initializing Storage: soc_kwh=25.0, max_soc_kwh=50.0, max_charge_kw=15.0, max_
→˓discharge_kw=15.0, reduced_charge_soc_threshold = 0.8, reduced_discharge_soc_
→˓threshold = 0.2
2018-01-08 17:41:32,331 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: 2018-
→˓01-08 17:41:32.328390 Reporting at sim time 2018-01-08 17:41:31.328388
2018-01-08 17:41:32,331 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ net_power_kw = 0
2018-01-08 17:41:32,331 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ report_time = 2018-01-08 17:41:31.328388
2018-01-08 17:41:32,338 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ Setting storage dispatch to 15.0 kW
2018-01-08 17:41:46,577 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓Received event: ID=4, status=far, start=2017-12-01 18:40:55+00:00, end=2017-12-02
→˓18:37:56+00:00, opt_type=none, all params={"status": "far", "signals": "{\"null\":
→˓{\"intervals\": {\"0\": {\"duration\": \"PT23H57M1S\", \"uid\": \"0\", \"payloads\
→˓": {}}}, \"currentLevel\": null, \"signalID\": null}}", "event_id": "4", "start_time
→˓": "2017-12-01 18:40:55+00:00", "creation_time": "2018-01-08 17:41:45.774548", "opt_
→˓type": "none", "priority": 1, "end_time": "2017-12-02 18:37:56+00:00"}

(continues on next page)

680 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

2018-01-08 17:41:46,577 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓Sending an optIn response for event ID 4
2018-01-08 17:41:46,583 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: 2018-
→˓01-08 17:41:46.576130 Reporting at sim time 2018-01-08 17:41:46.328388
2018-01-08 17:41:46,583 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ devices/simload/power_kw = 519.3
2018-01-08 17:41:46,583 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ devices/simpv/power_kw = -17.175
2018-01-08 17:41:46,583 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ devices/simstorage/dispatch_kw = 15.0
2018-01-08 17:41:46,584 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ devices/simstorage/power_kw = 15.0
2018-01-08 17:41:46,584 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ devices/simstorage/soc_kwh = 25.025
2018-01-08 17:41:46,584 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ net_power_kw = 49.755
2018-01-08 17:41:46,584 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ report_time = 2018-01-08 17:41:46.328388
2018-01-08 17:41:46,596 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ Setting storage dispatch to 15.0 kW
2018-01-08 17:41:48,617 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓Received event: ID=4, status=completed, start=2017-12-01 18:40:55+00:00, end=2017-
→˓12-02 18:37:56+00:00, opt_type=optIn, all params={"status": "completed", "signals":
→˓"{\"null\": {\"intervals\": {\"0\": {\"duration\": \"PT23H57M1S\", \"uid\": \"0\", \
→˓"payloads\": {}}}, \"currentLevel\": null, \"signalID\": null}}", "event_id": "4",
→˓"start_time": "2017-12-01 18:40:55+00:00", "creation_time": "2018-01-08 17:41:45.
→˓774548", "opt_type": "optIn", "priority": 1, "end_time": "2017-12-02 18:37:56+00:00
→˓"}
2018-01-08 17:42:59,563 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: 2018-
→˓01-08 17:42:59.559264 Reporting at sim time 2018-01-08 17:42:59.328388
2018-01-08 17:42:59,563 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ devices/simload/power_kw = 519.3
2018-01-08 17:42:59,563 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ devices/simpv/power_kw = -17.175
2018-01-08 17:42:59,563 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ devices/simstorage/dispatch_kw = 15.0
2018-01-08 17:42:59,563 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ devices/simstorage/power_kw = 15.0
2018-01-08 17:42:59,563 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ devices/simstorage/soc_kwh = 25.238
2018-01-08 17:42:59,563 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ net_power_kw = 49.755
2018-01-08 17:42:59,563 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ report_time = 2018-01-08 17:42:59.328388
2018-01-08 17:42:59,578 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ Setting storage dispatch to -1.05158333333 kW
2018-01-08 17:43:01,596 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: 2018-
→˓01-08 17:43:01.589877 Reporting at sim time 2018-01-08 17:43:01.328388
2018-01-08 17:43:01,596 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ devices/simload/power_kw = 519.3
2018-01-08 17:43:01,596 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ devices/simpv/power_kw = -17.175
2018-01-08 17:43:01,597 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ devices/simstorage/dispatch_kw = -1.05158333333
2018-01-08 17:43:01,597 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ devices/simstorage/power_kw = -1.051
2018-01-08 17:43:01,597 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ devices/simstorage/soc_kwh = 25.236 (continues on next page)

2.71. Applications 681

VOLTTRON Documentation, Release 8.1.3

(continued from previous page)

2018-01-08 17:43:01,597 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ net_power_kw = 33.704
2018-01-08 17:43:01,597 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ report_time = 2018-01-08 17:43:01.328388
2018-01-08 17:43:01,598 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓Reporting telemetry: {'start_time': '2018-01-08 17:42:31.598889+00:00', 'baseline_
→˓power_kw': '50', 'current_power_kw': '33.704', 'end_time': '2018-01-08 17:43:01.
→˓598889+00:00'}
2018-01-08 17:43:01,611 (referenceappagent-1.0 23842) referenceapp.agent DEBUG:
→˓ Setting storage dispatch to -1.0515 kW

Another way to monitor progress is to launch the VolttronCentral web UI, which can be found at
http://127.0.0.1:8080/vc/index.html. Here, in addition to checking agent status, one can track metrics reported by
the simulated device drivers. For example, these graphs track the simstorage battery’s power consumption and state of
charge over time. The abrupt shift from charging to discharging happens because an OpenADR event has just started:

A third way to monitor progress, while there is an active DR event, is to examine the event’s graph in the VTN web UI.
This displays the VEN’s power consumption, which is an aggregate of the consumption reported by each simulated
device driver:

682 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Report Output

The ReferenceAppAgent also writes a CSV output file so that simulation results can be reported in a spreadsheet, for
example this graph of the simulated storage device:

For Further Information

If you have comments or questions about this simulation support, please contact Rob Calvert or Nate Hill at Kisensum,
Inc.:

• (github) @rob-calvert

• (email) rob@kisensum.com

• (github) @hillrnate

• (github) nate@kisensum.com

2.71. Applications 683

mailto:rob@kisensum.com
mailto:nate@kisensum.com

VOLTTRON Documentation, Release 8.1.3

OpenADR VTN Server: User Guide

Warning: This VTN server implementation is incomplete, and is not supported by the VOLTTRON core team.
For information about its status including known issues, refer to the VTN Server Configuration docs.

This guide assumes that you have a valid user account to access and log in to the VTN application website.

Login Screen

In order to begin using the VTN application, navigate to \http://yourhostname*<or>*ip:8000/vtn.

Overview Screen

Once logged in for the first time, this is the ‘Overview’ screen.

684 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

In order to begin scheduling DR events, one must first create at least one customer, with at least one associated
site/VEN, and at least one sort of demand response (DR) program. A VTN will not be able to tell a VEN about DR
Events if the VTN doesn’t know about the VEN. A VTN knows about a VEN after a Site for the VEN has been created
in the VTN application, and the VEN has contacted the VTN.

The rest of this document describes how to set up Customers, Sites, DR Programs, and DR Events, as well as how to
export event data.

Create a Customer

Creating a Customer can be done by clicking on ‘Add Customer’ on the Overview screen.

The standard interface for adding a Customer:

2.71. Applications 685

VOLTTRON Documentation, Release 8.1.3

Customers will appear on the Overview screen after they have been added.

686 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Create a Site

At first, Customers will not have any Sites. To add a Site for a Customer, click on the Customer’s name from the
Overview screen, and then click ‘Create New Site’.

On the Create Site screen, DR Programs will appear in the ‘DR Programs’ multiple-select box if they have been
added. This will be discussed soon. Selecting one or more DR Programs here means, when creating a DR Event with
a specified DR Program, the site will be an available option for the given DR Event.

A site’s ‘VEN Name’ is permanent. In order to change a Site’s VEN Name, the Site must be deleted and re-added.

After creating a Site for a given customer, the Site will appear offline until communication has been established with

2.71. Applications 687

VOLTTRON Documentation, Release 8.1.3

the Site’s VEN within a configurable interval (default is 15 minutes).

Note: When editing a Site, you will notice an extra field on the Screen labeled ‘VEN ID’. This field is assigned
automatically upon creation of a Site and is used by the VTN to communicate with and identify the VEN.

688 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Create a DR Program

DR Programs must be added via the Admin interface. DR Programs can be added with or without associated sites. In
other words, a DR Program can be created with no sites, and sites can be added later, either by Creating/Editing a Site
and selecting the DR Program, or by Creating/Editing the DR Program and adding the Site.

Create a DR Event

Once a Customer (with at least one site) and a DR Program have been added, a DR Event can be created. This is done
by navigating to the Overview screen and clicking ‘Add DR Event’.

On the Add DR Event screen, the first step is to select a DR Program from the drop-down menu. Once a DR Program
is selected, the ‘Sites’ multi-select box will auto-populate with the Sites that are associated with that DR Program.

Note that the Notification Time is the absolute soonest time that a VEN will be notified of a DR Event. VENs will not
‘know’ about DR Events that apply to them until they have ‘polled’ the VTN after the Notification Time.

2.71. Applications 689

VOLTTRON Documentation, Release 8.1.3

Active DR events are displayed on the Overview screen. DR Events are considered active if they have not been
canceled and if they have not been completed.

Exporting event telemetry to a .csv is available on the Report tab. In the case of this VTN and its associated VENs,
the telemetry that will be reported include baseline power (kw) and measured power (kw).

690 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

OpenADR VTN Server: Installation and Configuration

The OpenADR VTN server is a partial implementation of the OpenADR VTN specification developed by Kisensum
for interoperability with the VOLTTRON core VEN agent implementation. The VTN server resides in the VOLT-
TRON applications repository, and is not supported by the VOLTTRON core team.

Known issues: The Kisensum implementation of the VTN server does not currently include support for registration,
including QueryRegistration requests, create and cancel party requests, etc. Additionally, it does not implement opt-in
behavior as specified by OpenADR. Finally, it has been found that requests containing empty basic authentication will
be served a 403 error, while requests with no authentication will proceed to the correct endpoint normally.

The Kisensum VTN server is a Django application written in Python 3 and utilizing a Postgres database.

Warning: If you are planning to install your VTN server on the same system that contains your VOLTTRON
instance and you are using RabbitMQ with VOLTTRON, you will need to set up a new instance of RabbitMQ
for VTN. In production, the VTN server should be on a different device than VOLTTRON, and as such it is
recommended that your VTN server is in it’s own VM or on it’s own machine. If you still wish to set up two
instances of RabbitMQ on the same system, please refer to https://www.rabbitmq.com for further details.

Get Source Code

To install the VTN server, first get the code by cloning volttron-applications from github and checking out the openadr
software.

$ cd ~/repos
$ git clone https://github.com/volttron/volttron-applications
$ cd volttron-applications
$ git checkout master

2.71. Applications 691

https://www.rabbitmq.com

VOLTTRON Documentation, Release 8.1.3

Install Python 3

After installing Python3 on the server, configure an openadr virtual environment:

$ sudo pip install virtualenvwrapper
$ mkdir ~/.virtualenvs (if it doesn’t exist already)

Edit ~/.bashrc and add these lines:

export WORKON_HOME=$HOME/.virtualenvs
export PROJECT_HOME=$HOME/repos/volttron-applications/kisensum/openadr
source virtualenvwrapper.sh

Create the openadr project’s virtual environment:

$ source ~/.bashrc
$ mkvirtualenv -p /usr/bin/python3 openadr
$ setvirtualenvproject openadr ~/repos/volttron-applications/kisensum/openadr
$ workon openadr

From this point on, use workon openadr to operate within the openadr virtual environment.

Create a local site override for Django’s base settings file as follows. First, create ~/.virtualenvs/openadr/.settings in
a text editor, adding the following line to it:

openadr.settings.site

Then, edit ~/.virtualenvs/openadr/postactivate, adding the following lines:

PROJECT_PATH=`cat "$VIRTUAL_ENV/$VIRTUALENVWRAPPER_PROJECT_FILENAME"`
PROJECT_ROOT=`dirname $PROJECT_PATH`
PROJECT_NAME=`basename $PROJECT_PATH`
SETTINGS_FILENAME=".settings"
ENV_FILENAME=".env_postactivate.sh"

Load the default DJANGO_SETTINGS_MODULE from a .settings
file in the django project root directory.
export OLD_DJANGO_SETTINGS_MODULE=$DJANGO_SETTINGS_MODULE
if [-f $VIRTUAL_ENV/$SETTINGS_FILENAME]; then

export DJANGO_SETTINGS_MODULE=`cat "$VIRTUAL_ENV/$SETTINGS_FILENAME"`
fi

Finally, create $PROJECT_HOME/openadr/openadr/openadr/settings/site.py, which holds overrides to base.py,
the Django base settings file. At a minimum, this file should contain the following:

from .base import *
ALLOWED_HOSTS = [‘*’]

A more restrictive ALLOWED_HOSTS setting (e.g. ‘ki-evi.com’) should be used in place of ‘*’ if it is known.

692 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Use Pip to Install Third-Party Software

$ workon openadr
$ pip install -r requirements.txt

Set up a Postgres Database

Install postgres.

Create a postgres user.

Create a postgres database named openadr.

(The user name, user password, and database name must match what is in
$PROJECT_HOME/openadr/openadr/settings/base.py or the override settings in
$PROJECT_HOME/openadr/openadr/settings/local.py.)

You may have to edit /etc/postgresql/9.5/main/pg_hba.conf to be ‘md5’ authorization for ‘local’.

Migrate the Database and Create an Initial Superuser

$ workon openadr
$ cd openadr
$ python manage.py migrate
$ python manage.py createsuperuser

This is the user that will be used to login to the VTN application for the first time, and will be able to create other users
and groups.

Configure Rabbitmq

rabbitmq is used by celery, which manages the openadr server’s periodic tasks.

Install and run rabbitmq as follows (for further information, see http://www.rabbitmq.com/download.html):

$ sudo apt-get install rabbitmq-server

Start the rabbitmq server if it isn’t already running:

$ sudo rabbitmq-server -detached (note the single dash)

Start the VTN Server

$ workon openadr
$ cd openadr
$ python manage.py runserver 0.0.0.0:8000

2.71. Applications 693

http://www.rabbitmq.com/download.html

VOLTTRON Documentation, Release 8.1.3

Start Celery

$ workon openadr
$ cd openadr
$ celery -A openadr worker -B

Configuration Parameters

The VTN supports the following configuration parameters, which can be found in base.py and overriden in site.py:

Parameter Ex-
am-
ple

Description

VTN_ID “vtn01”OpenADR ID of this virtual top node. Virtual end nodes must know this VTN_ID to be able
to communicate with the VTN.

ON-
LINE_INTERVAL_MINUTES

15 The amount of time, in minutes, that determines how long the VTN will wait until displaying
a given VEN offline. In other words, if the VTN does not receive any communication from
a given VEN within ONLINE_INTERVAL_MINUTES minutes, the VTN will display said
VEN as offline.

GRAPH_TIMECHUNK_SECONDS360 The VTN displays DR Event graph data by averaging individual VENs’ telemetry by
GRAPH_TIMECHUNK_SECONDS seconds. This value should be adjusted according to
how often VENs are sending the VTN telemetry.

2.71.4 MatLab Integration

Overview:

Matlab-VOLTTRON integration allows Matlab applications to receive data from devices and send control commands
to change points on those devices.

DrivenMatlabAgent in VOLTTRON allows this interaction by using ZeroMQ sockets to communicate with the Matlab
application.

694 Chapter 2. Features

VOLTTRON Documentation, Release 8.1.3

Data Flow Architecture:

Installation steps for system running Matlab:

1. Install python. Suggested 3.6.

2. Install pyzmq (tested with version 15.2.0) Follow steps at: https://github.com/zeromq/pyzmq

3. Install Matlab (tested with R2015b)

4. Start Matlab and set the python path. In the Matlab command window set the python path with pyversion:

>> pyversion python.exe

5. To test that the python path has been set correctly type following in the Matlab command window. Matlab shoud
print the python path with version information.

>> pyversion

6. To test that the pyzmq library is installed correctly and is accessible from python inside Matlab, type the follow-
ing in Matlab command window and it should show pyzmq version installed.

>> py.zmq.pyzmq_version()

7. Copy example.m from volttron/examples/ExampleMatlabApplication/matlab to your desired folder.

2.71. Applications 695

https://github.com/zeromq/pyzmq

VOLTTRON Documentation, Release 8.1.3

Run and test Matlab VOLTTRON Integration:

Assumptions

• Device driver agent is already developed

Installation:

1. Install VOLTTRON on a VM or different system than the one running Matlab.

Follow link: http://volttron.readthedocs.io/en/develop/install.html

2. Add subtree volttron-applications under volttron/applications by using the following command:

git subtree add --prefix applications https://github.com/VOLTTRON/volttron-
→˓applications.git develop --squash

Configuration

1. Copy example configuration file applications/pnnl/DrivenMatlabAgent/config_waterheater to volltron/config.

2. Change config_url and data_url in the new config file to the ipaddress of machine running Matlab. Keep the
same port numbers.

3. Change campus, building and unit (device) name in the config file.

4. Open example.m and change following line:

matlab_result = '{"commands":{"Zone1":[["temperature",27]],"Zone2":[["temperature",
→˓28]]}}';

Change it to include correct device name and point names in the format:

'{"commands":{"device1":[["point1",value1]],"device2":[["point2",value2]]}}';

Steps to test integration:

1. Start VOLTTRON

2. Run Actuator

3. Run device driver agent

4. Run DrivenMatlabAgent with the new config file

5. Run example.m in Matlab

Now whenever the device driver publishes the state of devices listed in the config file of DrivenMatlabAgent, Driven-
MatlabAgent will send it to Matlab application and receive commands to send to devices.

696 Chapter 2. Features

http://volttron.readthedocs.io/en/develop/install.html

VOLTTRON Documentation, Release 8.1.3

Resources

http://www.mathworks.com/help/matlab/getting-started_buik_wp-3.html

2.71. Applications 697

http://www.mathworks.com/help/matlab/getting-started_buik_wp-3.html

VOLTTRON Documentation, Release 8.1.3

698 Chapter 2. Features

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

699

VOLTTRON Documentation, Release 8.1.3

700 Chapter 3. Indices and tables

PYTHON MODULE INDEX

a
actuator, 518
actuator.agent, 518
actuator.scheduler, 530
ambient, 532
ambient.agent, 532

b
bacnet_proxy, 536

c
cratedb, 537

d
darksky, 539
darksky.agent, 539
datamover, 543
datamover.agent, 543

e
emailer, 634
emailer.agent, 634
external_data, 546
external_data.agent, 546

f
filewatchpublisher, 637
filewatchpublisher.agent, 637
forwarder, 548
forwarder.agent, 548

l
logstatisticsagent, 639
logstatisticsagent.agent, 639

m
mongotagging, 554
mongotagging.tagging, 554
mqtt_historian, 551
mqtt_historian.agent, 551
mqttlistener, 552

p
platform_driver, 558
platform_driver.agent, 600
platform_driver.driver, 602
platform_driver.driver_exceptions, 603
platform_driver.driver_locks, 603
platform_driver.interfaces, 558
platform_driver.interfaces.bacnet, 587
platform_driver.interfaces.chargepoint,

565
platform_driver.interfaces.chargepoint.async_service,

569
platform_driver.interfaces.chargepoint.credential_check,

571
platform_driver.interfaces.chargepoint.service,

571
platform_driver.interfaces.dnp3, 588
platform_driver.interfaces.ecobee, 589
platform_driver.interfaces.fakedriver,

592
platform_driver.interfaces.IEEE2030_5,

586
platform_driver.interfaces.modbus, 592
platform_driver.interfaces.obix, 594
platform_driver.interfaces.radiothermostat,

594
platform_driver.interfaces.rainforesteagle,

595
platform_driver.interfaces.rainforestemu2,

596
platform_driver.interfaces.restful, 597
platform_driver.interfaces.ted_meter,

585
platform_driver.interfaces.thermostat_api,

598
platform_driver.interfaces.universal,

599

r
rpc_test_client, 620

701

VOLTTRON Documentation, Release 8.1.3

s
sqlaggregator, 605
sqlaggregator.aggregator, 605
sqlhistorian, 608
sqlhistorian.historian, 608
sqlite, 616
sqlite.tagging, 616
sysmon, 640
sysmon.agent, 640

t
thresholddetection, 642
thresholddetection.agent, 642
topic_watcher, 644
topic_watcher.agent, 644

v
vcplatform, 626
vcplatform.vcconnection, 626
volttroncentral, 620
volttroncentral.agent, 620
volttroncentral.authenticate, 622
volttroncentral.platforms, 622
volttroncentral.sessions, 625

w
watcher, 633
watcher.agent, 633
weatherdotgov, 630
weatherdotgov.agent, 630

702 Python Module Index

INDEX

A
Activated Environment, 14
activationDate() (plat-

form_driver.interfaces.chargepoint.service.CPStation
property), 583

actuator
module, 518

actuator.agent
module, 518

actuator.scheduler
module, 530

actuator_agent() (in module actuator.agent), 529
ActuatorAgent (class in actuator.agent), 524
add_event_listener() (volttroncen-

tral.platforms.PlatformHandler method),
622

add_platform() (volttroncen-
tral.platforms.Platforms method), 623

Address() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

address() (volttroncen-
tral.platforms.PlatformHandler property),
622

address_hasher() (volttroncen-
tral.platforms.PlatformHandler static method),
622

Agent, 14
Agent Framework, 14
agent_id() (actuator.scheduler.DeviceState prop-

erty), 530
agent_status() (vcplat-

form.vcconnection.VCConnection method),
626

AgentWatcher (class in watcher.agent), 633
AIP (Agent Instantiation and Packaging), 14
AlarmRegister (class in plat-

form_driver.interfaces.chargepoint), 565
alarms() (platform_driver.interfaces.chargepoint.service.CPAPIGetAlarmsResponse

property), 571
alarmTime() (platform_driver.interfaces.chargepoint.service.CPAPIGetAlarmsResponse

method), 571
alarmType() (platform_driver.interfaces.chargepoint.service.CPAPIGetAlarmsResponse

method), 571
AlertAgent (class in topic_watcher.agent), 644
AlertGroup (class in topic_watcher.agent), 645
all_registers() (plat-

form_driver.interfaces.dnp3.Interface method),
588

allowedLoad() (plat-
form_driver.interfaces.chargepoint.service.CPAPIGetLoadResponse
method), 571

ambient
module, 532

Ambient (class in ambient.agent), 532
ambient() (in module ambient.agent), 534
ambient.agent

module, 532
attribute_list (plat-

form_driver.interfaces.chargepoint.AlarmRegister
attribute), 565

attribute_list (plat-
form_driver.interfaces.chargepoint.ChargingSessionRegister
attribute), 567

attribute_list (plat-
form_driver.interfaces.chargepoint.LoadRegister
attribute), 567

attribute_list (plat-
form_driver.interfaces.chargepoint.StationRegister
attribute), 568

attribute_list (plat-
form_driver.interfaces.chargepoint.StationRightsRegister
attribute), 568

attribute_list (plat-
form_driver.interfaces.chargepoint.StationStatusRegister
attribute), 569

Authenticate (class in volttroncentral.authenticate),
622

authenticate() (volttroncen-
tral.authenticate.Authenticate method), 622

authenticate() (volttroncen-
tral.sessions.SessionHandler method), 625

authorize_application() (plat-
form_driver.interfaces.ecobee.Interface
method), 589

703

VOLTTRON Documentation, Release 8.1.3

B
BACNet, 14
bacnet_proxy

module, 536
BaseInterface (class in platform_driver.interfaces),

560
BaseRegister (class in platform_driver.interfaces),

562
BasicRevert (class in platform_driver.interfaces),

563
Bootstrap the Environment, 15
build_ranges_map() (plat-

form_driver.interfaces.modbus.Interface
method), 592

build_register_map() (plat-
form_driver.interfaces.BaseInterface method),
560

C
CacheItem (class in plat-

form_driver.interfaces.chargepoint.async_service),
570

call() (vcplatform.vcconnection.VCConnection
method), 626

call() (volttroncentral.platforms.PlatformHandler
method), 623

call_agent_config_points() (plat-
form_driver.interfaces.dnp3.Interface method),
588

call_agent_config_points() (plat-
form_driver.interfaces.IEEE2030_5.Interface
method), 586

call_agent_rpc() (plat-
form_driver.interfaces.dnp3.Interface method),
588

call_agent_rpc() (plat-
form_driver.interfaces.IEEE2030_5.Interface
method), 586

call_grequest() (in module plat-
form_driver.interfaces.ecobee), 591

cancel_task() (actua-
tor.scheduler.ScheduleManager method),
531

capture_data() (datamover.agent.DataMover
method), 543

capture_data() (forwarder.agent.ForwardHistorian
method), 548

change_state() (actuator.scheduler.Task method),
531

ChargepointRegister (class in plat-
form_driver.interfaces.chargepoint), 565

charging_sessions() (plat-
form_driver.interfaces.chargepoint.service.CPAPIGetChargingSessionsResponse
property), 571

ChargingSessionRegister (class in plat-
form_driver.interfaces.chargepoint), 566

check_availability() (actua-
tor.scheduler.Schedule method), 530

check_can_preempt_other() (actua-
tor.scheduler.Task method), 531

check_output() (plat-
form_driver.interfaces.chargepoint.service.CPAPIResponse
static method), 573

check_session() (volttroncen-
tral.sessions.SessionHandler method), 625

City() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

clear() (volttroncentral.sessions.SessionHandler
method), 625

clear_dirty_point() (plat-
form_driver.interfaces.RevertTracker method),
564

clear_overrides() (plat-
form_driver.agent.PlatformDriverAgent
method), 600

clearAlarms() (plat-
form_driver.interfaces.chargepoint.service.CPAPIGetAlarmsResponse
method), 571

clearAlarms() (plat-
form_driver.interfaces.chargepoint.service.CPService
method), 574

clearShedState() (plat-
form_driver.interfaces.chargepoint.service.CPService
method), 575

client() (platform_driver.interfaces.chargepoint.async_service.CPResponse
property), 570

collect_aggregate() (sqlaggrega-
tor.aggregator.SQLAggregateHistorian
method), 605

Config Store, 15
config_store_name() (volttroncen-

tral.platforms.PlatformHandler property),
623

configure() (actuator.agent.ActuatorAgent method),
525

configure() (datamover.agent.DataMover method),
543

configure() (forwarder.agent.ForwardHistorian
method), 548

configure() (platform_driver.interfaces.bacnet.Interface
method), 587

configure() (platform_driver.interfaces.BaseInterface
method), 560

configure() (platform_driver.interfaces.chargepoint.Interface
method), 567

configure() (platform_driver.interfaces.dnp3.Interface
method), 588

configure() (platform_driver.interfaces.ecobee.Interface

704 Index

VOLTTRON Documentation, Release 8.1.3

method), 589
configure() (platform_driver.interfaces.fakedriver.Interface

method), 592
configure() (platform_driver.interfaces.IEEE2030_5.Interface

method), 586
configure() (platform_driver.interfaces.modbus.Interface

method), 592
configure() (platform_driver.interfaces.obix.Interface

method), 594
configure() (platform_driver.interfaces.radiothermostat.Interface

method), 595
configure() (platform_driver.interfaces.rainforesteagle.Interface

method), 595
configure() (platform_driver.interfaces.rainforestemu2.Interface

method), 596
configure() (platform_driver.interfaces.restful.Interface

method), 597
configure() (platform_driver.interfaces.ted_meter.Interface

method), 585
configure() (platform_driver.interfaces.universal.Interface

method), 599
configure() (sqlaggrega-

tor.aggregator.SQLAggregateHistorian
method), 605

configure_main() (emailer.agent.EmailerAgent
method), 634

configure_main() (plat-
form_driver.agent.PlatformDriverAgent
method), 600

configure_platforms() (volttroncen-
tral.agent.VolttronCentralAgent method),
621

configure_publish_lock() (in module plat-
form_driver.driver_locks), 603

configure_socket_lock() (in module plat-
form_driver.driver_locks), 603

Connector() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

connector() (platform_driver.interfaces.chargepoint.service.CPPort
property), 574

contains_include_start() (actua-
tor.scheduler.TimeSlice method), 531

Country() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

CPAPIException, 571
CPAPIGetAlarmsResponse (class in plat-

form_driver.interfaces.chargepoint.service),
571

CPAPIGetChargingSessionsResponse
(class in plat-
form_driver.interfaces.chargepoint.service),
571

CPAPIGetLoadResponse (class in plat-
form_driver.interfaces.chargepoint.service),

571
CPAPIGetStationRightsResponse (class in plat-

form_driver.interfaces.chargepoint.service),
571

CPAPIGetStationsResponse (class in plat-
form_driver.interfaces.chargepoint.service),
572

CPAPIGetStationStatusResponse (class in plat-
form_driver.interfaces.chargepoint.service),
571

CPAPIResponse (class in plat-
form_driver.interfaces.chargepoint.service),
573

CPGroupManager (class in plat-
form_driver.interfaces.chargepoint.service),
573

CPOrganization (class in plat-
form_driver.interfaces.chargepoint.service),
574

CPPort (class in plat-
form_driver.interfaces.chargepoint.service),
574

CPRequest (class in plat-
form_driver.interfaces.chargepoint.async_service),
569

CPResponse (class in plat-
form_driver.interfaces.chargepoint.async_service),
570

CPService (class in plat-
form_driver.interfaces.chargepoint.service),
574

CPStation (class in plat-
form_driver.interfaces.chargepoint.service),
582

CPStationGroup (class in plat-
form_driver.interfaces.chargepoint.service),
583

cpu_percent() (sysmon.agent.SysMonAgent
method), 640

cratedb
module, 537

create_alert_group()
(topic_watcher.agent.AlertAgent method),
644

create_forecast_entry() (dark-
sky.agent.Darksky method), 539

currencyCode() (plat-
form_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

Current() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

current() (platform_driver.interfaces.chargepoint.service.CPPort
property), 574

Index 705

VOLTTRON Documentation, Release 8.1.3

D
darksky

module, 539
Darksky (class in darksky.agent), 539
darksky() (in module darksky.agent), 541
darksky.agent

module, 539
data() (actuator.scheduler.RequestResult property),

530
datamover

module, 543
DataMover (class in datamover.agent), 543
datamover.agent

module, 543
decrement_ttl() (topic_watcher.agent.AlertAgent

method), 644
delete_agent_config() (vcplat-

form.vcconnection.VCConnection method),
626

delete_agent_config() (volttroncen-
tral.platforms.PlatformHandler method),
623

derive_device_topic() (plat-
form_driver.agent.PlatformDriverAgent
method), 600

Description() (plat-
form_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

DeviceState (class in actuator.scheduler), 530
disconnect_platform() (volttroncen-

tral.platforms.Platforms method), 623
disk_percent() (sysmon.agent.SysMonAgent

method), 640
display_name() (volttroncen-

tral.platforms.PlatformHandler property),
623

DNP3 (Distributed Network Protocol 3), 14
DNP3Register (class in plat-

form_driver.interfaces.dnp3), 588
do_rpc() (in module rpc_test_client), 620
Driver, 15
Driver Framework, 15
driverAccountNumber() (plat-

form_driver.interfaces.chargepoint.service.CPAPIGetChargingSessionsResponse
method), 571

DriverAgent (class in platform_driver.driver), 602
DriverConfigError, 603
DriverError, 603
DriverInterfaceError, 564
driverName() (plat-

form_driver.interfaces.chargepoint.service.CPAPIGetChargingSessionsResponse
method), 571

dump_methods_and_datatypes() (plat-
form_driver.interfaces.chargepoint.service.CPService

method), 575

E
EKGregister (class in plat-

form_driver.interfaces.fakedriver), 592
emailer

module, 634
emailer.agent

module, 634
EmailerAgent (class in emailer.agent), 634
end() (actuator.scheduler.TimeSlice property), 531
endTime() (platform_driver.interfaces.chargepoint.service.CPAPIGetChargingSessionsResponse

method), 571
endTime() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse

method), 572
Energy() (platform_driver.interfaces.chargepoint.service.CPAPIGetChargingSessionsResponse

method), 571
energy_led() (plat-

form_driver.interfaces.thermostat_api.ThermostatInterface
method), 598

establish_cov_subscription() (plat-
form_driver.interfaces.bacnet.Interface
method), 587

exec_method() (in module rpc_test_client), 620
expiration() (plat-

form_driver.interfaces.chargepoint.async_service.CacheItem
property), 570

external_data
module, 546

external_data.agent
module, 546

external_data_agent() (in module exter-
nal_data.agent), 546

ExternalData (class in external_data.agent), 546

F
FakeRegister (class in plat-

form_driver.interfaces.fakedriver), 592
file_watch_publisher() (in module filewatch-

publisher.agent), 637
filewatchpublisher

module, 637
FileWatchPublisher (class in filewatchpub-

lisher.agent), 637
filewatchpublisher.agent

module, 637
find_starting_datetime() (plat-

form_driver.driver.DriverAgent method),
602

finished() (actuator.scheduler.Schedule method),
530

fmode() (platform_driver.interfaces.thermostat_api.ThermostatInterface
method), 598

706 Index

VOLTTRON Documentation, Release 8.1.3

format_multientry_response() (dark-
sky.agent.Darksky method), 539

forward_bacnet_cov_value() (plat-
form_driver.agent.PlatformDriverAgent
method), 600

forwarder
module, 548

forwarder.agent
module, 548

ForwardHistorian (class in forwarder.agent), 548

G
generate_response_error() (ambi-

ent.agent.Ambient method), 532
generate_response_error() (dark-

sky.agent.Darksky method), 539
generate_response_error() (weatherdot-

gov.agent.WeatherDotGovAgent static method),
630

get_agent_config() (vcplat-
form.vcconnection.VCConnection method),
626

get_agent_config() (volttroncen-
tral.platforms.PlatformHandler method),
623

get_agent_config_list() (volttroncen-
tral.platforms.PlatformHandler method),
623

get_agent_list() (volttroncen-
tral.platforms.PlatformHandler method),
623

get_agg_topic_map() (sqlaggrega-
tor.aggregator.SQLAggregateHistorian
method), 605

get_aggregation_list() (sqlaggrega-
tor.aggregator.SQLAggregateHistorian
method), 605

get_all_revert_values() (plat-
form_driver.interfaces.RevertTracker method),
564

get_api_calls_interval() (dark-
sky.agent.Darksky method), 539

get_api_description() (ambient.agent.Ambient
method), 532

get_api_description() (darksky.agent.Darksky
method), 539

get_api_description() (weatherdot-
gov.agent.WeatherDotGovAgent method),
630

get_attr_from_response() (plat-
form_driver.interfaces.chargepoint.service.CPAPIResponse
static method), 573

get_auth_config_from_store() (plat-
form_driver.interfaces.ecobee.Interface

method), 589
get_conflicts() (actuator.scheduler.Schedule

method), 530
get_conflicts() (actuator.scheduler.Task method),

531
get_cool_pgm() (plat-

form_driver.interfaces.thermostat_api.ThermostatInterface
method), 598

get_current_slot() (actuator.scheduler.Schedule
method), 530

get_current_slots() (actuator.scheduler.Task
method), 531

get_daily_forecast() (darksky.agent.Darksky
method), 540

get_darksky_data() (darksky.agent.Darksky
method), 540

get_data() (platform_driver.interfaces.ted_meter.Interface
method), 585

get_data_cache() (plat-
form_driver.interfaces.ecobee.Interface
method), 589

get_data_remote() (plat-
form_driver.interfaces.ecobee.Interface
method), 589

get_dbfuncts_object() (sqlhisto-
rian.historian.SQLHistorian method), 608

get_demand_peaks() (in module plat-
form_driver.interfaces.rainforesteagle), 596

get_description() (plat-
form_driver.interfaces.BaseRegister method),
562

get_devices() (vcplat-
form.vcconnection.VCConnection method),
627

get_devices() (volttroncen-
tral.platforms.PlatformHandler method),
623

get_dict() (in module rpc_test_client), 620
get_ecobee_data() (plat-

form_driver.interfaces.ecobee.Interface
method), 589

get_end_position() (filewatchpub-
lisher.agent.FileWatchPublisher method),
637

get_file_size() (logstatistic-
sagent.agent.LogStatisticsAgent method),
639

get_generation_time_for_service() (dark-
sky.agent.Darksky method), 540

get_gridpoints_str() (weatherdot-
gov.agent.WeatherDotGovAgent static method),
630

get_health() (vcplat-
form.vcconnection.VCConnection method),

Index 707

VOLTTRON Documentation, Release 8.1.3

627
get_heat_pgm() (plat-

form_driver.interfaces.thermostat_api.ThermostatInterface
method), 598

get_hourly_forecast() (darksky.agent.Darksky
method), 540

get_instance_name() (vcplat-
form.vcconnection.VCConnection method),
627

get_instance_uuid() (vcplat-
form.vcconnection.VCConnection method),
627

get_interface() (plat-
form_driver.driver.DriverAgent method),
602

get_lat_long_str() (weatherdot-
gov.agent.WeatherDotGovAgent static method),
630

get_location_string() (weatherdot-
gov.agent.WeatherDotGovAgent method),
631

get_minutely_forecast() (dark-
sky.agent.Darksky method), 540

get_multiple_points() (actua-
tor.agent.ActuatorAgent method), 525

get_multiple_points() (plat-
form_driver.agent.PlatformDriverAgent
method), 600

get_multiple_points() (plat-
form_driver.driver.DriverAgent method),
602

get_multiple_points() (plat-
form_driver.interfaces.BaseInterface method),
561

get_next_event_time() (actua-
tor.scheduler.Schedule method), 530

get_next_event_time() (actua-
tor.scheduler.ScheduleManager method),
531

get_next_event_time() (actuator.scheduler.Task
method), 531

get_override_devices() (plat-
form_driver.agent.PlatformDriverAgent
method), 600

get_override_patterns() (plat-
form_driver.agent.PlatformDriverAgent
method), 600

get_paths_for_point() (plat-
form_driver.driver.DriverAgent method),
602

get_performance_list() (volttroncen-
tral.platforms.Platforms method), 624

get_platform() (volttroncen-
tral.platforms.Platforms method), 624

get_platform_hashes() (volttroncen-
tral.platforms.Platforms method), 624

get_platform_list() (volttroncen-
tral.platforms.Platforms method), 624

get_platform_vip_identities() (volttroncen-
tral.platforms.Platforms method), 625

get_point() (actuator.agent.ActuatorAgent method),
525

get_point() (platform_driver.agent.PlatformDriverAgent
method), 601

get_point() (platform_driver.driver.DriverAgent
method), 602

get_point() (platform_driver.interfaces.bacnet.Interface
method), 587

get_point() (platform_driver.interfaces.BaseInterface
method), 561

get_point() (platform_driver.interfaces.chargepoint.Interface
method), 567

get_point() (platform_driver.interfaces.dnp3.Interface
method), 588

get_point() (platform_driver.interfaces.ecobee.Interface
method), 590

get_point() (platform_driver.interfaces.fakedriver.Interface
method), 592

get_point() (platform_driver.interfaces.IEEE2030_5.Interface
method), 586

get_point() (platform_driver.interfaces.modbus.Interface
method), 593

get_point() (platform_driver.interfaces.obix.Interface
method), 594

get_point() (platform_driver.interfaces.radiothermostat.Interface
method), 595

get_point() (platform_driver.interfaces.rainforesteagle.Interface
method), 596

get_point() (platform_driver.interfaces.rainforestemu2.Interface
method), 597

get_point() (platform_driver.interfaces.restful.Interface
method), 597

get_point() (platform_driver.interfaces.ted_meter.Interface
method), 585

get_point() (platform_driver.interfaces.universal.Interface
method), 600

get_point_map() (plat-
form_driver.interfaces.IEEE2030_5.Interface
method), 586

get_point_name_defs_file() (ambi-
ent.agent.Ambient method), 533

get_point_name_defs_file() (dark-
sky.agent.Darksky method), 540

get_point_name_defs_file() (weatherdot-
gov.agent.WeatherDotGovAgent method),
631

get_port_value() (plat-
form_driver.interfaces.chargepoint.service.CPAPIResponse

708 Index

VOLTTRON Documentation, Release 8.1.3

static method), 573
get_publickey() (volttroncen-

tral.agent.VolttronCentralAgent method),
621

get_register() (plat-
form_driver.interfaces.chargepoint.ChargepointRegister
method), 566

get_register_by_name() (plat-
form_driver.interfaces.BaseInterface method),
561

get_register_count() (plat-
form_driver.interfaces.modbus.ModbusBitRegister
method), 593

get_register_count() (plat-
form_driver.interfaces.modbus.ModbusByteRegister
method), 593

get_register_names() (plat-
form_driver.interfaces.BaseInterface method),
561

get_register_names_view() (plat-
form_driver.interfaces.BaseInterface method),
561

get_register_python_type() (plat-
form_driver.interfaces.BaseRegister method),
563

get_register_type() (plat-
form_driver.interfaces.BaseRegister method),
563

get_register_value() (plat-
form_driver.interfaces.dnp3.Interface method),
589

get_register_value() (plat-
form_driver.interfaces.IEEE2030_5.Interface
method), 587

get_registers_by_type() (plat-
form_driver.interfaces.BaseInterface method),
561

get_revert_value() (plat-
form_driver.interfaces.RevertTracker method),
564

get_schedule() (actuator.scheduler.Schedule
method), 530

get_schedule_state() (actua-
tor.scheduler.ScheduleManager method),
531

get_setting() (volttroncen-
tral.agent.VolttronCentralAgent method),
621

get_setting_keys() (volttroncen-
tral.agent.VolttronCentralAgent method),
621

get_state() (platform_driver.interfaces.ecobee.Hold
method), 589

get_state() (platform_driver.interfaces.ecobee.Program

method), 590
get_state() (platform_driver.interfaces.ecobee.Setting

method), 590
get_state() (platform_driver.interfaces.ecobee.Status

method), 591
get_state() (platform_driver.interfaces.ecobee.Vacation

method), 591
get_state() (platform_driver.interfaces.modbus.ModbusBitRegister

method), 593
get_state() (platform_driver.interfaces.modbus.ModbusByteRegister

method), 593
get_station_str() (weatherdot-

gov.agent.WeatherDotGovAgent static method),
631

get_stats() (volttroncen-
tral.platforms.PlatformHandler method),
623

get_summation() (in module plat-
form_driver.interfaces.rainforesteagle), 596

get_thermostat_data() (plat-
form_driver.interfaces.ecobee.Interface
method), 590

get_topic_map() (sqlaggrega-
tor.aggregator.SQLAggregateHistorian
method), 605

get_topic_name() (topic_watcher.agent.AlertGroup
static method), 645

get_units() (platform_driver.interfaces.BaseRegister
method), 563

get_update_interval() (ambient.agent.Ambient
method), 533

get_update_interval() (darksky.agent.Darksky
method), 540

get_update_interval() (weatherdot-
gov.agent.WeatherDotGovAgent method),
631

get_value_async_result() (plat-
form_driver.interfaces.obix.Register method),
594

get_version() (ambient.agent.Ambient method),
533

get_version() (darksky.agent.Darksky method), 540
get_vip_addresses() (vcplat-

form.vcconnection.VCConnection method),
627

getAlarms() (platform_driver.interfaces.chargepoint.service.CPService
method), 575

getChargingSessionData() (plat-
form_driver.interfaces.chargepoint.service.CPService
method), 575

getCPNInstances() (plat-
form_driver.interfaces.chargepoint.service.CPService
method), 575

getLoad() (platform_driver.interfaces.chargepoint.service.CPService

Index 709

VOLTTRON Documentation, Release 8.1.3

method), 576
getOrgsAndStationGroups() (plat-

form_driver.interfaces.chargepoint.service.CPService
method), 577

getStationGroupDetails() (plat-
form_driver.interfaces.chargepoint.service.CPService
method), 577

getStationGroups() (plat-
form_driver.interfaces.chargepoint.service.CPService
method), 577

getStationRights() (plat-
form_driver.interfaces.chargepoint.service.CPService
method), 578

getStations() (plat-
form_driver.interfaces.chargepoint.service.CPService
method), 579

getStationStatus() (plat-
form_driver.interfaces.chargepoint.service.CPService
method), 579

getUsers() (platform_driver.interfaces.chargepoint.service.CPService
method), 580

H
handle_get() (actuator.agent.ActuatorAgent

method), 525
handle_revert_device() (actua-

tor.agent.ActuatorAgent method), 526
handle_revert_point() (actua-

tor.agent.ActuatorAgent method), 526
handle_schedule_request() (actua-

tor.agent.ActuatorAgent method), 526
handle_set() (actuator.agent.ActuatorAgent

method), 527
health() (volttroncentral.platforms.PlatformHandler

property), 623
heart_beat() (plat-

form_driver.agent.PlatformDriverAgent
method), 601

heart_beat() (platform_driver.driver.DriverAgent
method), 602

Historian, 15
historian() (in module datamover.agent), 544
historian() (in module forwarder.agent), 549
historian() (in module mqtt_historian.agent), 552
historian() (in module sqlhistorian.historian), 611
historian_setup() (datamover.agent.DataMover

method), 544
historian_setup() (for-

warder.agent.ForwardHistorian method),
548

historian_setup() (sqlhisto-
rian.historian.SQLHistorian method), 609

historian_teardown() (data-
mover.agent.DataMover method), 544

historian_teardown() (for-
warder.agent.ForwardHistorian method),
548

Hold (class in platform_driver.interfaces.ecobee), 589
hold() (platform_driver.interfaces.thermostat_api.ThermostatInterface

method), 598

I
id() (platform_driver.interfaces.chargepoint.service.CPStation

property), 583
id() (platform_driver.interfaces.chargepoint.service.CPStationGroup

property), 584
id() (volttroncentral.agent.RequiredArgs property), 620
IEEE 2030.5, 14
IEEE2030_5Register (class in plat-

form_driver.interfaces.IEEE2030_5), 586
ignore_topic() (topic_watcher.agent.AlertAgent

method), 644
ignore_topic() (topic_watcher.agent.AlertGroup

method), 645
info_string() (actuator.scheduler.RequestResult

property), 530
init_volttron_central() (in module volttron-

central.agent), 622
initialize_aggregate_store() (sqlaggre-

gator.aggregator.SQLAggregateHistorian
method), 605

insert_aggregate() (sqlaggrega-
tor.aggregator.SQLAggregateHistorian
method), 606

insert_register() (plat-
form_driver.interfaces.BaseInterface method),
561

insert_register() (plat-
form_driver.interfaces.modbus.Interface
method), 593

insert_register() (plat-
form_driver.interfaces.ted_meter.Interface
method), 585

insert_topic_tags() (mongotag-
ging.tagging.MongodbTaggingService
method), 554

insert_topic_tags()
(sqlite.tagging.SQLiteTaggingService method),
616

inspect_agent() (in module rpc_test_client), 620
inspect_method() (in module rpc_test_client), 620
install_agent() (vcplat-

form.vcconnection.VCConnection method),
627

instance_name() (volttroncentral.agent.Platform
property), 620

InstantaneousDemand (class in plat-
form_driver.interfaces.rainforesteagle), 595

710 Index

VOLTTRON Documentation, Release 8.1.3

InstantaneousDemand (class in plat-
form_driver.interfaces.rainforestemu2), 596

Interface (class in plat-
form_driver.interfaces.bacnet), 587

Interface (class in plat-
form_driver.interfaces.chargepoint), 567

Interface (class in platform_driver.interfaces.dnp3),
588

Interface (class in plat-
form_driver.interfaces.ecobee), 589

Interface (class in plat-
form_driver.interfaces.fakedriver), 592

Interface (class in plat-
form_driver.interfaces.IEEE2030_5), 586

Interface (class in plat-
form_driver.interfaces.modbus), 592

Interface (class in platform_driver.interfaces.obix),
594

Interface (class in plat-
form_driver.interfaces.radiothermostat),
595

Interface (class in plat-
form_driver.interfaces.rainforesteagle), 595

Interface (class in plat-
form_driver.interfaces.rainforestemu2), 596

Interface (class in platform_driver.interfaces.restful),
597

Interface (class in plat-
form_driver.interfaces.ted_meter), 585

Interface (class in plat-
form_driver.interfaces.universal), 599

is_connected() (vcplat-
form.vcconnection.VCConnection method),
627

is_not_found() (plat-
form_driver.interfaces.chargepoint.service.CPAPIResponse
static method), 573

is_peer_connected() (vcplat-
form.vcconnection.VCConnection method),
627

is_registered() (volttroncen-
tral.agent.VolttronCentralAgent method),
621

is_registered() (volttroncen-
tral.platforms.Platforms method), 625

is_request() (plat-
form_driver.interfaces.chargepoint.async_service.CPRequest
method), 570

is_request() (plat-
form_driver.interfaces.chargepoint.async_service.CPResponse
method), 570

is_stale() (platform_driver.interfaces.dnp3.DNP3Register
method), 588

is_stale() (platform_driver.interfaces.IEEE2030_5.IEEE2030_5Register

method), 586
is_successful() (plat-

form_driver.interfaces.chargepoint.service.CPAPIResponse
method), 573

J
JSON (JavaScript Object Notation), 14
JSON-RPC (JSON-Remote Procedure Call), 14
jsonrpc() (volttroncen-

tral.agent.VolttronCentralAgent method),
621

K
key() (platform_driver.interfaces.chargepoint.async_service.CPRequest

method), 570
key() (platform_driver.interfaces.chargepoint.async_service.CPResponse

method), 570
kill() (vcplatform.vcconnection.VCConnection

method), 627

L
Lat() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse

method), 572
Level() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse

method), 572
level() (platform_driver.interfaces.chargepoint.service.CPPort

property), 574
list_agent_configs() (vcplat-

form.vcconnection.VCConnection method),
627

list_agents() (in module rpc_test_client), 620
list_agents() (vcplat-

form.vcconnection.VCConnection method),
627

listen() (in module mqttlistener), 552
load() (platform_driver.interfaces.chargepoint.service.CPStation

property), 583
load_state() (actuator.scheduler.ScheduleManager

method), 531
load_tag_refs() (mongotag-

ging.tagging.MongodbTaggingService
method), 554

load_tag_refs() (sqlite.tagging.SQLiteTaggingService
method), 616

load_valid_tags() (mongotag-
ging.tagging.MongodbTaggingService
method), 554

load_valid_tags()
(sqlite.tagging.SQLiteTaggingService method),
616

LoadRegister (class in plat-
form_driver.interfaces.chargepoint), 567

LockError, 529

Index 711

VOLTTRON Documentation, Release 8.1.3

log_statistics() (in module logstatistic-
sagent.agent), 639

log_time_up() (topic_watcher.agent.AlertGroup
method), 645

log_timeout() (topic_watcher.agent.AlertGroup
method), 645

logstatisticsagent
module, 639

LogStatisticsAgent (class in logstatistic-
sagent.agent), 639

logstatisticsagent.agent
module, 639

Long() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

M
mac() (platform_driver.interfaces.chargepoint.service.CPStation

property), 583
main() (in module actuator.agent), 530
main() (in module ambient.agent), 534
main() (in module darksky.agent), 541
main() (in module datamover.agent), 544
main() (in module emailer.agent), 635
main() (in module external_data.agent), 546
main() (in module filewatchpublisher.agent), 637
main() (in module forwarder.agent), 549
main() (in module logstatisticsagent.agent), 639
main() (in module mongotagging.tagging), 556
main() (in module mqtt_historian.agent), 552
main() (in module platform_driver.agent), 602
main() (in module sqlaggregator.aggregator), 606
main() (in module sqlhistorian.historian), 611
main() (in module sqlite.tagging), 618
main() (in module sysmon.agent), 641
main() (in module thresholddetection.agent), 642
main() (in module topic_watcher.agent), 646
main() (in module volttroncentral.agent), 622
main() (in module watcher.agent), 633
main() (in module weatherdotgov.agent), 631
mainPhone() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse

method), 572
make_current() (actuator.scheduler.Schedule

method), 530
make_current() (actuator.scheduler.Task method),

531
make_ecobee_request() (in module plat-

form_driver.interfaces.ecobee), 591
make_request() (ambient.agent.Ambient method),

533
manage_db_size() (sqlhisto-

rian.historian.SQLHistorian method), 609
manufacturer() (plat-

form_driver.interfaces.chargepoint.service.CPStation
property), 583

mark_dirty_point() (plat-
form_driver.interfaces.RevertTracker method),
564

MaskedString (class in sqlhistorian.historian), 608
maxPrice() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse

method), 572
memory_percent() (sysmon.agent.SysMonAgent

method), 640
merge_register_ranges() (plat-

form_driver.interfaces.modbus.Interface
method), 593

minPrice() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

Modbus, 14
modbus_client() (in module plat-

form_driver.interfaces.modbus), 594
ModbusBitRegister (class in plat-

form_driver.interfaces.modbus), 593
ModbusByteRegister (class in plat-

form_driver.interfaces.modbus), 593
ModbusInterfaceException, 593
ModbusRegisterBase (class in plat-

form_driver.interfaces.modbus), 593
Mode() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse

method), 572
mode() (platform_driver.interfaces.thermostat_api.ThermostatInterface

method), 598
model() (platform_driver.interfaces.chargepoint.service.CPStation

property), 583
model() (platform_driver.interfaces.thermostat_api.ThermostatInterface

method), 598
module

actuator, 518
actuator.agent, 518
actuator.scheduler, 530
ambient, 532
ambient.agent, 532
bacnet_proxy, 536
cratedb, 537
darksky, 539
darksky.agent, 539
datamover, 543
datamover.agent, 543
emailer, 634
emailer.agent, 634
external_data, 546
external_data.agent, 546
filewatchpublisher, 637
filewatchpublisher.agent, 637
forwarder, 548
forwarder.agent, 548
logstatisticsagent, 639
logstatisticsagent.agent, 639
mongotagging, 554

712 Index

VOLTTRON Documentation, Release 8.1.3

mongotagging.tagging, 554
mqtt_historian, 551
mqtt_historian.agent, 551
mqttlistener, 552
platform_driver, 558
platform_driver.agent, 600
platform_driver.driver, 602
platform_driver.driver_exceptions,

603
platform_driver.driver_locks, 603
platform_driver.interfaces, 558
platform_driver.interfaces.bacnet,

587
platform_driver.interfaces.chargepoint,

565
platform_driver.interfaces.chargepoint.async_service,

569
platform_driver.interfaces.chargepoint.credential_check,

571
platform_driver.interfaces.chargepoint.service,

571
platform_driver.interfaces.dnp3, 588
platform_driver.interfaces.ecobee,

589
platform_driver.interfaces.fakedriver,

592
platform_driver.interfaces.IEEE2030_5,

586
platform_driver.interfaces.modbus,

592
platform_driver.interfaces.obix, 594
platform_driver.interfaces.radiothermostat,

594
platform_driver.interfaces.rainforesteagle,

595
platform_driver.interfaces.rainforestemu2,

596
platform_driver.interfaces.restful,

597
platform_driver.interfaces.ted_meter,

585
platform_driver.interfaces.thermostat_api,

598
platform_driver.interfaces.universal,

599
rpc_test_client, 620
sqlaggregator, 605
sqlaggregator.aggregator, 605
sqlhistorian, 608
sqlhistorian.historian, 608
sqlite, 616
sqlite.tagging, 616
sysmon, 640
sysmon.agent, 640

thresholddetection, 642
thresholddetection.agent, 642
topic_watcher, 644
topic_watcher.agent, 644
vcplatform, 626
vcplatform.vcconnection, 626
volttroncentral, 620
volttroncentral.agent, 620
volttroncentral.authenticate, 622
volttroncentral.platforms, 622
volttroncentral.sessions, 625
watcher, 633
watcher.agent, 633
weatherdotgov, 630
weatherdotgov.agent, 630

MongodbTaggingService (class in mongotag-
ging.tagging), 554

mongotagging
module, 554

mongotagging.tagging
module, 554

mqtt_historian
module, 551

mqtt_historian.agent
module, 551

MQTTHistorian (class in mqtt_historian.agent), 551
mqttlistener

module, 552

N
name() (platform_driver.interfaces.chargepoint.service.CPStation

property), 583
name() (platform_driver.interfaces.chargepoint.service.CPStationGroup

property), 584
NetworkInfo (class in plat-

form_driver.interfaces.rainforestemu2), 597
NetworkStatus (class in plat-

form_driver.interfaces.rainforesteagle), 596
numPorts() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse

method), 572

O
obix_types (platform_driver.interfaces.obix.Register

attribute), 594
on_alert_message() (emailer.agent.EmailerAgent

method), 634
on_email_message() (emailer.agent.EmailerAgent

method), 634
onstart() (topic_watcher.agent.AlertAgent method),

645
onstart() (watcher.agent.AgentWatcher method), 633
onstop() (topic_watcher.agent.AlertAgent method),

645

Index 713

VOLTTRON Documentation, Release 8.1.3

open_authenticate_ws_endpoint() (volttron-
central.agent.VolttronCentralAgent method),
621

organization() (plat-
form_driver.interfaces.chargepoint.service.CPStation
property), 583

organization() (plat-
form_driver.interfaces.chargepoint.service.CPStationGroup
property), 584

organizationName() (plat-
form_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

orgID() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

orgID() (platform_driver.interfaces.chargepoint.service.CPOrganization
method), 574

over() (platform_driver.interfaces.thermostat_api.ThermostatInterface
method), 598

OverrideError, 600

P
parse_config() (plat-

form_driver.interfaces.bacnet.Interface
method), 587

parse_config() (plat-
form_driver.interfaces.chargepoint.Interface
method), 567

parse_config() (plat-
form_driver.interfaces.ecobee.Interface
method), 590

parse_config() (plat-
form_driver.interfaces.fakedriver.Interface
method), 592

parse_config() (plat-
form_driver.interfaces.modbus.Interface
method), 593

parse_config() (plat-
form_driver.interfaces.obix.Interface method),
594

parse_config() (plat-
form_driver.interfaces.radiothermostat.Interface
method), 595

parse_config() (plat-
form_driver.interfaces.restful.Interface
method), 597

parse_config() (plat-
form_driver.interfaces.universal.Interface
method), 600

parse_config() (topic_watcher.agent.AlertGroup
method), 646

parse_result() (plat-
form_driver.interfaces.obix.Register method),
594

parse_value() (plat-

form_driver.interfaces.modbus.ModbusBitRegister
method), 593

parse_value() (plat-
form_driver.interfaces.modbus.ModbusByteRegister
method), 593

PeakDelivered (class in plat-
form_driver.interfaces.rainforesteagle), 596

PeakReceived (class in plat-
form_driver.interfaces.rainforesteagle), 596

percentShed() (plat-
form_driver.interfaces.chargepoint.service.CPAPIGetLoadResponse
method), 571

periodic_read() (plat-
form_driver.driver.DriverAgent method),
602

ping_target() (plat-
form_driver.interfaces.bacnet.Interface
method), 587

ping_target() (plat-
form_driver.interfaces.radiothermostat.Interface
method), 595

Platform (class in volttroncentral.agent), 620
platform_driver

module, 558
platform_driver.agent

module, 600
platform_driver.driver

module, 602
platform_driver.driver_exceptions

module, 603
platform_driver.driver_locks

module, 603
platform_driver.interfaces

module, 558
platform_driver.interfaces.bacnet

module, 587
platform_driver.interfaces.chargepoint

module, 565
platform_driver.interfaces.chargepoint.async_service

module, 569
platform_driver.interfaces.chargepoint.credential_check

module, 571
platform_driver.interfaces.chargepoint.service

module, 571
platform_driver.interfaces.dnp3

module, 588
platform_driver.interfaces.ecobee

module, 589
platform_driver.interfaces.fakedriver

module, 592
platform_driver.interfaces.IEEE2030_5

module, 586
platform_driver.interfaces.modbus

module, 592

714 Index

VOLTTRON Documentation, Release 8.1.3

platform_driver.interfaces.obix
module, 594

platform_driver.interfaces.radiothermostat
module, 594

platform_driver.interfaces.rainforesteagle
module, 595

platform_driver.interfaces.rainforestemu2
module, 596

platform_driver.interfaces.restful
module, 597

platform_driver.interfaces.ted_meter
module, 585

platform_driver.interfaces.thermostat_api
module, 598

platform_driver.interfaces.universal
module, 599

platform_driver_agent() (in module plat-
form_driver.agent), 602

platform_uuid() (volttroncen-
tral.agent.RequiredArgs property), 620

PlatformDriverAgent (class in plat-
form_driver.agent), 600

PlatformHandler (class in volttroncen-
tral.platforms), 622

Platforms (class in volttroncentral.platforms), 623
platforms() (volttroncen-

tral.platforms.PlatformHandler property),
623

PLC (Programmable Logic Controller), 14
populate_schedule() (actuator.scheduler.Task

method), 531
populate_selection_objects() (in module

platform_driver.interfaces.ecobee), 591
populate_thermostat_headers() (in module

platform_driver.interfaces.ecobee), 591
portLoad() (platform_driver.interfaces.chargepoint.service.CPAPIGetLoadResponse

method), 571
portNumber() (plat-

form_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

portNumber() (plat-
form_driver.interfaces.chargepoint.service.CPPort
property), 574

ports() (platform_driver.interfaces.chargepoint.service.CPStation
property), 583

postalCode() (plat-
form_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

Power() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

power() (platform_driver.interfaces.chargepoint.service.CPPort
property), 574

preempt() (actuator.scheduler.Task method), 531
PriceCluster (class in plat-

form_driver.interfaces.rainforesteagle), 596
PriceCluster (class in plat-

form_driver.interfaces.rainforestemu2), 597
pricing_helper() (plat-

form_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
static method), 572

Program (class in platform_driver.interfaces.ecobee),
590

prune_to_current() (actuator.scheduler.Schedule
method), 530

Publish/Subscribe, 14
publish_analysis() (logstatistic-

sagent.agent.LogStatisticsAgent method),
639

publish_bacnet_props() (vcplat-
form.vcconnection.VCConnection method),
627

publish_cov_value() (plat-
form_driver.driver.DriverAgent method),
602

publish_file() (filewatchpub-
lisher.agent.FileWatchPublisher method),
637

publish_lock() (in module plat-
form_driver.driver_locks), 603

publish_to_historian() (data-
mover.agent.DataMover method), 544

publish_to_historian() (for-
warder.agent.ForwardHistorian method),
548

publish_to_historian()
(mqtt_historian.agent.MQTTHistorian
method), 551

publish_to_historian() (sqlhisto-
rian.historian.SQLHistorian method), 609

publish_to_vc() (vcplat-
form.vcconnection.VCConnection method),
627

Python Virtual Environment, 14

Q
query_aggregate_topics() (sqlhisto-

rian.historian.SQLHistorian method), 609
query_categories() (mongotag-

ging.tagging.MongodbTaggingService
method), 554

query_categories()
(sqlite.tagging.SQLiteTaggingService method),
616

query_current_weather() (ambi-
ent.agent.Ambient method), 533

query_current_weather() (dark-
sky.agent.Darksky method), 540

Index 715

VOLTTRON Documentation, Release 8.1.3

query_current_weather() (weatherdot-
gov.agent.WeatherDotGovAgent method),
631

query_forecast_service() (ambi-
ent.agent.Ambient method), 533

query_forecast_service() (dark-
sky.agent.Darksky method), 540

query_forecast_service() (weatherdot-
gov.agent.WeatherDotGovAgent method),
631

query_historian() (sqlhisto-
rian.historian.SQLHistorian method), 609

query_hourly_forecast() (ambi-
ent.agent.Ambient method), 533

query_hourly_forecast() (weatherdot-
gov.agent.WeatherDotGovAgent method),
631

query_hourly_historical() (ambi-
ent.agent.Ambient method), 533

query_hourly_historical() (weatherdot-
gov.agent.WeatherDotGovAgent method),
631

query_tags_by_category() (mongotag-
ging.tagging.MongodbTaggingService
method), 554

query_tags_by_category()
(sqlite.tagging.SQLiteTaggingService method),
616

query_tags_by_topic() (mongotag-
ging.tagging.MongodbTaggingService
method), 555

query_tags_by_topic()
(sqlite.tagging.SQLiteTaggingService method),
617

query_topic_list() (sqlhisto-
rian.historian.SQLHistorian method), 610

query_topics_by_pattern() (sqlhisto-
rian.historian.SQLHistorian method), 610

query_topics_by_tags() (mongotag-
ging.tagging.MongodbTaggingService
method), 555

query_topics_by_tags()
(sqlite.tagging.SQLiteTaggingService method),
617

query_topics_metadata() (sqlhisto-
rian.historian.SQLHistorian method), 610

R
RabbitMQ, 14
read_file() (filewatchpub-

lisher.agent.FileWatchPublisher method),
637

read_only_check() (plat-
form_driver.interfaces.chargepoint.ChargepointRegister

method), 566
reconfigure() (sysmon.agent.SysMonAgent

method), 640
recursive_asdict() (in module plat-

form_driver.interfaces.chargepoint), 569
refresh_tokens() (plat-

form_driver.interfaces.ecobee.Interface
method), 590

refreshGroupStationData() (plat-
form_driver.interfaces.chargepoint.service.CPGroupManager
method), 574

refreshStationData() (plat-
form_driver.interfaces.chargepoint.service.CPStation
method), 583

refreshStationDataExtended() (plat-
form_driver.interfaces.chargepoint.service.CPStation
method), 583

Register (class in platform_driver.interfaces.bacnet),
588

Register (class in platform_driver.interfaces.obix),
594

Register (class in plat-
form_driver.interfaces.radiothermostat),
595

Register (class in platform_driver.interfaces.restful),
597

Register (class in plat-
form_driver.interfaces.ted_meter), 585

register_instance() (in module rpc_test_client),
620

register_platform() (in module rpc_test_client),
620

register_platform() (volttroncen-
tral.platforms.Platforms method), 625

Remote Procedure Call, 14
remote_agent() (topic_watcher.agent.AlertAgent

property), 645
remove_driver() (plat-

form_driver.agent.PlatformDriverAgent
method), 601

request() (platform_driver.interfaces.chargepoint.async_service.CacheItem
property), 570

request() (platform_driver.interfaces.chargepoint.async_service.CPRequest
class method), 570

request_cancel_schedule() (actua-
tor.agent.ActuatorAgent method), 527

request_new_schedule() (actua-
tor.agent.ActuatorAgent method), 528

request_slots() (actua-
tor.scheduler.ScheduleManager method),
531

request_tokens() (plat-
form_driver.interfaces.ecobee.Interface
method), 590

716 Index

VOLTTRON Documentation, Release 8.1.3

RequestResult (class in actuator.scheduler), 530
RequiredArgs (class in volttroncentral.agent), 620
Reservable() (plat-

form_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

reset_remote_agent()
(topic_watcher.agent.AlertAgent method),
645

reset_time() (topic_watcher.agent.AlertGroup
method), 646

response() (platform_driver.interfaces.chargepoint.async_service.CacheItem
property), 570

response() (platform_driver.interfaces.chargepoint.async_service.CPResponse
method), 570

responseCode() (plat-
form_driver.interfaces.chargepoint.service.CPAPIResponse
property), 573

responseText() (plat-
form_driver.interfaces.chargepoint.service.CPAPIResponse
property), 573

restart() (vcplatform.vcconnection.VCConnection
method), 627

restart_agent() (vcplat-
form.vcconnection.VCConnection method),
627

restart_timer() (topic_watcher.agent.AlertGroup
method), 646

result() (platform_driver.interfaces.chargepoint.async_service.CPRequest
method), 570

revert_all() (platform_driver.driver.DriverAgent
method), 602

revert_all() (plat-
form_driver.interfaces.bacnet.Interface
method), 587

revert_all() (plat-
form_driver.interfaces.BaseInterface method),
561

revert_all() (plat-
form_driver.interfaces.BasicRevert method),
563

revert_all() (plat-
form_driver.interfaces.radiothermostat.Interface
method), 595

revert_device() (actuator.agent.ActuatorAgent
method), 528

revert_device() (plat-
form_driver.agent.PlatformDriverAgent
method), 601

revert_point() (actuator.agent.ActuatorAgent
method), 528

revert_point() (plat-
form_driver.agent.PlatformDriverAgent
method), 601

revert_point() (plat-

form_driver.driver.DriverAgent method),
602

revert_point() (plat-
form_driver.interfaces.bacnet.Interface
method), 587

revert_point() (plat-
form_driver.interfaces.BaseInterface method),
561

revert_point() (plat-
form_driver.interfaces.BasicRevert method),
563

revert_point() (plat-
form_driver.interfaces.radiothermostat.Interface
method), 595

RevertTracker (class in platform_driver.interfaces),
564

rfidSerialNumber() (plat-
form_driver.interfaces.chargepoint.service.CPAPIGetChargingSessionsResponse
method), 571

rights() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationRightsResponse
property), 571

route_to_agent_method() (vcplat-
form.vcconnection.VCConnection method),
628

route_to_agent_method() (volttroncen-
tral.platforms.PlatformHandler method),
623

rpc_test_client
module, 620

S
sanitize_output() (plat-

form_driver.interfaces.chargepoint.ChargepointRegister
static method), 566

save_state() (actuator.scheduler.ScheduleManager
method), 531

Schedule (class in actuator.scheduler), 530
schedule_ping() (plat-

form_driver.interfaces.bacnet.Interface
method), 587

schedule_slot() (actuator.scheduler.Schedule
method), 530

ScheduleError, 530
ScheduleManager (class in actuator.scheduler), 530
scrape_all() (actuator.agent.ActuatorAgent

method), 528
scrape_all() (plat-

form_driver.agent.PlatformDriverAgent
method), 601

scrape_all() (platform_driver.driver.DriverAgent
method), 602

scrape_all() (plat-
form_driver.interfaces.bacnet.Interface
method), 587

Index 717

VOLTTRON Documentation, Release 8.1.3

scrape_all() (plat-
form_driver.interfaces.BaseInterface method),
562

scrape_all() (plat-
form_driver.interfaces.BasicRevert method),
563

scrape_all() (plat-
form_driver.interfaces.radiothermostat.Interface
method), 595

scrape_bit_registers() (plat-
form_driver.interfaces.modbus.Interface
method), 593

scrape_byte_registers() (plat-
form_driver.interfaces.modbus.Interface
method), 593

scrape_ending() (plat-
form_driver.agent.PlatformDriverAgent
method), 601

scrape_starting() (plat-
form_driver.agent.PlatformDriverAgent
method), 601

send_alert() (topic_watcher.agent.AlertGroup
method), 646

send_email() (emailer.agent.EmailerAgent method),
635

send_management_message() (volttroncen-
tral.agent.VolttronCentralAgent method),
621

serial() (platform_driver.interfaces.chargepoint.service.CPStation
property), 583

serverkey() (volttroncentral.agent.Platform prop-
erty), 620

session_user() (volttroncen-
tral.agent.RequiredArgs property), 621

SessionHandler (class in volttroncentral.sessions),
625

sessionID() (platform_driver.interfaces.chargepoint.service.CPAPIGetChargingSessionsResponse
method), 571

sessionTime() (plat-
form_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

set_client() (plat-
form_driver.interfaces.chargepoint.service.CPService
method), 581

set_cool_pgm() (plat-
form_driver.interfaces.thermostat_api.ThermostatInterface
method), 598

set_default() (plat-
form_driver.interfaces.BasicRevert method),
563

set_default() (plat-
form_driver.interfaces.RevertTracker method),
564

set_grace_period() (actua-

tor.scheduler.ScheduleManager method),
531

set_heat_pgm() (plat-
form_driver.interfaces.thermostat_api.ThermostatInterface
method), 599

set_main_agent() (vcplat-
form.vcconnection.VCConnection method),
628

set_multiple_points() (actua-
tor.agent.ActuatorAgent method), 529

set_multiple_points() (plat-
form_driver.agent.PlatformDriverAgent
method), 601

set_multiple_points() (plat-
form_driver.driver.DriverAgent method),
602

set_multiple_points() (plat-
form_driver.interfaces.BaseInterface method),
562

set_override_off() (plat-
form_driver.agent.PlatformDriverAgent
method), 601

set_override_on() (plat-
form_driver.agent.PlatformDriverAgent
method), 601

set_point() (actuator.agent.ActuatorAgent method),
529

set_point() (platform_driver.agent.PlatformDriverAgent
method), 602

set_point() (platform_driver.driver.DriverAgent
method), 603

set_point() (platform_driver.interfaces.bacnet.Interface
method), 587

set_point() (platform_driver.interfaces.BaseInterface
method), 562

set_point() (platform_driver.interfaces.BasicRevert
method), 564

set_point() (platform_driver.interfaces.radiothermostat.Interface
method), 595

set_security_token() (plat-
form_driver.interfaces.chargepoint.service.CPService
method), 581

set_setting() (volttroncen-
tral.agent.VolttronCentralAgent method),
622

set_state() (platform_driver.interfaces.ecobee.Hold
method), 589

set_state() (platform_driver.interfaces.ecobee.Program
method), 590

set_state() (platform_driver.interfaces.ecobee.Setting
method), 590

set_state() (platform_driver.interfaces.ecobee.Status
method), 591

set_state() (platform_driver.interfaces.ecobee.Vacation

718 Index

VOLTTRON Documentation, Release 8.1.3

method), 591
set_state() (platform_driver.interfaces.modbus.ModbusBitRegister

method), 593
set_state() (platform_driver.interfaces.modbus.ModbusByteRegister

method), 593
set_value() (platform_driver.interfaces.dnp3.DNP3Register

method), 588
set_value() (platform_driver.interfaces.IEEE2030_5.IEEE2030_5Register

method), 586
set_value_async_result() (plat-

form_driver.interfaces.obix.Register method),
594

Setting (class in platform_driver.interfaces.ecobee),
590

setup() (mongotagging.tagging.MongodbTaggingService
method), 556

setup() (sqlite.tagging.SQLiteTaggingService
method), 618

setup_device() (plat-
form_driver.driver.DriverAgent method),
603

sgID() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

sgName() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

shedLoad() (platform_driver.interfaces.chargepoint.service.CPService
method), 581

shedState() (platform_driver.interfaces.chargepoint.service.CPAPIGetLoadResponse
method), 571

socket_lock() (in module plat-
form_driver.driver_locks), 603

SQLAggregateHistorian (class in sqlaggrega-
tor.aggregator), 605

sqlaggregator
module, 605

sqlaggregator.aggregator
module, 605

sqlhistorian
module, 608

SQLHistorian (class in sqlhistorian.historian), 608
sqlhistorian.historian

module, 608
sqlite

module, 616
sqlite.tagging

module, 616
SQLiteTaggingService (class in sqlite.tagging),

616
SSH, 14
SSL, 14
start() (actuator.scheduler.TimeSlice property), 531
start() (sysmon.agent.SysMonAgent method), 641
start_agent() (vcplat-

form.vcconnection.VCConnection method),

628
start_bacnet_scan() (vcplat-

form.vcconnection.VCConnection method),
628

starting() (filewatchpub-
lisher.agent.FileWatchPublisher method),
637

starting() (logstatistic-
sagent.agent.LogStatisticsAgent method),
639

starting() (platform_driver.driver.DriverAgent
method), 603

startTime() (platform_driver.interfaces.chargepoint.service.CPAPIGetChargingSessionsResponse
method), 571

startTime() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

State() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

STATE_FINISHED (actuator.scheduler.Task attribute),
531

STATE_PRE_RUN (actuator.scheduler.Task attribute),
531

STATE_PREEMPTED (actuator.scheduler.Task at-
tribute), 531

STATE_RUNNING (actuator.scheduler.Task attribute),
531

station_data() (plat-
form_driver.interfaces.chargepoint.service.CPAPIGetLoadResponse
property), 571

station_ids() (plat-
form_driver.interfaces.chargepoint.service.CPStationGroup
property), 584

stationID() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

stationLoad() (plat-
form_driver.interfaces.chargepoint.service.CPAPIGetLoadResponse
method), 571

stationMacAddr() (plat-
form_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 573

stationManufacturer() (plat-
form_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 573

stationModel() (plat-
form_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 573

stationName() (plat-
form_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 573

StationRegister (class in plat-
form_driver.interfaces.chargepoint), 567

StationRightsRegister (class in plat-
form_driver.interfaces.chargepoint), 568

stations() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse

Index 719

VOLTTRON Documentation, Release 8.1.3

property), 573
stationSerialNum() (plat-

form_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 573

StationStatusRegister (class in plat-
form_driver.interfaces.chargepoint), 568

Status (class in platform_driver.interfaces.ecobee),
590

Status() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationStatusResponse
method), 572

status() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationStatusResponse
property), 572

status_agents() (vcplat-
form.vcconnection.VCConnection method),
628

status_agents() (volttroncen-
tral.platforms.PlatformHandler method),
623

stop_agent() (vcplat-
form.vcconnection.VCConnection method),
628

stop_driver() (plat-
form_driver.agent.PlatformDriverAgent
method), 602

store_agent_config() (vcplat-
form.vcconnection.VCConnection method),
628

store_agent_config() (volttroncen-
tral.platforms.PlatformHandler method),
623

store_remote_data() (plat-
form_driver.interfaces.ecobee.Interface
method), 590

stretch_to_include() (actua-
tor.scheduler.TimeSlice method), 531

subscribe_to_vcp() (vcplat-
form.vcconnection.VCConnection method),
629

success() (actuator.scheduler.RequestResult prop-
erty), 530

SummationDelivered (class in plat-
form_driver.interfaces.rainforesteagle), 596

SummationReceived (class in plat-
form_driver.interfaces.rainforesteagle), 596

sysmon
module, 640

sysmon.agent
module, 640

sysmon_agent() (in module sysmon.agent), 641
SysMonAgent (class in sysmon.agent), 640

T
t_cool() (platform_driver.interfaces.thermostat_api.ThermostatInterface

method), 599

t_heat() (platform_driver.interfaces.thermostat_api.ThermostatInterface
method), 599

t_setpoint() (plat-
form_driver.interfaces.thermostat_api.ThermostatInterface
method), 599

tagging_service() (in module mongotag-
ging.tagging), 556

tagging_service() (in module sqlite.tagging), 618
Task (class in actuator.scheduler), 531
task_id() (actuator.scheduler.DeviceState property),

530
Thermostat_API() (in module plat-

form_driver.interfaces.thermostat_api), 599
ThermostatInterface (class in plat-

form_driver.interfaces.thermostat_api), 598
thresholddetection

module, 642
thresholddetection.agent

module, 642
thresholddetection_agent() (in module

thresholddetection.agent), 643
ThresholdDetectionAgent (class in thresholdde-

tection.agent), 642
time_remaining() (actuator.scheduler.DeviceState

property), 530
timeout() (platform_driver.interfaces.chargepoint.async_service.CPRequest

property), 570
TimeSlice (class in actuator.scheduler), 531
timestamp() (datamover.agent.DataMover method),

544
timestamp() (forwarder.agent.ForwardHistorian

method), 549
timestamp() (mqtt_historian.agent.MQTTHistorian

method), 552
TimeStamp() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationStatusResponse

method), 572
TLS, 14
topic_watcher

module, 644
topic_watcher.agent

module, 644
tstat() (platform_driver.interfaces.thermostat_api.ThermostatInterface

method), 599
Type() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse

method), 572

U
unitPriceForFirst() (plat-

form_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 573

unitPricePerHour() (plat-
form_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 573

720 Index

VOLTTRON Documentation, Release 8.1.3

unitPricePerHourThereafter() (plat-
form_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 573

unitPricePerKWh() (plat-
form_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 573

unitPricePerSession() (plat-
form_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 573

update_aggregate_metadata() (sqlaggre-
gator.aggregator.SQLAggregateHistorian
method), 606

update_auth_config() (plat-
form_driver.interfaces.ecobee.Interface
method), 590

update_authorization() (plat-
form_driver.interfaces.ecobee.Interface
method), 590

update_clean_values() (plat-
form_driver.interfaces.RevertTracker method),
564

update_driver() (plat-
form_driver.agent.PlatformDriverAgent
method), 602

update_publish_types() (plat-
form_driver.driver.DriverAgent method),
603

update_scrape_schedule() (plat-
form_driver.driver.DriverAgent method),
603

V
Vacation (class in platform_driver.interfaces.ecobee),

591
validate_location() (ambient.agent.Ambient

method), 534
validate_location() (darksky.agent.Darksky

method), 541
validate_location() (weatherdot-

gov.agent.WeatherDotGovAgent method),
631

validate_location_formats() (weatherdot-
gov.agent.WeatherDotGovAgent method),
631

value() (platform_driver.interfaces.chargepoint.AlarmRegister
property), 565

value() (platform_driver.interfaces.chargepoint.ChargepointRegister
method), 566

value() (platform_driver.interfaces.chargepoint.ChargingSessionRegister
property), 567

value() (platform_driver.interfaces.chargepoint.LoadRegister
property), 567

value() (platform_driver.interfaces.chargepoint.StationRegister
property), 568

value() (platform_driver.interfaces.chargepoint.StationRightsRegister
property), 568

value() (platform_driver.interfaces.chargepoint.StationStatusRegister
property), 569

value() (platform_driver.interfaces.dnp3.DNP3Register
property), 588

value() (platform_driver.interfaces.fakedriver.EKGregister
property), 592

value() (platform_driver.interfaces.IEEE2030_5.IEEE2030_5Register
property), 586

value() (platform_driver.interfaces.rainforesteagle.InstantaneousDemand
method), 595

value() (platform_driver.interfaces.rainforesteagle.NetworkStatus
method), 596

value() (platform_driver.interfaces.rainforesteagle.PeakDelivered
method), 596

value() (platform_driver.interfaces.rainforesteagle.PeakReceived
method), 596

value() (platform_driver.interfaces.rainforesteagle.PriceCluster
method), 596

value() (platform_driver.interfaces.rainforesteagle.SummationDelivered
method), 596

value() (platform_driver.interfaces.rainforesteagle.SummationReceived
method), 596

value() (platform_driver.interfaces.rainforestemu2.InstantaneousDemand
method), 596

value() (platform_driver.interfaces.rainforestemu2.NetworkInfo
method), 597

value() (platform_driver.interfaces.rainforestemu2.PriceCluster
method), 597

vc() (volttroncentral.platforms.Platforms property),
625

VCConnection (class in vcplatform.vcconnection),
626

vcplatform
module, 626

vcplatform.vcconnection
module, 626

version() (sqlhistorian.historian.SQLHistorian
method), 611

VIP, 15
VIP address, 15
VIP Identity, 15
vip_address() (volttroncentral.agent.Platform prop-

erty), 620
vip_identity() (volttroncen-

tral.platforms.PlatformHandler property),
623

Voltage() (platform_driver.interfaces.chargepoint.service.CPAPIGetStationsResponse
method), 572

voltage() (platform_driver.interfaces.chargepoint.service.CPPort
property), 574

VOLTTRON Central, 15
VOLTTRON_HOME, 15

Index 721

VOLTTRON Documentation, Release 8.1.3

VOLTTRON_INSTANCE, 15
VOLTTRON_ROOT, 15
volttroncentral

module, 620
volttroncentral.agent

module, 620
volttroncentral.authenticate

module, 622
volttroncentral.platforms

module, 622
volttroncentral.sessions

module, 625
VolttronCentralAgent (class in volttroncen-

tral.agent), 621

W
waiting_results() (plat-

form_driver.interfaces.chargepoint.async_service.CacheItem
property), 570

watch_agents() (watcher.agent.AgentWatcher
method), 633

watch_device() (topic_watcher.agent.AlertAgent
method), 645

watch_device() (topic_watcher.agent.AlertGroup
method), 646

watch_topic() (topic_watcher.agent.AlertAgent
method), 645

watch_topic() (topic_watcher.agent.AlertGroup
method), 646

watcher
module, 633

watcher.agent
module, 633

weather_agent() (in module weatherdotgov.agent),
632

weatherdotgov
module, 630

weatherdotgov.agent
module, 630

WeatherDotGovAgent (class in weatherdot-
gov.agent), 630

Web Framework, 15
web_call() (in module plat-

form_driver.interfaces.chargepoint.async_service),
570

web_service() (in module plat-
form_driver.interfaces.chargepoint.async_service),
570

writeable_list (plat-
form_driver.interfaces.chargepoint.AlarmRegister
attribute), 565

writeable_list (plat-
form_driver.interfaces.chargepoint.ChargingSessionRegister
attribute), 567

writeable_list (plat-
form_driver.interfaces.chargepoint.LoadRegister
attribute), 567

writeable_list (plat-
form_driver.interfaces.chargepoint.StationRegister
attribute), 568

writeable_list (plat-
form_driver.interfaces.chargepoint.StationRightsRegister
attribute), 568

writeable_list (plat-
form_driver.interfaces.chargepoint.StationStatusRegister
attribute), 569

Z
ZeroMQ, 14

722 Index

	Key Use-Cases
	Features
	Indices and tables
	Python Module Index
	Index

