VOLTTRON Documentation
Release 6.0

The VOLTTRON Community

Aug 26, 2020

Contents

1 Features 3
2 Background 5
3 License 7
3.1 OVEIVIEW . . v o v o e 7
32 Jointhe Community e e e e e e e 12
3.3 Installing VOLTTRON o e e e e e e e e e e e e e e e 17
3.4 Developing VOLTTRON e e e e e e e e e e e 69
35 COre ServiCes v v v v v i e e e e e e e e e e e 292
3.6 Platform Specifications L e 456
3.7 Applications e e e e 518
3.8 Indicesandtables L e e e e e e e e e 539

VOLTTRON Documentation, Release 6.0

*>/voLrTrRon

Devices | Data | Decisions

VOLTTRON™ is an open-source platform for distributed sensing and control. The platform provides services for
collecting and storing data from buildings and devices and provides an environment for developing applications that
interact with that data.

Contents 1

VOLTTRON Documentation, Release 6.0

2 Contents

CHAPTER 1

Features

Out of the box VOLTTRON provides:

a secure message bus allowing agents to subcribe to data sources and publish results and messages.
secure connectivity between multiple instances.

BACnet, ModBus and other device/system protocol connectivity through our driver framework for collecting
data from and sending control actions to buildings and devices.

automatic data capture and retrieval through our historian framework.
platform based agent lifecycle managment.
a web based management tool for managing several instances from a central instance.

the ability to easily extend the functionality of existing agents or create new ones for your specific purposes.

VOLTTRON Documentation, Release 6.0

4 Chapter 1. Features

CHAPTER 2

Background

VOLTTRON™ is written in Python 2.7 and runs on Linux Operating Systems. For users unfamiliar with those tech-
nologies, the following resources are recommended:

* https://docs.python.org/2.7/tutorial/

* http://ryanstutorials.net/linuxtutorial/

https://docs.python.org/2.7/tutorial/
http://ryanstutorials.net/linuxtutorial/

VOLTTRON Documentation, Release 6.0

6 Chapter 2. Background

CHAPTER 3

License

The project is licensed under Apache 2 license.

Contents:

3.1 Overview

VOLTTRON™ is an open-source distributed control and sensing platform for integrating buildings and the power
grid. VOLTTRON connects devices, agents in the platform, agents in the Cloud, and signals from the power grid. The
platform also supports use cases such as demand response and integration of distributed renewable energy sources.

VOLTTRON provides an environment for agent execution and serves as a single point of contact for interfacing
with devices (rooftop units, building systems, meters, etc.), external resources, and platform services such as data
archival and retrieval. VOLTTRON applications are referred to as agents since VOLTTRON provides an agent-based
programming paradigm to ease application development and minimize the lines of code that need to be written by
domain experts such as buildings engineers. VOLTTRON provides a collection of utility and helper classes that
simplifies agent development.

The VOLTTRON white paper provides an overview of the capabilities of the platform: https://volttron.org/sites/
default/files/publications/PNNL-25499_VOLTTRON_2016.pdf

3.1.1 Components

An overview of the VOLTTRON platform components is illustrated in the figure below. The platform comprises
several components and agents that provide services to other agents. Of these components, the Information Exchange
Bus (IEB), or Message Bus is central to the platform. All other VOLTTRON components communicate through it
using the publish/subscribe paradigm over a variety of topics.

Drivers communicate with devices allowing their data to be published on the IEB. Agents can control devices by
interacting with the Actuator Agent to schedule and send commands. The Historian framework takes data published
on the messages bus and stores it to a database, file, or sends it to another location.

https://volttron.org/sites/default/files/publications/PNNL-25499_VOLTTRON_2016.pdf
https://volttron.org/sites/default/files/publications/PNNL-25499_VOLTTRON_2016.pdf

VOLTTRON Documentation, Release 6.0

The agent lifecycle is controlled by the Agent Instantiation and Packaging (AIP) component which launches agents
in an Agent Execution Environment. This isolates agents from the platform while allowing them to interact with the
IEB.

Remote
VOLTTRON

Command
Line

Mobility Multi-node Weather Command Resource
Service Communication Service Module Maonitor

Agent
[H 1 . . A t
Directory [Authentication Insta nt:’atmn Exegﬁ;li oA
Service Module an
Packaging Environment

Supervisory
Agent

Information Exchange Bus

Management

Drivers Historian
Console

Web User Devices
Interface

3.1.2 Agents in the Platform

Agents deployed on VOLTTRON can perform one or more roles which can be broadly classified into the following
groups:
» Platform Agents: Agents which are part of the platform and provide a service to other agents. Examples are
agents which interface with devices to publish readings and handle control signals from other agents.

* Cloud Agents: These agents represent a remote application which needs access to the messages and data on
the platform. This agent would subscribe to topics of interest to the remote application and would also allow it
publish data to the platform.

» Control Agents: These agents control the devices of interest and interact with other resources to achieve some
goal.

Platform Services:

* Message Bus: All agents and services publish and subscribe to topics on the message bus. This provides a single
interface that abstracts the details of devices and agents from each other. Components in the platform basically
produce and consume events.

* Weather Information: This agent periodically retrieves data from the Weather Underground site. It then refor-
mats it and publishes it out to the platform on a weather topic.

8 Chapter 3. License

VOLTTRON Documentation, Release 6.0

* Modbus-based device interface: The Modbus driver publishes device data onto the message bus. It also handles
the locking of devices to prevent multiple conflicting directives.

* Application Scheduling: This service allows the scheduling of agents’ access to devices in order to prevent
conflicts.

* Logging service: Agents can publish arbitrary strings to a logging topic and this service will push them to a
historian for later analysis.

3.1.3 Definition of Terms

This page lays out a common terminology for discussing the components and underlying technologies used by the
platform. The first section discusses capabilities and industry standards that volttron conforms to while the latter is
specific to the VOLTTRON domain.

Industry Terms
* BACNet: Building Automation and Control network, that leverages ASHRAE, ANSI, and IOS 16484-5 stan-
dard protocols.
* JSON-RPC: JSON-encoded remote procedure call

¢ JSON: JavaScript object notation is a text-based, human-readable, open data interchange format, similar to
XML, but less verbose

* Publish/subscribe: A message delivery pattern where senders (publishers) and receivers (subscribers) do not
communicate directly nor necessarily have knowledge of each other, but instead exchange messages through an
intermediary based on a mutual class or topic

o ZeroMQ or @MQ: A library used for inter-process and inter-computer communication
¢ Modbus: Communications protocol for talking with industrial electronic devices

* SSH: Secure shell is a network protocol providing encryption and authentication of data using public-key cryp-
tography

» SSL: Secure sockets layer is a technology for encryption and authentication of network traffic based on a chain
of trust

e TLS: Transport layer security is the successor to SSL

VOLTTRON Terms

Activated Environment An activated environment is the environment a VOLTTRON instance is run
in. The bootstrap process creates the environment from the shell and to activate it the following
command is executed.

user@Qcomputer> source env/bin/activate

Note once the above command has been run the prompt will have changed
(volttron)user@computer>

Bootstrap Enviornment The process by which an operating environment (activated environment) is pro-
duced. From the VOLTTRON_ROQT directory executing python bootstrap.py will start the
bootstrap process.

3.1. Overview 9

VOLTTRON Documentation, Release 6.0

VOLTTRON_HOME The location for a specific VOLTTRON_INSTANCE to store its specific infor-
mation. There can be many VOLTTRON_HOME:s on a single computing resource(VM, machine,
etc.)

VOLTTRON_INSTANCE A single volttron process executing instructions on a computing resource.
For each VOLTTRON_INSTANCE there WILL BE only one VOLTTRON_HOME associated with
it. In order for a VOLTTRON_INSTANCE to be able to participate outside its computing resource
it must be bound to an external ip address.

VOLTTRON_ROOT The cloned directory from github. When executing the command

git clone http://github.com/VOLTTRON/volttron

the top volttron folder is the VOLTTRON_ROOT

VIP VOLTTRON Interconnect Protocol is a secure routing protocol that facilitates communications be-
tween agents, controllers, services and the supervisory VOLTTRON_INSTANCE.

3.1.4 Version History

VOLTTRON 1.0-1.2
* Agent execution platform
* Message bus
* Modbus and BACnet drivers
* Historian
 Data logger
* Device scheduling
* Device actuation
* Multi-node communication
* Weather service
VOLTTRON 2.0
* Advanced Security Features
» Guaranteed resource allocation to agents using execution contracts
* Signing and verification of agent packaging
* Agent mobility
* Admin can send agents to another platform
e Agent can request to move
* Enhanced command framework
VOLTTRON 3.0
¢ Modularize Data Historian
* Modularize Device Drivers
* Secure and accountable communication using the VIP

* Web Console for Monitoring and Administering VOLTTRON Deployments

10 Chapter 3. License

VOLTTRON Documentation, Release 6.0

VOLTTRON 4.0
¢ Documentation moved to ReadTheDocs

VOLTTRON Configuration Wizard

* Configuration store to dynamically configure agents

» Aggregator agent for aggregating topics

* More reliable remote install mechanism

* UI for device configuration

* Automatic registration of VOLTTRON instances with management agent
VOLTTRON 5.0

» Tagging service for attaching metadata to topics for simpler retrieval

* Message bus performance improvement

* Multi-platform publish/subscribe for simpler coordination across platforms

* Drivers contributed back for SEP 2.0 and ChargePoint EV

3.1.5 License

Copyright 2017, Battelle Memorial Institute.

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

The patent license grant shall only be applicable to the following patent and patent application (Battelle IPID 17008-
E), as assigned to the Battelle Memorial Institute, as used in conjunction with this Work: US Patent No. 9,094,385,
issued 7/28/15 « USPTO Patent App. No. 14/746,577, filed 6/22/15, published as US 2016-0006569.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

3.1.6 Terms

This material was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor the United States Department of Energy, nor Battelle, nor any of their employees,
nor any jurisdiction or organization that has cooperated in the development of these materials, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness or any
information, apparatus, product, software, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPART-
MENT OF ENERGY under Contract DE-AC05-76RL01830

3.1. Overview 11

http://www.apache.org/licenses/LICENSE-2.0

VOLTTRON Documentation, Release 6.0

3.2 Join the Community

The VOLTTRON team aims to work with users and contributors to continuously improve the platform with features
requested by the community as well as architectural features that improve robustness, security, and scalability. Con-
tributing back to the project, which is encouraged but not required, enhances its capabilities for the whole community.
To learn more, check out Contributing and Documentation.

3.2.1 Slack Channel

volttron-community.slack.com is where the VOLTTRON™ community at large can ask questions and meet with others
using VOLTTRON™ Signup via https://volttron-community.signup.team/

3.2.2 Mailing List

Join the mailing list by emailing volttron @pnnl.gov.

3.2.3 Stack Overflow

The VOLTTRON community supports questions being asked and answered through stack overflow. The questions
tagged with the volttron tag can be found at http://stackoverflow.com/questions/tagged/volttron.

3.2.4 Office Hours

PNNL hosts office hours every other week on Fridays at 11 AM (PST). These meetings are designed to be very
informal where VOLTTRON developers can answer specific questions about the inner workings of VOLTTRON.
These meetings are also available for topical discussions of different aspects of the VOLTTRON platform. Currently
the office hours are available through a Lync meeting.

* Join Lync Meeting
¢ Dial in Number: 1-866-528-1882
¢ Conference Number: 886916

Meetings are recorded and can be reviewed here.

3.2.5 Contributing Back

Contributing to VOLTTRON

As an open source project VOLTTRON requires input from the community to keep development focused on new and
useful features. To that end were are revising our commit process to hopefully allow more committers to be apart of the
community. The following document outlines the process for source code and documentation to be submitted. There
are gui tools that may make this process easier, however I am going to focus on what is required from the command
line.

The only requirements for this is the program git and your favorite web browser.

12 Chapter 3. License

https://volttron-community.signup.team/
mailto:volttron@pnnl.gov?subject=Subscribe%20To%20List
http://stackoverflow.com/questions/tagged/volttron
https://lcmeet.pnnl.gov/jereme.haack/PFM2FDY2
https://volttron.org/office-hours

VOLTTRON Documentation, Release 6.0

Getting Started
Forking the main VOLTTRON repository

The first step to editing the repository is to fork it into your own user space. This is done by pointing your favorite web
browser to http://github.com/VOLTTRON/volttron and the clicking Fork on the upper right of the screen. (Note you
must have a github account to fork the repository, if you don’t have one then click Sign Up in the upper right corner
and create one).

Cloning ‘YOUR’ VOLTTRON forked repository

The next step in the process is to get your forked repository down to your computer to work on. This will create an
identical copy of the github on your local machine. To do this you need to know the address of your repository. Luckily
the github has a convention so your repository address will be https://github.com/<YOUR USERNAME>/volttron.git.
From a terminal execute the following commands which will create a directory in your home directory and then change
to that directory, clone from your repository, and finally change into the cloned repository.

Note: VOLTTRON uses develop as its main development branch rather than the standard master branch (the default).

mkdir -p ~/git

cd ~/git

git clone -b develop https://github.com/<YOUR USERNAME>/volttron.git
cd volttron

Adding and Committing files

Now that you have your repository cloned it’s time to start doing some modifications. Using a simple text editor you
can create or modify any file under the volttron directory. After making a modification or an creating a file it is time to
move it to the stage for review before committing to the local repository. For this example let’s assume we have made
a change to README.md in the root of the volttron directory and add a new file called foo.py. To get those files on
the stage (preparing for committing to the local repository) we would execute the following commands

git add foo.py
git add README.md

Alternatively in one command
git add foo.py README.md

After adding the files to the stage you can review the staged files by executing

’git status

Finally in order to commit to the local repository we need to think of what change we actually did and be able to
document it. We do that with a commit message (the -m parameter) such as the following.

’qit commit -m "Added new foo.py and updated copyright of README.md"

3.2. Join the Community 13

http://github.com/VOLTTRON/volttron
https://github.com

VOLTTRON Documentation, Release 6.0

Pushing to the remote repository

Next we want to be able to share our changes with the world through github. We can do this by pushing the commits
from your local repository out to your github repository. This is done by the following command.

git push

alternative where origin is the name of the remote you are pushing to
more on that later.

git push origin

Getting modifications to the main VOLTTRON repository

Now we want our changes to get put into the main VOLTTRON repository. After all our foo.py can cure a lot of
the world’s problems and of course it is always good to have a copyright the correct year. Open your browser to
https://github.com/VOLTTRON/volttron/compare/develop. .. <YOUR USERNAME>:develop.

On that page the base fork should always be VOLTTRON/volttron with the base develop whilest the head fork should
be <YOUR USERNAME>/volttron and the compare should be the branch in your repository to pull from. Once you
have verified that you have got the right changes made then you can enter a title and description that represent your
changes.

What happens next?

Once creating a pull request one or more VOLTTRON team members will review your changes and either accept them
as is or ask for modifications in order to have your commits accepted. You will be automatically emailed through the
github notificaiton system when this occurs.

Next Steps
Merging changes from the main VOLTTRON repository

As time goes on the VOLTTRON code base will continually be modified so the next time you want to work on a
change to your files the odds are your local and remote repository will be out of date. In order to get your remote
VOLTTRON repository up to date with the main VOLTTRON repository you could simply do a pull request to your
remote repository from the main repository. That would involve pointing your browser at https://github.com/<YOUR
USERNAME>/volttron/compare/develop. .. VOLTTRON:develop.

Click the ‘Create Pull Request’ button. On the following page click the ‘Create Pull Request’ button. On the next page
click ‘Merge Pull Request’ button.

Once your remote is updated you can now pull from your remote repository into your local repository through the
following command:

git pull

The other way to get the changes into your remote repository is to first update your local repository with the changes
from the main VOLTTRON repository and then pushing those changes up to your remote repository. To do that you
need to first create a second remote entry to go along with the origin. A remote is simply a pointer to the url of a
different repository than the current one. Type the following command to create a new remote called ‘upstream’

git remote add upstream https://github.com/VOLTTRON/volttron

14 Chapter 3. License

https://github.com/VOLTTRON/volttron/compare/develop
https://github.com

VOLTTRON Documentation, Release 6.0

To update your local repository from the main VOLTTRON repository then execute the following command where

upstream is the remote and develop is the branch to pull from.

’git pull upstream develop

Finally to get the changes into your remote repository you can execute

’git push origin

Other commands to know

At this point in time you should have enough information to be able to update both your local and remote repository
and create pull requests in order to get your changes into the main VOLTTRON repository. The following commands

are other commands to give you more information that the preceeding tutorial went through

Viewing what the remotes are in our local repository

git remote -v

Stashing changed files so that you can do a merge/pull from a remote

git stash save 'A commment to be listed’'

Applying the last stashed files to the current repository

git stash pop

Finding help about any git command

git help

git help branch
git help stash
git help push
git help merge

Creating a branch from the branch and checking it out

git checkout -b newbranchname

Checking out a branch (if not local already will look to the remote to checkout)

git checkout branchname

3.2. Join the Community

15

VOLTTRON Documentation, Release 6.0

Removing a local branch (cannot be current branch)

git branch -D branchname

Determine the current and show all local branches

git branch

Hooking into other services

The main VOLTTRON repository is hooked into an automated build tool called travis-ci. Your remote repository
can be automatically built with the same tool by hooking your account into travis-ci’s environment. To do this go to
https://travis-ci.org and create an account. You can using your github login directly to this service. Then you will need
to enable the syncing of your repository through the travis-ci service. Finally you need to push a new change to the
repository. If the build fails you will receive an email notifying you of that fact and allowing you to modify the souce
code and then pushing new changes out.

Contributing Documentation

The Community is encouraged to contribute documentation back to the project as they work through use cases the
developers may not have considered or documented. By contributing documentation back, the community can learn
from each other and build up a much more extensive knowledge base.

VOLTTRON™ documentation utilizes ReadTheDocs: http://volttron.readthedocs.io/en/develop/ and is built using the
Sphinx Python library with static content in Restructured Text.

Building the Documentation

Static documentation can be found in the docs/source directory. Edit or create new .rst files to add new content using
the Restructured Text format. To see the results of your changes. the documenation can be built locally through the
command line using the following instructions.

If you’ve already bootstrapped VOLTTRON™, do the following while activated. If not, this will also pull down the
necessary VOLTTRONT™ libraries.

python bootstrap.py —--documentation
cd docs
make html

Then, open your browser to the created local files:

file:///home/<USER>/git/volttron/docs/build/html/overview/index.html

When complete, changes can be contributed back using the same process as code contributions by creating a pull
request. When the changes are accepted and merged, they will be reflected in the ReadTheDocs site.

16 Chapter 3. License

https://travis-ci.org
http://volttron.readthedocs.io/en/develop/
http://www.sphinx-doc.org/en/stable/
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html

VOLTTRON Documentation, Release 6.0

3.3 Installing VOLTTRON

3.3.1 Install Required Software

Ensure that all the required packages are installed.

3.3.2 Clone VOLTTRON source code

From version 6.0 VOLTTRON supports two message bus - ZMQ and RabbitMQ. For the latest build use the develop
branch. For a more conservative branch please use the master branch.

git clone https://github.com/VOLTTRON/volttron —-branch <branch name>

For other options see: Getting VOLTTRON

3.3.3 Setup virtual environment

The VOLTTRON project includes a bootstrap script which automatically downloads dependencies and builds VOLT-
TRON. The script also creates a Python virtual environment for use by the project which can be activated after boot-
strapping with . env/bin/activate. This activated Python virtual environment should be used for subsequent bootstraps
whenever there are significant changes. The system’s Python need only be used on the initial bootstrap.

Steps for ZMQ

cd <volttron clone directory>
python bootstrap.py
source env/bin/activate

Proceed to Testing the Installation.

Steps for RabbitMQ

1. Install Erlang version >= 21

For RabbitMQ based VOLTTRON, some of the RabbitMQ specific software packages have to be installed.
If you are running an Debian or CentOS system, you can install the RabbitMQ dependencies by running
the rabbit dependencies script, passing in the os name and approriate distribution as a parameter. The
following are supported

¢ debian bionic (for Ubuntu 18.04)

¢ debian xenial (for Ubuntu 16.04)

¢ debian xenial (for Linux Mint 18.04)
¢ debian stretch (for Debian Stretch)

¢ centos 7 (for CentOS 7)

¢ centos 6 (for CentOS 6)

Example command

3.3. Installing VOLTTRON 17

VOLTTRON Documentation, Release 6.0

./scripts/rabbit_dependencies.sh debian xenial

Alternatively

You can download and install Erlang from Erlang Solution Please include OTP/components - ssl, pub-
lic_key, asnl, and crypto. Also lock version of Erlang using the yum-plugin-versionlock

2. Configure hostname

Rabbitmq requires a valid hostname to start. Use the command hostname on your linux machine to verify
if a valid hostname is set. If not add a valid hostname to the file /etc/hostname. You would need sudo
access to edit this file If you want your rabbitmq instance to be reachable externally, then a hostname
should be resolvable to a valid ip. In order to do this you need to have a entry in /etc/hosts file. For
example, the below shows a valid /etc/hosts file

127.0.0.1 localhost
127.0.0.1 myhost

192.34.44.101 externally_visible_hostname

After the edit, logout and log back in for the changes to take effect.

If you are testing with VMs make please make sure to provide unique host names for each of the VM you
are using.

Note: If you change /etc/hostname after setting up rabbitmq (<refer to the step that does vcfg —rabbbitmq
single), you will have to regenerate certificates and restart RabbitMQ.

Note: RabbitMQ startup error would show up in system log (/var/log/messages) file and not in RabbitMQ
logs (SRABBITMQ_HOME/var/log/rabbitmg/rabbitmq@hostname.log where $SRABBITMQ_HOME is
<install dir>/rabbitmq_server-3.7.7)

3. Bootstrap

Install the required software by running the bootstrap script with —rabbitmq option

cd volttron

bootstrap.py ——help will show you all of the "package options" such as
installing required packages for volttron central or the platform agent.

python bootstrap.py ——rabbitmg [optional install directory defaults to
<user_home>/rabbitmg_server]

This will build the platform and create a virtual Python environment and dependencies for RabbitMQ. It
also installs RabbitMQ server as the current user. If an install path is provided, path should exists and be
writeable. RabbitMQ will be installed under <install dir>/rabbitmq_server-3.7.7 Rest of the documenta-
tion refers to the directory <install dir>/rabbitmq_server-3.7.7 as SRABBITMQ_HOME

You can check if RabbitMQ server is installed by checking it’s status.

18 Chapter 3. License

https://www.erlang-solutions.com/resources/download.html
https://access.redhat.com/solutions/98873
mailto:\protect \T1\textdollar RABBITMQ_HOME/var/log/rabbitmq/rabbitmq@hostname.log

VOLTTRON Documentation, Release 6.0

SRABBITMQ_HOME/sbin/rabbitmgctl status

Please note, RABBITMQ_HOME environment variable can be set in ~/.bashrc. If doing so, it needs to be
set to RabbitMQ installation directory (default path is <user_home>/rabbitmq_server/rabbitmq_server-
3.7.7)

echo 'export RABBITMQ_HOME=$HOME/rabbitmg server/rabbitmg server-3.7.7'|tee -
—-—append ~/.bashrc | source ~/.bashrc

Reload the environment variables in the current shell

source ~/.bashrc

4. Activate the environment

’source env/bin/activate ‘

5. Create RabbitMQ setup for VOLTTRON

’vcfg —-rabbitmg single [optional path to rabbitmg config.yml] ‘

Refer to examples/configurations/rabbitmg/rabbitmq_config.yml for a sample configuration file. At a
minimum you would need to provide the host name and a unique common-name (under certificate-data)
in the configuration file. Note. common-name must be unique and the general conventions is to use
-root-ca.

Running the above command without the optional configuration file parameter will prompt user for all
the needed data at the command prompt and use that to generate a rabbitmq_config.yml file in VOLT-
TRON_HOME directory.

This scripts creates a new virtual host and creates SSL certificates needed for this VOLTTRON instance.
These certificates get created under the sub directory “certificates” in your VOLTTRON home (typically in
~/.volttron). It then creates the main VIP exchange named “volttron” to route message between platform
and agents and alternate exchange to capture unrouteable messages.

NOTE: We configure RabbitMQ instance for a single volttron_home and volttron_instance. This script
will confirm with the user the volttron_home to be configured. volttron instance name will be read from
volttron_home/config if available, if not user will be prompted for volttron instance name. To run the
scripts without any prompts, save the volttron instance name in volttron_home/config file and pass the
volttron home directory as command line argument For example: “vcfg —vhome /home/vdev/.new_vhome
—rabbitmgq single”

Following is the example inputs for “vcfg —rabbitmq single” command. Since no config file is passed the
script prompts for necessary details.

Your VOLTTRON_HOME currently set to: /home/vdev/new_vhome?2

Is this the volttron you are attempting to setup? [Y]:

Creating rmg config yml

RabbitMQ server home: [/home/vdev/rabbitmg server/rabbitmg _server-3.7.7]:
Fully qualified domain name of the system: [cs_cbox.pnl.gov]:

Enable SSL Authentication: [Y]:

Please enter the following details for root CA certificates

(continues on next page)

3.3. Installing VOLTTRON 19

VOLTTRON Documentation, Release 6.0

(continued from previous page)

Country: [US]:

State: Washington

Location: Richland

Organization: PNNL

Organization Unit: Volttron-Team

Common Name: [volttronl-root-cal:

Do you want to use default values for RabbitMQ home, ports, and virtual
—~host: [Y]: N

Name of the virtual host under which RabbitMQ VOLTTRON will be running:

— [volttron]:

AMQP port for RabbitMQ: [5672]:

http port for the RabbitMQ management plugin: [15672]:

AMQPS (SSL) port RabbitMQ address: [5671]:

https port for the RabbitMQ management plugin: [15671]:
INFO:rmg_setup.pyc:Starting rabbitmg server

Warning: PID file not written; -detached was passed.
INFO:rmg_setup.pyc:**Started rmg server at /home/vdev/rabbitmg_server/
—rabbitmg _server-3.7.7
INFO:requests.packages.urllib3.connectionpool:Starting new HTTP connection
< (1) : localhost

INFO:requests.packages.urllib3.connectionpool:Starting new HTTP connection
— (1) : localhost

INFO:requests.packages.urllib3.connectionpool:Starting new HTTP connection
(1) : localhost

INFO:rmg_setup.pyc:

Checking for CA certificate

INFO:rmg_setup.pyc:

Root CA (/home/vdev/new_vhome2/certificates/certs/volttronl-root-ca.crt) NOT,_
—Found. Creating root ca for volttron instance

Created CA cert

INFO:requests.packages.urllib3.connectionpool:Starting new HTTP connection
(1) : localhost

INFO:requests.packages.urllib3.connectionpool:Starting new HTTP connection_
(1) : localhost

INFO:rmg_setup.pyc:*xStopped rmg server

Warning: PID file not written; -detached was passed.
INFO:rmg_setup.pyc:*+«Started rmg server at /home/vdev/rabbitmg_server/
—rabbitmg _server-3.7.7

INFO:rmg_setup.pyc:

FHEFE A

Setup complete for volttron home /home/vdev/new_vhome2 with instance,,
—name=volttronl

Notes:

— Please set environment variable VOLTTRON_HOME to /home/vdev/new_vhome2
—before starting volttron

- On production environments, restrict write access to
/home/vdev/new_vhome2/certificates/certs/volttronl-root-ca.crt to only admin
—user. For example: sudo chown root /home/vdev/new_vhome2/certificates/
—certs/volttronl-root-ca.crt

— A new admin user was created with user name: volttronl-admin and,
—password=default_passwd.

You could change this user's password by logging into https://cs_cbox.pnl.
—~gov:15671/ Please update /home/vdev/new_vhome2/rabbitmg config.yml if you,,
—change password

(continues on next page)

20

Chapter 3. License

VOLTTRON Documentation, Release 6.0

(continued from previous page)

FHEHFH A S

3.3.4 Testing the Installation

We are now ready to start VOLTTRON instance. If configured with RabbitMQ message bus a config file would
have been generated in $VOLTTRON_HOME/config with the entry message-bus=rmgq. If you need to revert back to
ZeroMQ based VOLTTRON, you will have to either remove “message-bus” parameter or set it to default “zmq” in
$VOLTTRON_HOME/config. The following command starts volttron process in the background

volttron -vv -1 volttron.logé&

This enters the virtual Python environment and then starts the platform in debug (vv) mode with a log file named
volttron.log. Alternatively you can use the utility script start-volttron script that does the same. To stop stop volttron
you can use the stop-volttron script.

’./startfvolttron

Warning: If you plan on running VOLTTRON in the background and detaching it from the terminal with the
disown command be sure to redirect stderr and stdout to /dev/null. Some libraries which VOLTTRON relies
on output directly to stdout and stderr. This will cause problems if those file descriptors are not redirected to
/dev/null

#To start the platform in the background and redirect stderr and stdout
#to /dev/null
volttron -vv -1 volttron.log > /dev/null 2>&l&

3.3.5 Installing and Running Agents

VOLTTRON platform comes with several built in services and example agents out of the box. To install a agent use
the script install-agent.py

python scripts/install-agent.py —-s <top most folder of the agent> [-c <config file.
—Might be optional for some agents>]

For example, we can use the command to install and start the Listener Agent - a simple agent that periodically publishes
heartbeat message and listens to everything on the message bus. Install and start the Listener agent using the following
command.

’python scripts/install-agent.py -s examples/ListenerAgent —-start

Check volttron.log to ensure that the listener agent is publishing heartbeat messages.

’tail volttron.log

2016-10-17 18:17:52,245 (listeneragent-3.2 11367) listener.agent INFO: Peer: 'pubsub',
— Sender: 'listeneragent-3.2_1':, Bus: u'', Topic: 'heartbeat/listeneragent-3.2_1", |,
—Headers: {'Date': '2016-10-18T01:17:52.239724+00:00"', 'max_compatible_version': u''
— 'min_compatible_version': '3.0'}, Message: {'status': 'GOOD', 'last_updated':
—'2016-10-18T01:17:47.232972+00:00"', 'context': 'hello'}

4

3.3. Installing VOLTTRON 21

VOLTTRON Documentation, Release 6.0

You can also use the vctl or volttron-ctl command to start, stop or check the status of an agent

(volttron)volttron@volttronl:~/git/rmg _volttron$ vctl status

AGENT IDENTITY TAG STATUS HEALTH
6 listeneragent-3.2 listeneragent-3.2_1 running [13125] GOOD
f master_driveragent-3.2 platform.driver master_driver

’vctl stop <agent id>

To stop the platform:

’volttronfctl shutdown —--platform

or

’ ./stop-volttron

Note: The default working directory is ~/.volttron. The default directory for creation of agent packages is ~/.volt-
tron/packaged

3.3.6 Next Steps

Now that the project is configured correctly:
See the following links for core services and volttron features:
e Core Services
* Platform Specifications
See the following links for agent development:
* Agent Development
* VOLTTRON Development in Eclipse
e VOLTTRON Development in PyCharm

Please refer to related topics to for advanced setup instructions

3.3.7 Related Topics

Using RabbitMQ message bus

Backward Compatibility With ZeroMQ Message Based VOLTTRON

RabbitMQ VOLTTRON supports backward compatibility with ZeroMQ based VOLTTRON. RabbitMQ VOLTTRON
has a ZeroMQ router running internally to accept incoming ZeroMQ connections and to route ZeroMQ messages
coming in/going out of it’s instance. There are multiple ways for an instance with a RabbitMQ message bus, and
an instance with ZeroMQ message bus to connect with each other. For example, an agent from one instance can
directly connect to the remote instance to publish or pull data from it. Another way is through multi-platform com-
munication, where the VOLTTRON platform is responsible for connecting to the remote instance. For more infor-
mation on multi-platform communication, see https://volttron.readthedocs.io/en/develop/core_services/multiplatform/
Multiplatform-Communication.html.

22 Chapter 3. License

https://volttron.readthedocs.io/en/develop/core_services/multiplatform/Multiplatform-Communication.html
https://volttron.readthedocs.io/en/develop/core_services/multiplatform/Multiplatform-Communication.html

VOLTTRON Documentation, Release 6.0

Agent Connecting Directly to Remote Instance

The following steps are to demonstrate how RabbitMQ VOLTTRON is backward compatible with ZeroMQ VOLT-
TRON, using the Forward Historian as an example. This example shows how to forward messages from local ZeroMQ
based VOLTTRON to remote RabbitMQ based VOLTTRON instance. Similar steps can be followed if you needed to
move messages from local RabbiMQ based VOLTTRON to ZeroMQ based VOLTTRON.

1. In order for RabbitMQ and ZeroMQ VOLTTRONSs to communicate with each other, one needs two instances of
VOLTTRON_HOME on the same VM. To create a new instance of VOLTTRON_HOME use the command.

export VOLTTRON_HOME=~/.new_volttron_home
It is recommended that one uses multiple terminals to keep track of both instances.

2. Start VOLTTRON on both instances. Note: since the start-volttron script uses the volttron.log by default, the
second instance will need be started manually in the background, using a separate log. For example:

volttron -vv -1 volttron-two.logé&
3. Modify the configuration file for both instances. The config file is located at SVOLTTRON_HOME/config

For RabbitMQ VOLTTRON, the config file should look similar to:

[volttron]

message—bus = rmg

vip-address = tcp://127.0.0.1:22916
instance-name = volttron_rmg

The ZeroMQ config file should look similar, with all references to RMQ being replaced with ZMQ, and a
different vip-address (e.g. tcp://127.0.0.2:22916).

4. On the instance running ZeroMQ:

a. Install the Forward Historian agent using an upgrade script similar to:

#!/bin/bash
export CONFIG=$ (mktemp /tmp/abc-script.XXXXXX)
cat > SCONFIG <<EOL
{
"destination-vip": "tcp://127.0.0.1:22916",
"destination-serverkey": "key"
}
EOL
python /home/username/volttron/scripts/install-agent.py —-c S$CONFIG -s_,
—services/core/ForwardHistorian --start --force -i forward.historian
Finally remove the temporary config file
rm $SCONFIG

Since we are attempting to push data from the local (ZeroMQ in this example) to the remote (Rab-
bitMQ) instance, the we would need the RabbitMQ serverkey, which can be obtained by running
vctl auth serverkey on the RabbitMQ instance.

Start the Forward Historian.

b. Install master driver, configure fake device on upstream server and start volttron and master driver. vcfg
—agent master_driver command can install master driver and setup a fake device.

./stop-volttron

vcfg —-—agent master_driver
./start-volttron

vctl start --tag master_driver

3.3. Installing VOLTTRON 23

tcp://127.0.0.2:22916

VOLTTRON Documentation, Release 6.0

5. On the instance running RabbitMQ:
a. Run a listener agent which subscribes to messages from all platforms

* Open the file examples/ListenerAgent/listener/agent.py. Search for @Pub-
Sub.subscribe(‘pubsub’, *’) and replace that line with @PubSub.subscribe(‘pubsub’, ‘devices’,
all_platforms=True)

 updgrade the listener

scripts/core/upgrade-listener

b. Provide the RabbitMQ instance with the public key of the Forward Historian running on ZeroMQ instance.

Run vetl auth public key on the ZeroMQ instance. Copy the output and add the public key to
the RabbitMQ instance’s auth.config file, using the defaults except for the user_id and credentials.

vctl auth add

domain []:

address []:

user_1id []: forward

capabilities (delimit multiple entries with comma) []:
roles (delimit multiple entries with comma) []:
groups (delimit multiple entries with comma) []:
mechanism [CURVE] :

credentials []: key

comments []:

enabled [True]:

Once that is completed you should be able to see data similar to below in_ |
—~the log of the volttron instance running RabbitMQ:

2018-12-31 14:48:10,043 (listeneragent-3.2 7175) listener.agent INFO:
—Peer: pubsub, Sender: forward.historian:, Bus: , Topic: devices/fake-
—campus/fake-building/fake-device/all, Headers: {'X-Forwarded': True,

—'SynchronizedTimeStamp': '2018-12-31T719:48:10.000000400:00", 'TimeStamp
—': '2018-12-31T719:48:10.001966+00:00"', 'max_compatible_version': u'',
—'min_compatible_version': '3.0', 'Date': '2018-12-31T19:48:10.
—~001966+00:00"}, Message:
[{'Heartbeat': True, 'PowerState': 0, 'ValveState': 0, 'temperature': 50.
<~>0}r
{'Heartbeat': {'type': 'integer', 'tz': 'US/Pacific', 'units': 'On/Off'},
'PowerState': {'type': 'integer', 'tz': 'US/Pacific', 'units': '1/0'},
'ValveState': {'type': 'integer', 'tz': 'US/Pacific', 'units': '1/0'},
'temperature': {'type': 'integer',
'tz': 'US/Pacific’',
'units': 'Fahrenheit'}}]

Multi-Platform Connection

The below example demonstrates backward compatibility using multi-platform connection method.

1. Refer to steps 1 -3 in the previous section for configuring two VOLTTRON instances (one with RabbitMQ and
one with ZeroMQ). For step 3, the VOLTTRON config files need to account for a web-server, which is necessary
for multi-platform communication. As such, the config files should look similar to the following:

24 Chapter 3. License

VOLTTRON Documentation, Release 6.0

[volttron]

message-bus = rmg

vip-address = tcp://127.0.0.1:22916
instance-name = volttron_rmg
bind-web-address = http://127.0.0.1:8080

2. Create an external_address.json file in the VOLTTRON_HOME directory for both instances, with the IP address
and port of the remote instance(s) it will need to connect to. In this example, the RabbitMQ would have the
address of the ZeroMQ instance, and vice versa. Below is an example for one instance:

[
"http://127.0.0.2:8080"

3. On the instance running ZeroMQ:

a. Install the DataMover agent using an upgrade script similar to:

#!/bin/bash

export CONFIG=$ (mktemp /tmp/abc-script.XXXXXX)

cat > SCONFIG <<EOL

{
"destination-vip": "tcp://127.0.0.1:22916",
"destination-serverkey": "rmg server key",
"destination-instance-name": "volttron_rmqg",
"destination-message-bus": "zmg"

}

EOL

python /home/osboxes/volttron/scripts/install-agent.py —-c $CONFIG -s_

—services/core/DataMover —--start —--force -i data.mover

Finally remove the temporary config file

rm $CONFIG

Replace “rmq server key” with the RabbitMQ server key.

In this example the DataMover will be running on the ZeroMQ instance, which means that the
destination vip, serverkey, and instance name are configured to the RabbitMQ instance. However,
destination-message-bus should be set to zmq. Start DataMover agent.

b. Install master driver, configure fake device on upstream server and start volttron and master driver. ‘vcfg
—agent master_driver’ command can install master driver and setup a fake device.

./stop-volttron

vcfg —-—agent master_driver
./start-volttron

vctl start —--tag master_driver

4. On the instance running RabbitMQ:

a. Start SQLHistorian. Easiest way to accomplish this is to stop VOLTTRON, reconfigure to have
RabbitMQ message bus and install platform.historian already installed, and start VOLTTRON
again.

./stop-volttron

vcfg —-—agent platform_historian
./start-volttron

vctl start —--tag platform_historian

b. Run a listener agent which subscribes to messages from all platforms

3.3. Installing VOLTTRON 25

VOLTTRON Documentation, Release 6.0

Additionally for different combinations of multi-bus, multi-platform setup, please refer to Multi-Platform Multi-Bus

* Open the file examples/ListenerAgent/listener/agent.py. Search for @Pub-
Sub.subscribe(‘pubsub’, “’) and replace that line with @PubSub.subscribe(‘pubsub’,
‘devices’, all_platforms=True)

* updgrade the listener

scripts/core/upgrade-listener

c. Provide the RabbitMQ instance with the public key of the DataMover running on ZeroMQ in-
stance.

Runvctl auth public key onthe ZeroMQ instance. Copy the output and add the public
key to the RabbitMQ instance’s auth.config file, using the defaults except for the user_id and
credentials.

vctl auth add

domain []:

address []:

user_1id []: forward

capabilities (delimit multiple entries with comma) []:
roles (delimit multiple entries with comma) []:
groups (delimit multiple entries with comma) []:
mechanism [CURVE] :

credentials []: key

comments []:

enabled [True]:

5. Stop VOLTTRON on both instances, and restart using setup mode.

volttron -vv -1 volttron.log —--setup-mode&

If you tail the logs of both instances, there should be a message indicating that starting with setup mode
was complete upon success.

After a successful start, a new file called external_platform_discovery.json should be located in the
$VOLTTRON_HOME directory of both instances. The file will contain the platform discovery infor-
mation (), of all external platforms the respective VOLTTRON instance is aware of. The file will look
something like:

{"<platforml name>": {"vip-address":"tcp://<ipl>:<vip portl>",
"instance-name":"<platforml nam>",
"serverkey":"<serverkeyl>"

}I

"<platform2 name>": {"vip-address":"tcp://<ip2>:<vip port2>",
"instance-name":"<platform2 name>",
"serverkey":"<serverkey2>"
}I

"<platform3 name>": {"vip-address":"tcp://<ip3>:<vip port3>",
"instance-name":"<platform3 name>",
"serverkey":"<serverkey3>"

by

Walk-through

26

Chapter 3. License

VOLTTRON Documentation, Release 6.0

Monitoring and Controlling RabbitMQ

Some of the important native RabbitMQ control and management commands are now integrated with “volttron-ctl”
utility. Using volttron-ctl rabbitmq management utility, we can control and monitor the status of RabbitMQ message
bus.

volttron-ctl rabbitmg --help

usage: volttron-ctl command [OPTIONS] ... rabbitmg [-h] [-c FILE] [--debug]
[-t SECS]
[-—msgdebug MSGDEBUG]
[--vip-address ZMQADDR]
subcommands :
add-vhost add a new virtual host
add-user Add a new user. User will have admin privileges
i.e,configure, read and write
add-exchange add a new exchange
add—queue add a new queue
list-vhosts List virtual hosts
list-users List users

list-user-properties

List users
list-exchanges add a new user
list—-exchange-properties

list exchanges with properties
list—-queues list all queues
list—-queue-properties

list queues with properties
list-bindings list all bindings with exchange
list-federation-parameters

list all federation parameters
list-shovel-parameters

list all shovel parameters

list-policies list all policies
remove-vhosts Remove virtual host/s
remove—-users Remove virtual user/s
remove—exchanges Remove exchange/s
remove—queues Remove queue/s

remove-federation-parameters

Remove federation parameter
remove-shovel-parameters

Remove shovel parameter
remove-policies Remove policy

Multi-Platform Multi-Bus Walk-through

This guide describes the setup process for a multi-platform connection that has a combination of ZeroMQ and Rab-
bitMQ instances. For this example, we want to use the Forwarder to pass device data from two VOLTTRON instance
to a single “central” instance for storage. It will also have a Volttron Central agent running on the “central” instance
and Volttron Central Platform agents on all 3 instances and connected to “central” instance to provide operational sta-
tus of it’s instance to the “central” instance. For this document “node” will be used interchangeably with VOLTTRON
instance.

3.3. Installing VOLTTRON 27

VOLTTRON Documentation, Release 6.0

Node Setup

For this example we will have two types of nodes; a data collector and a central node. Each of the data collectors will
have different message buses (VOLTTRON supports both RabbitMQ and ZeroMQ). The nodes will be configured as
in the following table.

Table 1: Node Configuration

Central Node-ZMQ Node-RMQ

Node Type Central Data Collector Data Collector
Master Driver yes yes

Forwarder yes yes

SQL Historian yes

Volttron Central yes

Volttron Central Platform yes yes yes

Exposes RMQ Port yes

Exposes ZMQ Port yes

Exposes HTTPS Port yes

The goal of this is to be able to see the data from Node-ZMQ and Node-RMQ in the Central SQL Historian and on the
trending charts of Volttron Central.

Virtual Machine Setup

The first step in creating a VOLTTRON instance is to make sure the machine is ready for VOLTTRON. Each machine
should have its hostname setup. For this walkthrough, the hostnames “central”, “node-zmq” and “node-rmq” will be
used.

For Central and Node-RMQ follow the instructions Building-VOLTTRON#steps-for-rabbitmq. For Node-ZMQ use
Building-VOLTTRON#steps-for-zmgq.

Instance Setup

The following conventions/assumptions are made for the rest of this document:
* Commands should be run from the VOLTTRON root

* Default values are used for VOLTTRON_HOME($HOME/.volttron), vip port (22916), HTTPS port (8443),
rabbitmq ports(5671 for AMQPs and 15671 for RabbitMQ management interface). If using different VOLT-
TRON_HOME or ports, please replace accordingly.

* Replace central, node-zmq and node-rmq with your own hostnames.

The following will use vcfg (volttron-cfg) to configure the individual platforms.

Central Instance Setup

Note: This instance must have been bootstrapped using —rabbitmq see Building-VOLTTRON#steps-for-rabbitmg.

Next step would be to configure the instance to have a web interface to accept/deny incoming certificate signing
requests from other instances. Additionally, we will need to install a Volttron Central agent, Volttron Central Platform
agent, SQL historian agent and a Listener agent. The following shows an example command output for this setup.

28 Chapter 3. License

VOLTTRON Documentation, Release 6.0

(volttron)d3x140Qcentral:~/volttron$ vcfg
Your VOLTTRON_HOME currently set to: /home/d3x140/.volttron

Is this the volttron you are attempting to setup? [Y]:

What type of message bus (rmg/zmqg)? [zmg]: rmg

Name of this volttron instance: [volttronl]: central

RabbitMQ server home: [/home/d3x140/rabbitmg_server/rabbitmg_server-3.7.7]:

Fully qualified domain name of the system: [central]:

Would you like to create a new self signed root CAcertificate for this instance: [Y]:

Please enter the following details for root CA certificate

Country: [US]:

State: WA

Location: Richland

Organization: PNNL

Organization Unit: volttron
Do you want to use default values for RabbitMQ home, ports, and virtual host: [Y]:
2019-06-20 16:28:11, 341 volttron.utils.rmg mgmt DEBUG: Creating new VIRTUAL HOST:
—volttron
2019-06-20 16:28:11,422 volttron.utils.rmg _mgmt DEBUG: Create READ, WRITE and,,
—CONFIGURE permissions for the user: central- admin

Create new exchange: volttron, {'durable': True, 'type': 'topic', 'arguments': {
—'alternate—-exchange': 'undeliverable'}}
Create new exchange: undeliverable, {'durable': True, 'type': 'fanout'}

Created CA cert

The rmg message bus has a backward compatibility

layer with current zmg instances. What is the

zmg bus's vip address? [tcp://127.0.0.1]: tcp://172.20.214.72
What is the port for the vip address? [22916]:

Is this instance web enabled? [N]: y

Web address set to: https://central

What is the port for this instance? [8443]:

Is this an instance of volttron central? [N]: y

Configuring /home/d3x140/volttron/services/core/VolttronCentral.
Enter volttron central admin user name: admin

Enter volttron central admin password:

Retype password:

Installing volttron central.

Should the agent autostart? [N]: vy

Will this instance be controlled by volttron central? [Y]:
Configuring /home/d3x140/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [centrall:

What is the hostname for volttron central? [https://central]:
What is the port for volttron central? [8443]:

Should the agent autostart? [N]:

Would you like to install a platform historian? [N]: y
Configuring /home/d3x140/volttron/services/core/SQLHistorian.
Should the agent autostart? [N]: vy

Would you like to install a master driver? [N]:

Would you like to install a listener agent? [N]: y
Configuring examples/ListenerAgent.

Should the agent autostart? [N]: y

Finished configuration!

You can now start the volttron instance.

(continues on next page)

3.3. Installing VOLTTRON 29

VOLTTRON Documentation, Release 6.0

(continued from previous page)

If you need to change the instance configuration you can edit
the config file is at /home/d3x140/.volttron/config

Start VOLTTRON instance and check if the agents are installed.

./start-volttron
vctl status

Open browser and go to master admin authentication page https://central:8443/index.html to accept/reject incoming
certificate signing request (CSR) from other platforms.

Note: Replace “central” with the proper hostname of VC instance in the admin page URL. If opening the admin page
from a different system, then please make that the hostname is resolvable in that machine.

Click on “Login To Admistration Area”.

VOLTTRON Default Page - Mozilla Firefox
VOLTTRON Default Page x |+

<« c @ @ & central w INn@ =

>/ vaoLTTRON

You are accessing the default page of a web enabled volttron node. This content is located in the voltron/platform/webr/static directory in the voltiron
distribution. You may use or remove this folder to make it un-available.

Your volttron comes with

« Login to Admininstration Area

Set the master admin username and password. This can be later used to login into master admin authentication page.

30 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Master Password Creation - Mozilla Firefox
Master Password Creation x [+

<« c @ D central 4 In @ =

*/vaLTTROM

Master Administration Password

Username: admin
Password: e
Re-Password: «

Set Master Password

@B A0 E 12

Login into the Master Admin page.

Administration Login - Mozilla Firefox

VOLTTROM

Administration Login x [+

<« c @ of central 4 In @ =

Authentication
Usemname: admin
Password: essss

Login

OmEEe> -

PE &0 B 126

After logging in, you will see no CSR requests initially.

3.3. Installing VOLTTRON 31

VOLTTRON Documentation, Release 6.0

Certificate Requests - Mozilla Firefox
Certificate Requests x [+

<« c @ D central w In @ =
>/ VOLTTROM
Devices | Data | Decisions
Certificate Requests
No Certificate Requests
@ mE8 "

Go back to the terminal and start Volttron Central Platform agent on the “central” instance. The agent will send a CSR
request to the web interface.

vctl start —-—-tag vcp

Now go to master admin page to check if there is a new pending CSR request. You will see a “PENDING” request
from “central.central.platform.agent”

Certificate Requests - Mozilla Firefox
Certificate Requests x [+

<« e @ o7 central

>/ VaLTTRON

Certificate Requests

W N o =

Status: PENDING

Approve Deny Delete
Common Name: central.central.platform.agent
Remote IP: 172.20.214.72

Approve the CSR request to allow authenticated SSL based connection to the “central” instance.

Go back to the terminal and check the status of Volttron Central Platform agent. It should be set to “GOOD”.

32 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Node-ZMQ Instance Setup

On the “node-zmq” VM, setup a ZeroMQ based VOLTTRON instance. Using “vcfg” command, install Volttron
Central Platform agent, a master driver agent with a fake driver.

Note: This instance will use old ZeroMQ based authentication mechanism using CURVE keys.

(volttron)d3x140@node-zmg:~/volttron$ vcfg
Your VOLTTRON_HOME currently set to: /home/d3x140/.volttron

Is this the volttron you are attempting to setup? [Y]:

Message bus set to zmg

What is the vip address? [tcp://127.0.0.17]:

What is the port for the vip address? [22916]:

Is this instance web enabled? [N]:

Will this instance be controlled by volttron central? [Y]:

Configuring /home/d3x140/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [volttronl]: collectorl

What is the hostname for volttron central? [http://node-zmg]: https://central
What is the port for volttron central? [8080]:

Should the agent autostart? [N]:

Would you like to install a platform historian? [N]:

Would you like to install a master driver? [N]: y

Configuring /home/d3x140/volttron/services/core/MasterDriverAgent.

Would you like to install a fake device on the master driver? [N]: y
Should the agent autostart? [N]: y

Would you like to install a listener agent? [N]:

Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/d3x140/.volttron/config

Please note the Volttron Central web-address should point to that of the “central” instance.

Start VOLTTRON instance and check if the agents are installed.

./start-volttron
vctl status

Start Volttron Central Platform on this platform manually.

’vctl start —--tag vcp

Check the VOLTTRON log in the “central” instance, you will see “authentication failure” entry from the incoming
connection. You will need to add the public key of VCP agent on the “central” instance.

On the “node-zmq” box execute this command and grab the public key of the VCP agent.

’vctl auth publickey

3.3. Installing VOLTTRON 33

VOLTTRON Documentation, Release 6.0

Add auth entry corresponding to VCP agent on “central” instance using the below command. Replace the user id value
and credentials value appropriately before running

vctl auth add —-user_id <any unique user id. for example zmg node_vcp> —-credentials
—<public key of vcp on zmg node>

Complete similar steps to start a forwarder agent that connects to “central” instance. Modify the configuration in ser-
vices/core/ForwardHistorian/rmq_config.yml to have a destination VIP address pointing to VIP address of the “cen-
tral” instance and server key of the “central” instance.

destination-vip: tcp://<ip>:22916
destination-serverkey: <serverkey>

Note: Replace <ip> with public facing IP-address of “central” instance and <serverkey> with serverkey of “central”
instance. Use the command vctl auth serverkey on the “central” instance to get the server key of the instance

Install and start forwarder agent.

python scripts/install-agent.py —-s services/core/ForwardHistorian -c services/core/
—ForwardHistorian/rmg_config.yml --start

Grab the public key of the forwarder agent.

vctl auth publickey

Add auth entry corresponding to VCP agent on central instance.

vctl auth add —-user_id <any unique user id. for example zmg _node_forwarder> —-—
—credentials <public key of forwarder on zmg node>

You should start seeing messages from “collector]” instance on the “central” instance’s VOLTTRON log now.

Node-RMQ Instance Setup

Note: This instance must have been bootstrapped using —rabbitmq see Building-VOLTTRON#steps-for-rabbitmgq.

Using “vefg” command, install Volttron Central Platform agent, a master driver agent with fake driver. The instance
name is set to “collector2”.

34 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Note: The Volttron Central web-address should point to that of the “central” instance.

Start VOLTTRON instance and check if the agents are installed.

./start-volttron
vctl status

Start Volttron Central Platform on this platform manually.

vctl start —--tag vcp

Go the master admin authentication page and check if there is a new pending CSR request from VCP agent of “col-
lector2” instance.

3.3. Installing VOLTTRON 35

VOLTTRON Documentation, Release 6.0

Certificate Requests - Mozilla Firefox

%/ vVaLTTRON

Certificate Requests

Certificate Requests x [+

<« c @ o central

Status: APPROVED
Common Name: central.central.platform.agent,
Remote IP: 172.20.214.72

Deny Delete Approve Deny Delete

Status: PENDING
Common Name: central.collector2.platform.agent
Remote IP: 172.20.214.65

@B A0 E s

Approve the CSR request to allow authenticated SSL based connection to the “central” instance.

Certificate Requests - Mozilla Firefox

Certificate Requests x [+

<« c @ D & central w INn@ =

OLTTRON

Certificate Requests

APPROVED for central.collector2.platform.agent

Status: APPROVED
Common Name: central.central.platform.agent
Remote IP: 172.20.214.72

Deny Delete

Deny Delete

Status: APPROVED

Common Name: central.collector2.platform.agent
Remote IP: 172.20.214.65

PE &0 B 1

Now go back to the terminal and check the status of Volttron Central Platform agent. It should be set to “GOOD”.

Let’s now install a forwarder agent on this instance to forward local messages matching “devices” topic to external

“central” instance. Modify the configuration in services/core/ForwardHistorian/rmq_config.yml to have a destination
address pointing to web address of the “central” instance.

destination—-address: https://central:8443

Start forwarder agent.

36 Chapter 3. License

VOLTTRON Documentation, Release 6.0

python scripts/install-agent.py -s services/core/ForwardHistorian -c services/core/
—ForwardHistorian/rmg_config.yml --start

Go the master admin authentication page and check if there is a new pending CSR request from forwarder agent of
“collector2” instance.

Certificate Requests - Mozilla Firefox
Certificate Requests X | VOLTTRON™ Central BETA x |+

<« e @ of’} central

- 9w n o =

Certificate Requests

By B Status: APPROVED
Common Name: central.central.platiorm.agentg, oo o e
e DA Common Name: central.collector2.platform.agent
Remote IP: 172.20.214.65

Deny Delete

Status: PENDING

Approve Deny Delete
Common Name: central.collector2 forwarderagent-5.1_1
Remote IP: 172.20.214.65

Approve the CSR request to allow authenticated SSL based connection to the “central” instance

Certificate Requests - Mozilla Firefox
Certificate Requests X | VOLTTRON™ Central BETA

<« c @ of

X | Multi-Platform Walk-through—\ X | 4

central

LR Lo =

Certificate Requests

APPROVED for central.collector2.forwarderagent-5.1 1

Deny Delete St ARROVED Deny Delete
Common Name: central.central.platiorm.agentg, oo o e
e DA Common Name: central.collector2.platform.agent
Remote IP: 172.20.214.65
Deny Delete Status: APPROVED

Common Name: central.collector2.forwarderagent-5.1_1
Remote IP: 172.20.214.65

Now go back to the terminal and check the status of forwarder agent. It should be set to “GOOD”.

Check the VOLTTRON log of “central” instance. You should see messages with “devices” topic coming from “col-
lector2” instance.

3.3. Installing VOLTTRON 37

VOLTTRON Documentation, Release 6.0

To confirm that VolttronCentral is monitoring the status of all the 3 platforms, open a browser and type this URL
https://central:8443/vc/index.html. Login using credentials (username and password) earlier set during the VC config-
uration step (using vcfg command in “central” instance). Click on “platforms” tab in the far right corner. You should
see all three platforms listed in that page. Click on each of the platforms and check the status of the agents.

setup/RabbitMQ/images/vc—platforms.png

Multi-Platform Deployment With RabbitMQ Message bus

In ZeroMQ based VOLTTRON, if multiple instances needed to be connected together and be able to send or receive
messages to/from remote instances we would do it in few different ways.

1. Write an agent that would connect to remote instance directly and publish/subscribe to messages or perform
RPC communication directly. This is described in Agent connection to remote volttron instance

2. Use special agents such as forwarder/data puller agents to forward/receive messages to/from remote instances.
This can be achieved using RabbitMQ’s shovel plugin and is described at Using Shovel Plug-in

3. Configure vip address of all remote instances that an instance has to connect to in it’s $VOLT-
TRON_HOME/external_discovery.json and let the router module in each instance manage the connection and
take care of the message routing for us. This is the most seamless way to do multi-platform communication. This
can be achieved using RabbitMQ’s federation plugin. Setup for this is described at Using Federation Plug-in

RabbitMQ Trouble Shooting

Check the status of the federation connection

/sbin/rabbitmgctl eval 'rabbit_ federation_status:status().'

If everything is properly configured, then the status is set to “running”. If not look for the error status. Some of the
typical errors are,

a. “failed_to_connect_using_provided_uris” - Check if RabbitMQ user is created in downstream server node. Re-
fer to step 3b of federation setup

b. “unknown ca” - Check if the root CAs are copied to all the nodes correctly. Refer to step 2 of federation setup

¢. “no_suitable_auth_mechanism” - Check if the AMPQ/S ports are correctly configured.

Check the status of the shovel connection

RABBITMQ HOME/sbin/rabbitmgctl eval 'rabbit_shovel_status:status().'

38 Chapter 3. License

VOLTTRON Documentation, Release 6.0

If everything is properly configured, then the status is set to “running”. If not look for the error status. Some of the
typical errors are,

a. “failed_to_connect_using_provided_uris” - Check if RabbitMQ user is created in subscriber node. Refer to step
3 b of shovel setup

b. “unknown ca” - Check if the root CAs are copied to remote servers correctly. Refer to step 2 of shovel setup

c. “no_suitable_auth_mechanism” - Check if the AMPQY/S ports are correctly configured.

Check the RabbitMQ logs for any errors

tail —-f <volttron source dir>/rabbitmg.log

Rabbitmq startup hangs

a. Check for errors in rabbitmq log. There is a rabbitmgq.log file in your volttron source directory that is a symbolic
link to the rabbitmgq server logs.

b. Check for errors in syslog (/var/log/syslog or /var/log/messages)

c. If there are no errors in either of the logs, stop rabbitmq and starting rabbitmq server in foreground and see if
there are any errors written on the console. Once you find the error you can kill the process by entering Ctl+C,
fix the error and start rabbitmq again using ./start-rabbitmq from volttron source directory.

./stop-volttron
./stop-rabbitmg
@RABBITMQ_HOME/sbin/rabbitmg-server

SSL trouble shooting

There are few things that are essential for SSL certificates to work right.

a. Please use a unique common-name for CA certificate for each volttroninstance. This is configured under
certificate-data in the rabbitmq_config.yml or if no yml file is used while configuring a volttron single instance
(using vefg —rabbitmq single). Certificate generated for agent will automatically get agent’s vip identity as the
certificate’s common-name

b. host name in ssl certificate should match hostname used to access the server. For example, if the fully qualified
domain name was configured in the certificate-data, you should use the fully qualified domain name to access
rabbitmq’s management url.

c. Check if your system time is correct especially if you are running virtual machines. If the system clock is not
right, it could lead to ssl certificate errors

DataMover troubleshooting

If output from volttron.log is not as expected check for { 'alert_key': ‘'historian_not_publishing'}
in the callee node’s volttron.log. Most likely cause is the historian is not running properly or credentials between caller
and callee nodes was not set properly.

3.3. Installing VOLTTRON 39

VOLTTRON Documentation, Release 6.0

RabbitMQ Multi-Platform Deployment Using Federation Plugin

Federation pluggin allows us to send and receive messages to/from remote instances with few simple connection
settings. Once a federation link is established to remote instance, the messages published on the remote instance
become available to local instance as if it were published on the local instance. Before, we illustrate the steps to setup
a federation link, let us start by defining the concept of upstream and downstream server.

Upstream Server - The node that is publishing some message of interest
DownStream Server - The node that wants to receive messages from the upstream server

A federation link needs to be established from downstream server to the upstream server. The data flows in single
direction from upstream server to downstream server. For bi-directional data flow we would need to create federation
links on both the nodes.

1. Setup two VOLTTRON instances using the instructions at RMQ Setup. Please note that each instance should
have a unique instance name and should be running on machine/VM that has a unique host name.

2. In a multi platform setup that need to communicate with each other with RabbitMQ over SSL, each VOLTTRON
instance should should trust the ROOT CA of the other instance(RabbitMQ root ca)

a. Transfer (scp/sftp/similar) voltttron_home/certificates/certs/<instance_name>-root-ca.crt to a temporary
location on the other volttron instance machine. For example, if you have two instance vl and v2, scp
v1’s vl-root-ca.crt to v2 and v2-root-ca.crt to v1.

Note: If using VMs, in order to scp files between VM openssh should be installed and running.

b. Append the contents of the transferred root ca to the instance’s trusted-cas.crt file. Do this on both the
instances. Now both the instances <instance_name>-trusted-cas.crt will have two certificates.

For example:
On vl: cat /tmp/v2-root-ca.crt >> VOLTTRON_HOME/certificates/certs/v1-trusted-cas.crt
On v2: cat /tmp/v1-root-ca.crt >> VOLTTRON_HOME/certificates/certs/v2-trusted-cas.crt

3. Stop volttron, stop rabbitmq server and start volttron on both the instances. This is required only when you update
the root certificate and not required when you add a new shovel/federation between the same hosts

./stop-volttron
./stop-rabbitmg
./start-volttron

4. Identify upstream servers (publisher nodes) and downstream servers (collector nodes). To create a RabbitMQ
federation, we have to configure upstream servers on the downstream server and make the VOLTTRON exchange
“federated”.

a. On the downstream server (collector node)

vcfg —-rabbitmg federation [optional path to rabbitmg_federation_config.yml
containing the details of the upstream hostname, port and vhost.

Example configuration for federation is available in examples/configurations/rabbitmgq/rabbitmq_federation_config.yml]

If no config file is provided, the script will prompt for hostname (or IP address), port, and vhost of each upstream
node you would like to add. Hostname provided should match the hostname in the SSL certificate of the
upstream server. For bi-directional data flow, we will have to run the same script on both the nodes.

b. Create a user in the upstream server(publisher) with username=<downstream admin user name> (i.e. (instance-
name)-admin) and provide it access to the virtual host of the upstream RabbitMQ server. Run the below com-
mand in the upstream server

40 Chapter 3. License

VOLTTRON Documentation, Release 6.0

volttron-ctl rabbitmg add-user <username> <password>
Do you want to set READ permission [Y/n]

Do you want to set WRITE permission [Y/n]

Do you want to set CONFIGURE permission [(Y/n]

5. Test the federation setup.
a. On the downstream server run a listener agent which subscribes to messages from all platforms

* Open the file examples/ListenerAgent/listener/agent.py. Search for @PubSub.subscribe(‘pubsub’,
) and replace that line with @PubSub.subscribe(‘pubsub’, ‘devices’, all_platforms=True)

* updgrade the listener

scripts/core/upgrade-listener

b. Install master driver, configure fake device on upstream server and start volttron and master driver.
vcfg —agent master_driver command can install master driver and setup a fake device.

./stop-volttron

vcfg —-—agent master_driver
./start-volttron

vctl start —--tag master_driver

c. Verify listener agent in downstream VOLTTRON instance is able to receive the messages. down-
stream volttron instance’s volttron.log should display device data scrapped by master driver agent in
upstream volttron instance

6. Open ports and https service if needed On Redhat based systems ports used by RabbitMQ (defaults to 5671,
15671 for SSL, 5672 and 15672 otherwise) might not be open by default. Please contact system administrator
to get ports opened on the downstream server.

Following are commands used on centos 7.

sudo firewall-cmd --zone=public -—-add-port=15671/tcp —-permanent
sudo firewall-cmd --zone=public --add-port=5671/tcp —-permanent
sudo firewall-cmd --reload

7. How to remove federation link
a. Using the management web interface

Log into management web interface using downstream server’s admin username. Navigate to admin tab
and then to federation management page. The status of the upstream link will be displayed on the page.
Click on the upstream link name and delete it.

b. Using “volttron-ctl” command on the upstream server.

vctl rabbitmg list-federation-parameters

NAME URI

upstream-volttron2-rabbit-2 amgps://rabbit-2:5671/volttron2?
—cacertfile=/home/nidd494/.volttronl/certificates/certs/volttronl-
—root—-ca.crt&certfile=/home/nidd494/.volttronl/certificates/certs/
—volttronl-admin.crté&keyfile=/home/nidd494/.volttronl/certificates/
—private/volttronl-admin.pemsverify=verify_peer&fail if no peer

. cert=true&auth mechanism=external&server name indication=rabbit-2

Grab the upstream link name and run the below command to remove it.

3.3. Installing VOLTTRON 41

VOLTTRON Documentation, Release 6.0

vctl rabbitmg remove-federation-parameters upstream-volttron2-—
—rabbit-2

Agent communication to Remote RabbitMQ instance

Communication between two RabbitMQ based VOLTTRON instances must be done using SSL certificate based au-
thentication. Non SSL based authentication will not be supported for communication to remote RabbitMQ based
VOLTTRON instances. An volttron instance that wants to communicate with a remote instance should first request
a SSL certificate that is signed by the remote instance. To facilitate this process there will be a web based server api
for requesting, listing, approving and denying certificate requests. This api will be exposed via the MasterWebService
and will be available to any RabbitMQ based VOLTTRON instance with ssl enabled. This api will be tested and used
in the following agents:

* ForwarderAgent
 DataPuller
* VolttronCentralPlatform

For the following document we will assume we have two instances a local-instance and remote-volttron-instance. The
remote-volttron-instance will be configured to allow certificate requests to be sent to it from the local-instance. A
remote-agent running in local-instance will attempt to establish a connection to the remote-volttron-instance

Configuration

Both volttron-server and volttron-client must be configured for RabbitMQ message bus with SSL using the step de-
scribed at Installing Volttron.

In addition the remote-volttron-instance configuration file must have a https bind-web-address specified in the instance
config file. Below is an example config file with bind-web-address. Restart volttron after editing the config file

[volttron]

message-bus = rmqg

vip-address = tcp://127.0.0.1:22916
bind-web-address = https://volttronl:8443
instance-name = volttronl

By default the bind-web-address parameter will use the MasterWebService agent’s certificate and private key. Both
private and public key are necessary in order to bind the port to the socket for incoming connections. This key pair
is auto generated for RabbitMQ based VOLTTRON at the time of platform startup. Users can provide a different
certificate and private key to be used for the bind-web-address by specifying web-ssl-cert and web-ssl-key in the
config file. Below is an example config file with the additional entries

[volttron]

message—bus = rmg

vip-address = tcp://127.0.0.1:22916
bind-web-address = https://volttronl:8443
instance-name = volttronl

web-ssl-cert = /path/to/cert/cert.pem
web-ssl-key = /path/to/cert/key.pem

Note:

e The /etc/hosts file should be modified in order for the dns name to be used for the bound address.

42 Chapter 3. License

VOLTTRON Documentation, Release 6.0

remote-agent on local-instance

The auth subsystem of the volttron architecture is how a remote-agent on local instnace will connect to the remote
volttron instance.

The following is a code snippet from the remote-agent to connect to the remote volttron instance.

value = self.vip.auth.connect_remote_platform(address)

The above function call will return an agent that connects to the remote instance only after the request is approved by
an adminstrator of the remote instance. It is up to the agent to repeat calling connect_remote_platform periodically
until an agent object is obtained.

Approving a CSR Request

The following diagram shows the sequence of events when an access request is approved by the administrator of
remote volttron instance. In this case, the volttron-client agent will get a Agent object that is connected to the remote
instance. The diagram shows the client agent repeating the call to connect_remote_platform until the return value is
not None.

® ®

Instance
| |
result is not None J .

POST

I
|
|
|
|
|
|
|
|
|
|
|
volttron-server/new_csr }
|

PENDING
Appprove remote-agent access:

SUCCESS

Signed Certificate

Connect To Remote
Using Signed Certificate

~agent connected to
remote volttron instance

Denying a CSR Request

The following diagram shows the sequence of events when an access request is denied by the administrator. The client
agent repeats the call to connect_remote_platform until the return value is not None. When the remote instance’s
administrator denies a access request, the auth subsystem will raise an alert and shutdown the agent.

3.3. Installing VOLTTRON 43

VOLTTRON Documentation, Release 6.0

result is not None |
| - - 7

connect_remate_platform—ije

POST
volttron-server/new,_csr

Dery Adcess

Follow walk-through in Multi-Platform Multi-Bus Walk-through for setting up different combinations of multi-bus
multi-platform setup using CSR.

RabbitMQ Multi-Platform Deployment Using Shovel Plugin

In RabbitMQ based VOLTTRON, forwarder and data mover agents will be replaced by shovels to send or receive
remote pubsub messages. Shovel behaves like a well written client application that connects to its source (can be local
or remote) and destination (can be local or remote instance), reads and writes messages, and copes with connection
failures. In case of shovel, apart from configuring the hostname, port and virtual host of the remote instance, we will
also have to provide list of topics that we want to forward to remote instance. Shovels can also be used for remote
RPC communication in which case we would have to create shovel in both the instances, one to send the RPC request
and other to send the response back.

Pubsub Communication

1. Setup two VOLTTRON instances using the steps described in installation section. Please note that each instance
should have a unique instance name.

2. In a multi platform setup that need to communicate with each other with RabbitMQ over SSL, each VOLTTRON
instance should should trust the ROOT CA of the other instance(RabbitMQ root ca)

a. Transfer (scp/sftp/similar) voltttron_home/certificates/certs/<instance_name>-root-ca.crt to a temporary
location on the other volttron instance machine. For example, if you have two instance vl and v2, scp
v1’s vl-root-ca.crt to v2 and v2-root-ca.crt to v1.

b. Append the contents of the transferred root ca to the instance’s root ca.
For example:

On vl

44 Chapter 3. License

VOLTTRON Documentation, Release 6.0

cat /tmp/v2-root-ca.crt >> VOLTTRON_HOME/certificates/v1-root-ca.crt
On v2
cat /tmp/v1-root-ca.crt >> VOLTTRON_HOME/certificates/v2-root-ca.crt

3. Identify the instance that is going to act as the “publisher” instance. Suppose “v1” instance is the “publisher”
instance and “v2” instance is the “subscriber” instance. Then we need to create a shovel on “v1” to forward
messages matching certain topics to remote instance “v2”.

a. On the publisher node,

vcfg —-rabbitmg shovel [optional path to rabbitmg shovel_config.yml]

rabbitmq_shovel_config.yml should contain the details of the remote hostname, port, vhost
and list of topics to forward. Example configuration for shovel is available in exam-
ples/configurations/rabbitmg/rabbitmq_shovel_config.yml

For this example, let’s set the topic to “devices”

If no config file is provided, the script will prompt for hostname (or IP address), port, vhost and list of
topics for each remote instance you would like to add. For bi-directional data flow, we will have to run the
same script on both the nodes.

b. Create a user in the subscriber node with username set to publisher instance’s agent name ((instance-
name)-PublisherAgent) and allow the shovel access to the virtual host of the subscriber node.

cd SRABBITMQ_HOME
vctl add-user <username> <password>

4. Test the shovel setup.
a. Start VOLTTRON on publisher and subscriber nodes.

b. On the publisher node, start a master driver agent that publishes messages related to a fake device. (Easiest
way is to run volttron-cfg command and follow the steps)

c. On the subscriber node, run a listener agent which subscribes to messages from all platforms (set @Pub-
Sub.subscribe(‘pubsub’, ‘devices’, all_platforms=True) instead of @PubSub.subscribe(‘pubsub’, *’))

d. Verify listener agent in subscriber node is able to receive the messages matching “devices” topic.
5. How to remove the shovel setup.
a. Using the management web interface

Log into management web interface using publisher instance’s admin username. Navigate to admin tab
and then to shovel management page. The status of the shovel will be displayed on the page. Click on the
shovel name and delete the shovel.

b. Using “volttron-ctl” command on the publisher node.

vctl rabbitmg list-shovel-parameters

NAME SOURCE ADDRESS o
— DESTINATION ADDRESS o
— BINDING KEY

shovel-rabbit-3-devices amgps://rabbit-1:5671/volttronl?cacertfile=/home/
—nidd494/.volttronl/certificates/certs/volttronl-root-ca.crt&certfile=
—home/nidd494/.volttronl/certificates/certs/volttronl-admin.crtgkeyfile=/
—home/nidd494/.volttronl/certificates/private/volttronl-admin.pem&

<erri*v:verify peer&fail if no_peer cert=true&auth_mechanism=externalé&
—server_ name_indication=rabbit-1 amgps://rabbit-3:5671/volttron3?
acacertflle /home/nldd494/ volttronl/certificates/certs/volttronl-root—
—ca.crtgcertfile=/home/nidd494/.volttronl/certificates/cerSOn{iBucs L1 BT page)
—admin.crt&keyfile=/home/nidd494/.volttronl/certificates/private/
min.pem&veriiy=verlly_peer&iall 1T No peer cert=true&auth
3.3. InSta""}g ﬁ?h ternal&server name_ indication=rabbit-3 __ pubsub___ 45

—volttronl.devices.#

VOLTTRON Documentation, Release 6.0

(continued from previous page)

[J

Grab the shovel name and run the below command to remove it.

vctl rabbitmg remove-shovel-parameters shovel-rabbit-3-devices

RPC Communication

Following are the steps to create Shovel for multi-platform RPC communication.

1. Setup two VOLTTRON instances using the steps described in installation section. Please note that each instance
should have a unique instance name.

2. In amulti platform setup that need to communicate with each other with RabbitMQ over SSL, each VOLTTRON
instance should should trust the ROOT CA of the other instance(RabbitMQ root ca)

a. Transfer (scp/sftp/similar) voltttron_home/certificates/certs/<instance_name>-root-ca.crt to a
temporary location on the other volttron instance machine. For example, if you have two in-
stance vl and v2, scp v1’s vl-root-ca.crt to v2 and v2-root-ca.crt to v1.

b. Append the contents of the transferred root ca to the instance’s root ca. For example:
On vl
cat /tmp/v2-root-ca.crt >> VOLTTRON_HOME/certificates/v1-root-ca.crt
On v2
cat /tmp/v1-root-ca.crt >> VOLTTRON_HOME/certificates/v2-root-ca.crt

3. Typically RPC communication is 2 way communication so we will to setup shovel in both the VOLTTRON
instances. In RPC calls there are two instances of shovel. One serving as the caller (makes RPC request) and the
other acting as a callee (replies to RPC request). Identify the instance is the “caller” and which is the “callee.”
Suppose “v1” instance is the “caller” instance and “v2” instance is the “callee” instance.

a. On both the caller and callee nodes, shovel instances need to be created. In this example, v1’s shovel
would forward the RPC call request from an agent on v1 to v2 and similarly v2’s shovel will forward the
RPC reply from agent on v2 back to vI.

vcfg —--rabbitmg shovel [optional path to rabbitmg _shovel_config.yml]

rabbitmq_shovel_config.yml should contain the details of the remote hostname, port, vhost, volt-
tron instance name (so in v1’s yml file parameters would point to v2 and vice versa), and list of
agent pair identities (local caller, remote callee). Example configuration for shovel is available in
examples/configurations/rabbitmg/rabbitmq_shovel_config.yml.

For this example, let’s say that we are using the schedule-example and acutator agents.
For v1, the agent pair identities would be:
¢ [Scheduler, platform.actuator]
For v2, they would be:
* [platform.actuator, Scheduler]
Indicating the flow from local agent to remote agent.

b. On the caller node create a user with username set to callee instance’s agent name ((instance-name)-
RPCCallee) and allow the shovel access to the virtual host of the callee node. Similarly, on the callee

46 Chapter 3. License

VOLTTRON Documentation, Release 6.0

node, create a user with username set to caller instance’s agent name ((instance-name)-RPCCaller) and
allow the shovel access to the virtual host of the caller node.

cd $RABBITMQ_HOME
vctl add-user <username> <password>

4. Test the shovel setup

a. On caller node:

Make necessary changes to RPC methods of caller agent.

For this example, in volttron/examples/SchedulerExample/schedule_example/agent.py:

Search for ‘campus/building/unit’ in publish_schedule method. Replace with ‘devices/fake-
campus/fake-building/fake-device’

Search for [‘campus/building/unit3’,start,end] in the use_rpc method, replace with:
msg = [‘fake-campus/fake-building/fake-device’,start,end].

Add: kwargs = {“external_platform™: ‘v2’} on the line below

On the result = self.vip.rpc.call method below, replace “msg).get(timeout=10)" with:

msg, x*kwargs).get (timeout=10),

In the second try clause of the use_rpc method:
Replace result[‘result’] with result[O][‘result’]

Add kwargs = {“external_platform™: ‘v2’} as the first line of the if statement

Replace ‘campus/building/unit3/some_point’ with ‘fake-campus/fake-building/fake-
device/PowerState’

Below ‘fake-campus/fake-building/fake-device/PowerState’ add: 0,

Replace

'0.0") .get (timeout=10) with xxkwargs) .get (timeout=10)

Next, install an example scheduler agent and start it:

#!/bin/bash

python /home/username/volttron/scripts/install-agent.py —-c /home/username/
—volttron/examples/SchedulerExample/schedule-example.agent -s examples/
—SchedulerExample --start —--force -i Scheduler

b. On the callee node:

Run upgrade script to install actuator agent.

#!/bin/bash
python /home/username/volttron/scripts/install-agent.py -s services/
—core/ActuatorAgent —--start --force -i platform.actuator

Run the upgrade script to install the listener agent.

scripts/core/upgrade-listener

Install master driver, configure fake device on upstream callee and start volttron and master
driver. vefg —agent master_driver command can install master driver and setup a fake device.

3.3. Installing VOLTTRON 47

VOLTTRON Documentation, Release 6.0

./stop-volttron

vcfg —-—-agent master_driver
./start-volttron

vctl start —--tag master_driver

 Start actuator agent and listener agents.

The output for the callee node with a successful shovel run should look similar to:

2018-12-19 15:38:00,009 (listeneragent-3.2 13039) listener.agent INFO:
—Peer: pubsub, Sender: platform.driver:, Bus: , Topic: devices/fake-—
—campus/fake-building/fake-device/all, Headers: {'Date': '2018-12-
—19T20:38:00.001684+00:00"', 'TimeStamp': '2018-12-19T20:38:00.
—~001684+00:00', 'min_compatible_version': '5.0', 'max_compatible_version
—': u'', 'SynchronizedTimeStamp': '2018-12-19T20:38:00.000000+00:00"}, .,
—Message:
[{"Heartbeat': True, 'PowerState': 0, 'ValveState': 0, 'temperature': 50.
-0},
{'Heartbeat': {'type': 'integer', 'tz': 'US/Pacific', 'units': 'On/Off'}
7
'PowerState': {'type': 'integer', 'tz': 'US/Pacific', 'units': '1/0'},
'ValveState': {'type': 'integer', 'tz': 'US/Pacific', 'units': '1/0'},
'temperature': {'type': 'integer',
'tz': 'US/Pacific’',
'units': 'Fahrenheit'}}]

DataMover Communication

The DataMover historian running on one instance makes RPC call to platform historian running on remote instance
to store data on remote instance. Platform historian agent returns response back to DataMover agent. For such a
request-response behavior, shovels need to be created on both instances.

1. Please ensure that preliminary steps for multi-platform communication are completed (namely, steps 1-3 de-
scribed above) .

2. To setup a data mover to send messages from local instance (say v1) to remote instance (say v2) and back, we
would need to setup shovels on both instances.

Example of RabbitMQ shovel configuration on v1

shovel:
hostname of remote machine
rabbit-2:
port: 5671
rpc:
Remote instance name
v2:
List of pair of agent identities (local caller, remote callee)
- [data.mover, platform.historian]
virtual-host: vl

This says that DataMover agent on v1 wants to make RPC call to platform historian on v2.

vcfg ——-rabbitmg shovel [optional path to rabbitmg_shovel_config.yml

Example of RabbitMQ shovel configuration on v2

48 Chapter 3. License

VOLTTRON Documentation, Release 6.0

shovel:
hostname of remote machine
rabbit-1:
port: 5671
rpc:
Remote instance name
vl:
List of pair of agent identities (local caller, remote callee)
- [platform.historian, data.mover]
virtual-host: v2

This says that Hplatform historian on v2 wants to make RPC call to DataMover
—agent on vl.

a. On vl, run below command to setup a shovel from vl to v2.

vcfg —--rabbitmg shovel [optional path to rabbitmg_shovel_config.yml

b. Create a user on v2 with username set to remote agent's username

(for example, vl.data.mover i.e., <instance_name>.<agent_identity>) and_
—allow

the shovel access to the virtual host of v2.

cd SRABBITMQ_HOME
vctl add-user <username> <password>

c. On v2, run below command to setup a shovel from v2 to vl

vcfg —-rabbitmg shovel [optional path to rabbitmg_shovel_config.yml

d. Create a user on vl with username set to remote agent's username

(for example, v2.patform.historian i.e., <instance_name>.<agent_identity>
—) and allow

the shovel access to the virtual host of the vl.

cd $RABBITMQ_HOME
vctl add-user <username> <password>

3. Start Master driver agent on v1

./stop-volttron

vcfg —-—agent master_driver
./start-volttron

vctl start --tag master_driver

4. Install DataMover agent on v1. Contents of the install script can look like below.

#!/bin/bash

export CONFIG=$ (mktemp /tmp/abc-script.XXXXXX)
cat > SCONFIG <<EOL

{

"destination-vip": "",

"destination-serverkey": "",
"destination-instance-name": "volttron2",
"destination-message—-bus": "rmg"

(continues on next page)

3.3. Installing VOLTTRON 49

VOLTTRON Documentation, Release 6.0

(continued from previous page)

EOL
python scripts/install-agent.py -s services/core/DataMover -c
——force —-i data.mover

SCONFIG ——-start -

Execute the install script.

5. Start platform historian of your choice on v2. Example shows starting SQLiteHistorian

./stop-volttron

vcfg —-—agent platform _historian
./start-volttron

vctl start --tag platform_historian

6. Observe data getting stored in sqlite historian on v2.

Speeding Up VOLTTRON™ Builds

The VOLTTRON build process is straightforward enough, but it can be a bit slow. It relies on pip to download,
build, and install required third-party packages. The problem is that pip does very little to cache the results of builds,
especially those which require compilation. In fact, the only thing pip caches is the downloaded source archives.
While this speeds up the download process and lightens the burden of the Python package index (PyPi) server(s),
it does little to improve the overall build speed. The majority of this document will focus on three techniques for
improving VOLTTRON build times, including the pip download cache. But before we begin, let’s discuss what is
involve in building VOLTTRON.

Introducing bootstrap.py

VOLTTRON can actually be built just like any other Python project. It includes a setup.py script in the project
root so one can perform the standard build, install, sdist_*, and bdist_*, etc. commands. That’s great if we have some
project which requires VOLTTRON, but that is not the typical use case for VOLTTRON. Usually, and especially for
developers, VOLTTRON is run in a virtual environment so its dependencies can be easily met. Enter bootstrap.

py.

Sitting next to setup . py in the project root is boot st rap . py, a script designed to bootstrap a virtual environment
and make dependency installation a repeatable process. Bootstrapping occurs in two stages: download virtualenv,
using it to create a virtual environment, and download and install dependencies. The first, or bootstrap, stage typically
happens once. The second, or update, stage happens many times as dependencies are added or updated. It is the update
stage that takes the majority of the time and is the stage we focus on in this document.

To perform the bootstrap stage, boot st rap . py must be executed using the system Python interpreter.

$ python2.7 bootstrap.py

The above command assumes python?2 . 7 is in the PATH and creates the virtual environment in the default env di-
rectory. After the virtual environment is created, the update stage is automatically started by executing bootstrap.
py using the python interpreter in the newly created virtual environment. Subsequent updates must also use the
interpreter in the virtual environment.

$ env/bin/python bootstrap.py

Multiple options are available to alter the behavior of bootstrap.py. Use the ——help option to list options and show
the script’s usage message.

50 Chapter 3. License

https://github.com/VOLTTRON/volttron
https://pip.pypa.io/en/latest/index.html
https://pip.pypa.io/en/latest/reference/pip_install.html#caching
https://pypi.python.org

VOLTTRON Documentation, Release 6.0

$ env/bin/python bootstrap.py —-help

usage:

bootstrap: python2.7 bootstrap.py [options]

update:

SVIRTUAL_ENV/bin/python bootstrap.py

[options]

Bootstrap and update a virtual Python environment for VOLTTRON development.

optional arguments:

-h, --help
-q, ——quiet
-v, ——-verbose

bootstrap options:
—-—envdir VIRTUAL_ENV
——force
-0, —-only-virtenv
——prompt PROMPT

show this help message and exit
produce less output
produce extra output

alternate location for virtual environment

force installing in non-empty directory

create virtual environment and exit (skip install)
provide alternate prompt in activated environment

(default: (volttron))

update options:
-u, ——upgrade
-w, ——wheel

upgrade installed packages
build wheels in the pip wheelhouse

The first invocation of this script, which should be made using the system
Python, will create a virtual Python environment in the subdirectory in
the same directory as this script or in the directory given by the --envdir
option. Subsequent invocations of this script should use the Python executable
installed in the virtual environment.

'env'

Enough about bootstrap.py. Let’s move on to the magic. As we do, please note the following about the output of
commands:

* Ellipses (...) are used to denote where excessive drivel was cut out to make this document shorter and more
readable

* Lines beginning with a plus (+) in boot st rap . py output show the actual calls to pip or easy_install, including
all arguments.

Oh, yeah. That reminds me that two packages require special handling. BACpypes must be installed using easy_install
because it is only offered as an egg and pip doesn’t install from eggs. It will always be downloaded, if it isn’t already
installed, and will not benefit from any of the speedups below. And pyzmgq is handled separately to pass options to its

setup.py.
Note: As of 26 Feb 2015, BACpypes provides a wheel. Yay! Next step: Python 3.

Okay. On with the show.

Preparation

Before building, we need to clone the VOLTTRON repository. We make sure to checkout the master branch to get the
latest bootstrap script which has the special sauce for the real speed-up.

[volttron@inamatus ~]$ git clone -b master https://github.com/VOLTTRON/volttron
Cloning into 'volttron'...

remote: Counting objects: 3268, done.

remote: Compressing objects: 100% (122/122), done.

Receiving objects: 100% (3268/3268), 14.25 MiB | 749.00 KiB/s, done.

(continues on next page)

3.3. Installing VOLTTRON 51

https://github.com/VOLTTRON/volttron

VOLTTRON Documentation, Release 6.0

(continued from previous page)

Resolving deltas: 100% (2070/2070), done.
Checking connectivity... done.

Let’s move into that directory where the remainder of our time will be spent.

[volttron@inamatus ~]$ cd volttron/

Now that we have the code, we are ready for testing. We’ll start with the slow method and work toward the fastest.

Meh (a.k.a. Slow Method)

Since version 6.0, pip caches downloaded source files to speed the download and install process when a package is
once again required. The default location for this cache on Linux is in $SHOME/ . cache/pip (or ~/ .cache/pip).
As can be seen by the next command, we currently have no cache.

[volttron@inamatus volttron]$ find ~/.cache/pip
find: " /home/volttron/.cache/pip': No such file or directory

So let’s try bootstrapping the environment. We’ll use bash’s built-in t ime command to time the execution of each
bootstrap command for comparison.

[volttron@inamatus volttron]$ time python2.7 bootstrap.py

Creating virtual Python environment

Downloading virtualenv DOAP record

Downloading virtualenv 12.0.7

New python executable in /home/volttron/volttron/env/bin/python2.7
Also creating executable in /home/volttron/volttron/env/bin/python
Installing setuptools, pip...done.

Installing required packages

+ easy_install BACpypes>=0.10,<0.11

+ pip install --global-option --quiet --install-option --zmg=bundled --no-deps pyzmg>
—=14.3,<15

+ pip install --global-option --quiet --editable ./lib/jsonrpc --editable . —--
—requirement ./requirements.txt

Successfully installed Smap-2.0.24c780d avro-1.7.7 configobj-5.0.6 ecdsa-0.13,
—flexible-Jjsonrpc

gevent-1.0.1 greenlet-0.4.5 monotonic-0.1 numpy-1.9.1 pandas-0.15.2 paramiko-1.15.2
pycrypto-2.6.1 pymodbus-1.2.0 pyserial-2.7 python-dateutil-2.4.0 pytz-2014.10
—requests-2.5.3

simplejson-3.6.5 six-1.9.0 twisted-15.0.0 volttron-2.0 wheel-0.24.0 zope.interface-4.
—1.2

real 9m2.299s
user 7m51.790s
S Oml14.450s

Whew! The build took just over nine minutes on my nearly-4-year-old MacBook Pro running Arch Linux. In case
you are wondering about my system’s name, as seen in the bash prompt, inamatus is Latin for unloved. I'll leave it as
an exercise for the user to determine why my system is unloved (hint: it has to do with a wonderful fruit with a bite
missing from the side).

Anyway, let’s have another look at the pip download cache.

52 Chapter 3. License

https://pip.pypa.io/en/latest/reference/pip_install.html#caching

VOLTTRON Documentation, Release 6.0

[volttron@inamatus volttron]$ find ~/.cache/pip -type f
/home/volttron/.cache/pip/http/9/a/b/2/1/
—9ab2lefcd4225c8eb9%aadldlc7/babef2ab3babcefad38a79fa4e981lce
/home/volttron/.cache/pip/http/9/2/6/7/2/
—92672ab99%9ac77960252018fbcb4f40984eef60ba5588229a729f18£5
/home/volttron/.cache/pip/http/9/e/6/1/9/
—9e61964f51d8al05a20ecf21eef694877£28cb654al123cel316££77e5
/home/volttron/.cache/pip/http/9/7/7/1/a/
—9771a6b64£3294ac335£db8574cd3564e21¢c130924697381d72£d404d
/home/volttron/.cache/pip/http/a/a/7/e/8/
—aa7e8bc2afl068a43747b0£771b426b7dcf7708283ca3ce3d92a2afc

/home/volttron/.cache/pip/http/8/£/9/0/4d/
—8f90d7¢cf09a2b5380a319b0df8eed268be28d590b6b5f71598a3b56f
/home/volttron/.cache/pip/http/8/d/e/d/a/
—8deda849bcfd627b8587addf049f79bb333dd8feleaeld5053881039
/home/volttron/.cache/pip/http/8/8/7/a/6/
—887a67fb460d57a10a50deef3658834b9%ac01722244315227d334628
/home/volttron/.cache/pip/http/5/5/4/e/2/
—554e2be8d96625aa74a4e0cdeedadblcal0add2c2877bd3ff£96e2a6
/home/volttron/.cache/pip/http/1/d/c/8/3/
—1dc83c11a861a2bc20d9c0407b41089%9eba236796ba80c213511f1£74
/home/volttron/.cache/pip/log/debug.log

The output is truncated because it was long and boring. The important thing is that it now exists. Next let’s remove
the virtual environment and rebuild to see what effect the download cache has on our build time.

[volttron@inamatus volttron]$ rm —-rf env
[volttron@inamatus volttron]$ time python2.7 bootstrap.py

real 8m35.387s
user 7m50.770s
sSys Oml14.170s

Notice that our CPU time was nearly the same, about 8 minutes (user + sys). So the remaining time was likely spent
on I/O, which was reduced by about 30 seconds. We need something else to reduce CPU time. Enter ccache.

Better

What is ccache? According to the official ccache site,

ccache is a compiler cache. It speeds up recompilation by caching the result of previous compilations and
detecting when the same compilation is being done again.

Sounds like just the thing we need. ccache is already properly configured on my system, it just needs to be placed
early in the PATH to be found before the official gcc compilers.

[volttron@inamatus volttron]$ which gcc

/usr/bin/gcc

[volttron@inamatus volttron]$ export PATH=/usr/lib/ccache/bin:S$PATH
[volttron@inamatus volttron]$ which gcc

/usr/lib/ccache/bin/gcc

Now to prove to ourselves that the cache will be filled during the next run, let’s have a look at the cache status.

3.3. Installing VOLTTRON 53

https://ccache.samba.org/

VOLTTRON Documentation, Release 6.0

[volttron@inamatus volttron]$ ccache -s

cache directory /home/volttron/.ccache

primary config /home/volttron/.ccache/ccache.conf
secondary config (readonly) /etc/ccache.conf

cache hit (direct) 0

cache hit (preprocessed) 0

cache miss 0

files in cache 0

cache size 0.0 kB

max cache size 5.0 GB

The cache is indeed empty.

Nothing up my sleeve. .. Presto!

[volttron@inamatus volttron]$ rm —-rf env
[volttron@inamatus volttron]$ time python2.7 bootstrap.py

real 6m3.496s
user 4m57.960s
Sys 0m10.880s

One might expect a ccache build to take slightly longer than the baseline on the first build within a single project. This
build completed about two minutes faster. Let’s look at the ccache status to discover why.

[volttron@inamatus volttron]$ ccache -s

cache directory /home/volttron/.ccache
primary config /home/volttron/.ccache/ccache.conf
secondary config (readonly) /etc/ccache.conf

cache hit (direct) 204

cache hit (preprocessed) 23

cache miss 633

called for link 140

called for preprocessing 95

compile failed 1139

preprocessor error 4

bad compiler arguments 5

autoconf compile/link 103

no input file 19

files in cache 1316

cache size 26.1 MB

max cache size 5.0 GB

Ah ha. There were a total of 227 cache hits, meaning that some of the files were identical across all the built packages
and the cached version could be used rather than recompiling. Let’s see how subsequent builds improve with few
cache misses.

[volttron@inamatus volttron]$ rm —-rf env
[volttron@inamatus volttron]$ time python2.7 bootstrap.py

real 3ml5.811s
user 2m24.890s
Sys Om7.090s

Wow! Now we’re cooking with gas. Build times have been cut to nearly 1/3 of our baseline. This ccache status shows
only 14 cache misses over our previous run:

54 Chapter 3. License

VOLTTRON Documentation, Release 6.0

[volttron@inamatus volttron]$ ccache -s

cache directory /home/volttron/.ccache
primary config /home/volttron/.ccache/ccache.conf
secondary config (readonly) /etc/ccache.conf

cache hit (direct) 1038

cache hit (preprocessed) 35

cache miss 647

called for link 280

called for preprocessing 190

compile failed 2278

preprocessor error 8

bad compiler arguments 10

autoconf compile/link 206

no input file 38

files in cache 1365

cache size 35.0 MB

max cache size 5.0 GB

So using ccache is a big win. Anyone compiling C or C++ on a Linux system should have ccache enabled. Wait, make
that must. Go, now, and enable it on your Linux boxen. Or maybe finish reading this and then go do it. But do it!

Best

Now you’re thinking “how could it get any better,” right? Well, it can. What if those compiled packages only needed
to be rebuilt when a new version was required instead of every time they are installed.

When pip installs a package, it downloads the source and executes the packages setup.py like so: python
setup.py install. The install command builds the package and installs it directly into the file system. What
if we could package up the build results into an archive and just extract them to the file system when the package is
installed. Enter wheel.

pip supports the latest Python packaging format known as wheel. Typically this just means that it can install packages
in the wheel format. However, if the wheel package is installed, pip can also build wheels from source, executing
python setup.py bdist_wheel. By default, wheels are placed in the wheelhouse directory in the current
working directory. But we can alter that location by setting an environment variable (read more on configuring pip
here).

[volttron@inamatus volttron]$ export PIP_WHEEL_DIR=$HOME/.cache/pip/wheelhouse

We also need to tell pip to look for the wheels, again using an environment variable. The directory needs to exist
because while the wheel command will create the directory when creating the packages, pip may try to search the
directory first.

[volttron@inamatus volttron]$ export PIP_FIND_LINKS=file://$PIP_WHEEL_DIR
[volttron@inamatus volttron]$ mkdir S$PIP_WHEEL_DIR

So to get this all working, bootstrapping now has to occur in three steps: install the virtual environment, build the
wheels, and install the requirements. boot st rap . py takes options that control its behavior. The first pass requires
the —o or ——only—-virtenv option to stop bootstrap after installing the virtual environment and prevent the update
stage.

[volttron@Rinamatus volttron]$ rm —-rf env

[volttron@inamatus volttron]$ time python2.7 bootstrap.py —--only-virtenv
Creating virtual Python environment

Downloading virtualenv DOAP record

(continues on next page)

3.3. Installing VOLTTRON 55

http://wheel.readthedocs.org/en/latest
https://pypi.python.org/pypi/wheel
https://pip.pypa.io/en/latest/reference/pip_wheel.html
https://pip.pypa.io/en/latest/user_guide.html#configuration

VOLTTRON Documentation, Release 6.0

(continued from previous page)

Downloading virtualenv 12.0.7

New python executable in /home/volttron/volttron/env/bin/python2.7
Also creating executable in /home/volttron/volttron/env/bin/python
Installing setuptools, pip...done.

real Om3.866s
user 0ml.480s
Sys 0m0.230s

The second step requires the —w or ——wheel option to build the wheels. Because the virtual environment already
exists, boot st rap . py must be called with the virtual environment Python, not the system Python.

[volttron@inamatus volttron]$ time env/bin/python bootstrap.py —--wheel
Building required packages
+ pip install --global-option —--quiet wheel

+ pip wheel --global-option --quiet —--build-option —--zmg=bundled —--no-deps pyzmg>=14.
f4»3, <15

+ pip wheel --global-option —--quiet --editable ./lib/Jjsonrpc --editable . —-
—requirement ./requirements.txt

Destination directory: /home/volttron/.cache/pip/wheelhouse
Successfully built numpy pandas gevent monotonic pymodbus simplejson Smap greenlet

—pycrypto
twisted pyserial configobj avro zope.interface

real 3ml5.431s
user 2ml17.980s
Sys 0m5.630s

It took 3.25 minutes to build the wheels (with ccache still enabled). Repeating this command results in nothing new
being compiled and takes only 4 seconds. Only new versions of packages meeting the requirements will be built.

[volttron@inamatus volttron]$ time env/bin/python bootstrap.py —--wheel
Building required packages

Skipping numpy, due to already being wheel.
Skipping pandas, due to already being wheel.
Skipping python-dateutil, due to already being wheel.
Skipping requests, due to already being wheel.
Skipping flexible-jsonrpc, due to being editable
Skipping pyzmqg, due to already being wheel.
Skipping gevent, due to already being wheel.
Skipping monotonic, due to already being wheel.
Skipping paramiko, due to already being wheel.
Skipping pymodbus, due to already being wheel.
Skipping setuptools, due to already being wheel.
Skipping simplejson, due to already being wheel.
Skipping Smap, due to already being wheel.
Skipping wheel, due to already being wheel.
Skipping volttron, due to being editable
Skipping pytz, due to already being wheel.
Skipping six, due to already being wheel.
Skipping greenlet, due to already being wheel.
Skipping ecdsa, due to already being wheel.

(continues on next page)

56 Chapter 3. License

VOLTTRON Documentation, Release 6.0

(continued from previous page)

Skipping pycrypto, due to already being wheel.
Skipping pyserial, due to already being wheel.
Skipping twisted, due to already being wheel.
Skipping configobj, due to already being wheel.
Skipping avro, due to already being wheel.

Skipping zope.interface, due to already being wheel.

real 0Om3.998s
user 0m3.580s
sys Om0.360s

And let’s see what is in the wheelhouse.

[volttron@inamatus volttron]$ 1ls ~/.cache/pip/wheelhouse
Smap-2.0.24c780d-py2-none-any.whl
Twisted-15.0.0-cp27-none-linux_x86_64.whl
avro-1.7.7-py2-none—-any.whl
configobj-5.0.6-py2-none-any.whl
ecdsa-0.13-py2.py3—-none—any.whl
gevent-1.0.1-cp27-none-linux_x86_64.whl
greenlet-0.4.5-cp27-none-linux_x86_64.whl
monotonic-0.1l-py2-none—-any.whl
numpy-1.9.1-cp27-none-linux_x86_64.whl
pandas-0.15.2-cp27-none-1linux_x86_64.whl
paramiko-1.15.2-py2.py3-none-any.whl
pycrypto-2.6.1-cp27-none-linux_x86_64.whl
pymodbus-1.2.0-py2-none—any.whl
pyserial-2.7-py2-none—-any.whl
python_dateutil-2.4.0-py2.py3-none-any.whl
pytz-2014.10-py2.py3—-none—any.whl
pyzmg-14.5.0-cp27-none-linux_x86_64.whl
requests—-2.5.3-py2.py3-none-any.whl
setuptools—-12.2-py2.py3-none—-any.whl
simplejson-3.6.5-cp27-none-linux_x86_64.whl
six-1.9.0-py2.py3-none—-any.whl
wheel-0.24.0-py2.py3—-none—any.whl
zope.interface-4.1.2-cp27-none-linux_x86_64.whl

Now bootstrap.py can be run without options to complete the bootstrap process, again using the virtual environ-
ment Python.

[volttron@inamatus volttron]$ time env/bin/python bootstrap.py
Installing required packages
+ easy_install BACpypes>=0.10,<0.11

+ pip install --global-option —--quiet —--install-option —--zmg=bundled --no-deps pyzmg>
—=14.3,<15

+ pip install --global-option --quiet --editable ./lib/jsonrpc --editable . —-—
—requirement ./requirements.txt

Successfully installed Smap-2.0.24c780d avro-1.7.7 configobj-5.0.6 ecdsa-0.13_
—~flexible-Jjsonrpc

gevent-1.0.1 greenlet-0.4.5 monotonic-0.1 numpy-1.9.1 pandas-0.15.2 paramiko-1.15.2
pycrypto-2.6.1 pymodbus-1.2.0 pyserial-2.7 python-dateutil-2.4.0 pytz-2014.10_
—requests—-2.5.3

(continues on next page)

3.3. Installing VOLTTRON 57

VOLTTRON Documentation, Release 6.0

(continued from previous page)

simplejson-3.6.5 six-1.9.0 twisted-15.0.0 volttron-2.0 zope.interface-4.1.2

real Omll.137s
user 0m8.930s
Sys 0m0.950s

Installing from wheels completes in only 11 seconds. And if we blow away the environment and bootstrap again, it
takes under 15 seconds.

[volttron@inamatus volttron]$ rm —-rf env
[volttron@inamatus volttron]$ time python2.7 bootstrap.py

real Oml4.644s
user 0ml10.380s
sSys Oml.240s

Building a clean environment now occurs in less than 15 seconds instead of the 9 minute baseline. That, my friends,
is fast.

Why care?

The average VOLTTRON developer probably won’t care or see much benefit from the wheel optimization. The typical
developer workflow does not include regularly removing the virtual environment and rebuilding. This is, however,
very important for continuous integration (CI). With CI, a build server should check out a fresh copy of the source
code, build it in a clean environment, and perform unit tests, notifying offending users when their changes break
things. Ideally, notification of breakage should happen as soon as possible. We just shaved nearly nine minutes off the
turnaround time. It also reduces the load on a shared CI build server, which is nice for everyone.

Taking it further

Two additional use cases present themselves: offline installs and shared builds.

Offline Installs

Let’s say we have a system that is not connected to the Internet and, therefore, cannot download packages from PyPi
or any other package index. Or perhaps it doesn’t have a suitable compiler. Wheels can be built on another similar,
connected system and transferred by USB drive to the offline system, where they can then be installed. Note that the
architecture must be identical and the OS must be very similar between the two systems for this to work.

If the two systems differ too much for a compatible binary build and the offline system has a suitable compiler, then
source files can be copied from the pip download cache and transferred from the online system to the offline system
for building.

Shared Builds

If many developers are working on the same project, why not share the results of a build with the rest of the team?
Here are some ideas to make it work:

¢ Put wheels on a shared network drive

58 Chapter 3. License

https://pypi.python.org

VOLTTRON Documentation, Release 6.0

* Run a private package index server (maybe with pypiserver)

* Expose CI built wheels using Apache, Nginx, or SimpleHTTPServer

Issues

Here are some of the issues/drawbacks to the methods described above and some possible solutions.
* Configuring pip using environment variables

No worries. Pip uses configuration files too. And a benefit to using them is that it makes all these wheels
available to other Python projects you may be working on, and vise versa.

/home/volttron/.config/pip/pip.conf

[global]

wheel-dir = /home/volttron/.cache/pip/wheelhouse
find-1links = file:///home/volttron/.cache/pip/wheelhouse

Find more on configuring pip here.
* pip does not clean the wheelhouse

This is not a deal-breaker. The wheel directory can just be removed and it will be recreated. Or a script can be
used to remove all but the latest versions of packages.

* Requires an additional step or two

That’s the price for speed. But it can be mitigated by writing a script or bash alias to perform the steps.

Conclusion

Here is a quick summary of the build times executed above:

Method Time (minutes)
Each builds on previous | CPU Total
baseline 8:07 9:02
with download cache 8:05 8:35
ccache, first run 5:09 6:03
ccache, subsequent runs 2:32 3:16
wheel, first run 2:35 3:30
wheel, subsequent runs 0:12 0:15

Not everyone cares about build times, but for those who do, pre-building Python wheels is a great way to improve
install times. At a very minimum, every Python developer installing compiled packages will benefit from using
ccache.

The techniques used in this document aren’t just for VOLTTRON, either. They are generally useful for all moderately
sized Python projects.

If you haven’t installed ccache yet, go do it. There is no excuse.
Acquiring Third Party Agent Code
Third party agents developed from a variety of sources are available from the volttron-applications repository (https:

//github.com/VOLTTRON/volttron-applications.git). The current best practice is to have the main volttron and the
volttron-applications repository within the same common ansestry folder.

3.3. Installing VOLTTRON 59

https://pypi.python.org/pypi/pypiserver
https://docs.python.org/2.7/library/simplehttpserver.html#module-SimpleHTTPServer
https://pip.pypa.io/en/latest/user_guide.html#configuration
https://github.com/VOLTTRON/volttron-applications.git
https://github.com/VOLTTRON/volttron-applications.git

VOLTTRON Documentation, Release 6.0

volttron-repositories/
|
| -——— volttron/
|

|-—— volttron-applications/

One can clone the latest applications from the repository via the following command:

git clone https://github.com/VOLTTRON/volttron—-applications.git

Required Sofware: Linux

The following packages will need to be installed if they are not already:
e git
* build-essential
* python-dev
* openssl
* libssl-dev
* libevent-dev

On Debian-based systems, these can all be installed with the following command:

sudo apt—-get update
sudo apt-get install build-essential python-dev openssl libssl-dev libevent-dev git

On Redhat or CENTOS systems, these can all be installed with the following command:

sudo yum update
sudo yum install make automake gcc gcc-c++ kernel-devel python-devel openssl openssl-
—~devel libevent-devel git

If you have an agent which requires the pyodbc package, install the following:
* freetds-bin

¢ unixodbc-dev

sudo apt-get install freetds-bin unixodbc-dev

Possible issues

The /tmp directory must allow exec. This error could manifest itself during the building of gevent.

Executing mount should have an entry like the following
mount

tmpfs on /tmp type tmpfs (rw,nosuid,nodev)

To change the mount you can use the following code

remount /tmp to allow exec
sudo mount -o remount,exec /tmp

60 Chapter 3. License

VOLTTRON Documentation, Release 6.0

remount /tmp to disallow exec
sudo mount -o remount,noexec /tmp

Repository Structure
There are several options for using the VOLTTRON code depending on whether you require the most stable version
of the code or want the latest updates as they happen. In order of decreasing stability and increasing currency:

For most stable, download the source code for the latest release at: https://github.com/VOLTTRON/volttron/releases
These are purely source code and are not tied to the git repository. To update them will require downloading the newest
source code and re-installing.

The master branch is now the default branch for VOLTTRON (meaning this is what you clone if you do not use the
“-b” option). This branch will get the latest stable features as they are pushed. 3.x has stopped being updated (except
for fixes) and 4.x will track master.

The “develop” branch contains the latest features as they are developed. Once a feature is considered “finished” it
is merged back into develop. Develop will be merged into master once it is considered stable and ready for release.
This branch can be cloned by those wanting to work from the latest version of the platform but should not be used in
deployments.

Features are developed on “feature” branches or developers’ forks of the main repository. It is not recommended to
clone these branches except for exploring a new feature.

VOLTTRON Restricted Code
Volttron Restricted adds a broader security layer on top of the volttron platform. If you are interested in this package
please contact the volttron team at volttron @pnnl.gov.

* NOTE: Once the package is installed all aspects of the package will be enforced. To override the behavior add
no-verify, no-mobility, or no-resource-monitor to the configuration file.

The Volttron Restricted package contains the following security enhancements:
* The creation and usage of platform specific Certificate Authority (CA) certificates.
» Multi-level signing of agent packages.
* Multi-level verification of signed packages during agent execution.
* Command line and agent based mobility.

» Allows developer to customize an execution contract for required resources on the current and move requested
platform.

The following pages describe the functionality exposed by the Volttron Restricted package:

o Signing and Verification of Agent Packages

* Resource Monitor

* PingPongAgent
Note: VOLTTRON-Restricted supports VOLTTRON 2.x and is being update to VOLTTRON 3.5
Installation —

VOLTTRON-Restricted requires a software development tool called SWIG (>=2.0.4). To install VOLTTRON-
Restricted, follow the steps below. Enter all terminal commands from the VOLTTRON directory.

3.3. Installing VOLTTRON 61

https://github.com/VOLTTRON/volttron/releases
mailto:volttron@pnnl.gov

VOLTTRON Documentation, Release 6.0

e Extract the VOLTTRON-Restricted code to a new directory. These steps assume the location is ~/
volttron-restricted

* Install VOLTTRON-Restricted dependency:
sudo apt-get install swig

 Activate the VOLTTRON Platform (note the space after the period):
. env/bin/activate

¢ Install VOLTTRON-Restricted:

pip install -e ~/volttron-restricted

setup/files/finstall-volttron-restricted.png

Installing Linux Virtual Machine

VOLTTRON requires a Linux system to run. For Windows users this will require a virtual machine (VM).

Installing Linux Virtual Machine

This section describes the steps necessary to install VOLTTRON using Oracle VirtualBox software. Virtual Box is
free and can be downloaded from https://www.virtualbox.org/wiki/Downloads.

search...
Login Preferences

Download VirtualBox

Here you will find links to VirtualBox binaries and its source code.

About
Screenshots VirtualBox binaries
Downloads By downloading, you agree to the terms and conditions of the respective license.

Documentation If you're looking for the latest VirtualBox 5.1 packages, see VirtualBox 5.1 builds. Consider

End-user docs upgrading.
Technical docs VirtualBox 5.2.12 platform packages
Contribute o
e =»Windows hosts
Community e =»0S X hosts
e Linux distributions
e =»Solaris hosts

After installing VirtualBox download a virtual box appliance from https://www.osboxes.org/linux-mint/ extract the
VDI from the downlaoded archive, or download a system installation disk. VOLTTRON has been tested using Ubuntu
14.04, 16.04; raspian, debian 8,9; Linux Mint 17, 18; and CentOS 7. However, any modern apt based Linux distri-
bution should work out of the box. Linux Mint 18.3 with the Xfce desktop is used as an example, however platform
setup in Ubuntu should be identical.

62 Chapter 3. License

https://www.virtualbox.org/wiki/Downloads
https://www.osboxes.org/linux-mint/

VOLTTRON Documentation, Release 6.0

Note: A 32-bit version of Linux should be used when running VOLTTRON on a system with limited hardware (less
than 2 GB of RAM).

Adding a VDI Image to VirtualBox Environment

Linux Mint 18.3 Sylvia

£\ VirtualBox A VMware e Info

Cinnamon Version
VirtualBox (VDI) 32bit Size: 1.25GB

5HA256: 1c52c48a51037d5168883cT67658dadles5T1a3585d2bdabfTEffBcc31c37@72a5¢

VirtualBox (VDI) 64bit Size: 1.25GB

SHA256: 176387=6b673711dedabaleScebed2a568bBadaal2214eed52723325346c8%abd

The below info holds the VM’s preset username and password.

Linux Mint 18.3 Sylvia

A VvirtualBox A VMware @ Info

Username: osboxes

Password: osboxes.org
VB Guest Additions & VMware Tools: Not Installed
VMware Compatibility: Version 10+

Create a new VirtualBox Image.

3.3. Installing VOLTTRON 63

VOLTTRON Documentation, Release 6.0

U Create Virtual Machine

Name and operating system

Please choose a descriptive name for the new virtual machine and select the
type of operating system you intend to install on it. The name you choaose will
be used throughout VirtualBox to identify this machine.

Mame: linux-mint

Type: [Linux ~] EJ’

Version: [L.Ibunm {64-bit) h]

ExpertMude] [Mext] [Cancel

[0l
@ Create Virtual Machine

Memory size

nnnnn t of memory (RAM) in megabytes to be allocated to the virtual

4006 2] mB
amB 32768 MB

Specify the hard drive image using the extracted VDI file.

Select the amount of RAM for the VM. The recommended minimum is shown in the image below:

64

Chapter 3. License

VOLTTRON Documentation, Release 6.0

-8 e
@ Create Virtual Machine

Hard disk

If you wish you can add a virtual hard disk to the new machine. You can either
create a new hard disk file or select one from the list or from another location
using the folder icon.

If you need a more complex storage set-up you can skip this step and make the
changes to the machine settings once the machine is created.

The recommended size of the hard disk is 10.00 GB.
Do not add a virtual hard disk
Create a virtual hard disk now

(@ Use an existing virtual hard disk file

| [} Linux Mint 18.3 Xfce (64bit).vdi (Nermal, 500.00 GB) "‘ i

Create | | Cancel ‘

With the newly created VM selected, choose Machine from the VirtualBox menu in the top left corner of the VirtualBox
window; from the drop down menu, choose Settings.

To enable bidirectional copy and paste, select the General tab in the VirtualBox Settings. Enable Shared Clipboard
and Drag’n’Drop as Bidirectional.
(2 VOLTTRON - Settings (=™

[Genera General

B sysem sesic | Advanced | Desarpion | Enanption

E pisplay P .ualBox VMS\VOLTTE

B songe Shared Cpboard: (Bdrectonal~)
Oraginorop: (Bidrecional <)

\
P Audio

Note: Currently, this feature only works under certain circumstances (e.g. copying / pasting text).

3.3. Installing VOLTTRON 65

VOLTTRON Documentation, Release 6.0

Go to System Settings. In the processor tab, set the number of processors to two.

€73 VOLTTRON - Settings ="

I

sl General System
A System Processor | Acceleration
|||_-_l| Display Processor(s): ' J 2 =
- 1 CPU 8 CPUs
144 Storage Execution Cap: j 100% (5

. 1% 100%
D Audio

Extended Features: [| Enable PAE/MX
@J Network
Q; Serial Ports
Ao
o’\f USB
|: Shared Folders
E User Interface
oK l ’ Cancel

Go to Storage Settings. Confirm that the Linux Mint VDI is attached to Controller: SATA.

Danger: Do NOT mount the Linux Mint iso for Controller: IDE. Will result in errors.

66 Chapter 3. License

VOLTTRON Documentation, Release 6.0

{23 VOLTTRON - Settings B~
Wl General Storage
‘:‘J System Storage Devices Attributes
T \- Controller: IDE |_'.:.r|\'| '),.!'H Name: IDE
I.'_'.I| Display - - i
If' l.%) Empty Type: [PID{4- -
M Storage & Controller: SATA Use Host I/0 Cache
1;4 Audio L Linux Mint 18.3 Xfce (64bi...
L—"FJ Network
Q; Serial Ports
@ usB
m Shared Folders
E User Interface
XY=
OK l ’ Cancel

Start the machine by saving these changes and clicking the “Start” arrow located on the upper left hand corner of the
main VirtualBox window.

Planning a VOLTTRON Install
The 3 major installation types for VOLTTRON are doing development, doing research using VOLTTRON, and col-
lecting and managing physical devices.

Development and Research installation tend to be smaller footprint installations. For development, the data is usually
synthetic or copied from another source. The existing documentation covers development installs in significant detail.

Other deployments will have a better installation experience if they consider certain kinds of questions while they plan
their installation.

Questions

* Do you want to send commands to the machines ?
* Do you want to store the data centrally ?
* How many machines do you expect to collect data from on each “collector” ?

¢ How often will the machines collect data ?

Are all the devices visible to the same network ?

* What types of VOLTTRON applications do you want to run ?

3.3. Installing VOLTTRON 67

VOLTTRON Documentation, Release 6.0

Commands

If you wish to send commands to the devices, you will want to install and configure the Volttron Central agent. If you
are only using VOLTTRON to securely collect the data, you can turn off the extra agents to reduce the footprint.

Storing Data

VOLTTRON supports multiple historians. mySQL and MongoDB are the most commonly used. As you plan your
installation, you should consider how quickly you need access to the data and where. If you are looking at the health
and well-being of an entire suite of devices, its likely that you want to do that from a central location. Analytics can
be performed at the edge by VOLTTRON applications or can be performed across the data usually from a central data
repository. The latency that you can tolerate in your data being available will also determine choices in different agents
(ForwardHistorian versus Data Mover)

How Many

The ratio of how many devices-to-collector machine is based on several factors. These include:
* how much memory and network bandwidth the collection machine has. More = More devices

* how fast the local storage is can affect how fast the data cache can be written. Very slow storage devices can fall
behind

The second half of the “how many” question is how many collector paltforms are writing to a single VOLTTRON
platform to store data - and whether that storage is local, remote, big enough, etc.

If you are storing more than moderate amount of data, you will probably benefit from installing your database on a
different machine than your concreate historian machine. Note: This is contra-indicated if you have a slow network
connection between you concrete historian and your database machine.

In synthetic testing up to 6 virtual machines hosting 500 devices each (18 points) were easily supported by a single
centralized platform writing to a Mongo database - using a high speed network. That central platform experienced
very little CPU or memory load when the VOLTTRON Central agent was disabled.

How Often

This question is closely related to the last. A higher sampling frequency will create more data. This wil place more
work in the storage phase.

Networks

In many cases, there are constraints on how networks can interact with each other. In many cases, these include
security considerations. On some sites, the primary network will be protected from less secure networks and may
require different installation considerations. For example, if a data collector machine and the database machine are on
the same network with sufficient security, you may choose to have the data collector write directly to the database. If
the collector is on an isolated building network then you will likely need to use the ForwardHistorian to bridge the two
networks.

68 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Other Considerations

Physical location and maintenance of collector machines must be considered in all live deployments. Although the
number of data points may imply a heavy load on a data collection box, the physical constraints may limit the practi-
cality of having more than a single box. The other side of that discussion is deploying many collector boxes may be
simpler initially, but may create a maintenance challenge if you don’t plan ahead on how you apply patches, etc.

Naming conventions should also be considered. The ability to trace data through the system and identify the collector
machine and device can be invaluable in debugging and analysis.

3.4 Developing VOLTTRON

3.4.1 Agent Development

Agent Configuration Store Interface

The Agent Configuration Store Subsystem provides an interface for facilitating dynamic configuration via the platform
configuration store. It is intended to work alongside the original configuration file to create a backwards compatible
system for configuring agents with the bundled configuration file acting as default settings for the agent.

If an Agent Author does not want to take advantage of the platform configuration store they need to make no
changes. To completely disable the Agent Configuration Store Subsystem an Agent may pass enable_store=False
to the Agent.__init__ method.

The Agent Configuration Store Subsystem caches configurations as the platform sends updates to the agent. Updates
from the platform will usually trigger callbacks on the agent.

Agent access to the Configuration Store is managed through the self.vip.config object in the Agent class.

The “config” Configuration

The configuration name config is considered the canonical name of an Agents main configuration. As such the Agent
will always run callbacks for that configuration first at startup and when a change to another configuration triggers any
callbacks for config.

Configuration Callbacks

Agents may setup callbacks for different configuration events.

The callback method must have the following signature:

my_callback (self, config_name, action, contents)

Note: The example above is for a class member method, however the method does not need to be a member of the
agent class.

 config_name - The method to call when a configuration event occurs.

* action - The specific configuration event type that triggered the callback. Possible values are “NEW”, “UP-
DATE”, “DELETE”. See Configuration Events

3.4. Developing VOLTTRON 69

VOLTTRON Documentation, Release 6.0

 contents - The actual contents of the configuration. Will be a string, list, or dictionary for the actions “NEW”
and “UPDATE”. None if the action is “DELETE”.

Note: All callbacks which are connected to the “NEW” event for a configuration will called during agent startup with
the initial state of the configuration.

Configuration Events

* NEW - This event happens for every existing configuration at Agent startup and whenever a new configuration
is added to the Configuration Store.

* UPDATE - This event happens every time a configuration is changed.

* DELETE - The event happens every time a configuration is removed from the store.

Setting Up a Callback

A callback is setup with the self-vip.config.subscribe method.

Note: Subscriptions may be setup at any point in the life cycle of an Agent. Ideally they are setup in __init__.

subscribe (callback, actions=["NEW", "UPDATE", "DELETE"], pattern="x")

* callback - The method to call when a configuration event occurs.

* actions - The specific configuration event that will trigger the callback. May be a string with the name of a
single action or a list of actions.

 pattern - The pattern used to match configuration names to trigger the callback.

Configuration Name Pattern Matching

Configuration name matching uses Unix file name matching semantics. Specifically the python module fnmatch is
used.

Name matching is not case sensitive regardless of the platform VOLTTRON is running on.

For example, the pattern devices/* will trigger the supplied callback for any configuration name that starts with de-
vices/.

The default pattern matches all configurations.

Getting a Configuration

Once RPC methods are available to an agent (once onstart methods have been called or from any configuration call-
back) the contents of any configuration may be acquired with the self.vip.config.get method.

get (config_name="config")

70 Chapter 3. License

https://docs.python.org/2.7/library/fnmatch.html#module-fnmatch

VOLTTRON Documentation, Release 6.0

If the Configuration Subsystem has not been initialized with the starting values of the agent configuration that will
happen in order to satisfy the request. If initialization occurs to satisfy the request callbacks will not be called before
returning the results.

Typically an Agent will only obtain the contents of a configuration via a callback. This method is included for agents
that want to save state in the store and only need to retrieve the contents of a configuration at startup and ignore any
changes to the configuration going forward.

Setting a Configuration

Once RPC methods are available to an agent (once onstart methods have been called) the contents of any configuration
may be set with the self.vip.config.set method.

set (config_name, contents, trigger_callback=False, send_update=False)

The contents of the configuration may be a string, list, or dictionary.

This method is intended for agents that wish to maintain a copy of their state in the store for retrieval at startup with
the self.vip.config.get method.

Warning: This method may not be called from a configuration callback. The Configuration Subsystem will
detect this and raise a RuntimeError, even if trigger_callback or send_update is False.

The platform has a locking mechanism to prevent concurrent configuration updates to the Agent. Calling
self.vip.config.set would cause the Agent and the Platform configuration store for that Agent to deadlock until
a timeout occurs.

Optionally an agent may trigger any callbacks by setting trigger_callback to True. If trigger_callback is set to
False the platform will still send the updated configuration back to the agent. This ensures that a subsequent call
to self.cip.config.get will still return the correct value. This way the agent’s configuration subsystem is kept in sync
with the platform’s copy of the agent’s configuration store at all times.

Optionally the agent may prevent the platform from sending the updated file to the agent by setting send_update to
False. This setting is available strictly for performance tuning.

Warning: This setting will allow the agent’s view of the configuration to fall out of sync with the platform.
Subsequent calls to self.vip.config.get will return an old version of the file if it exists in the agent’s view of the
configuration store.

This will also affect any configurations that reference the configuration changed with this setting.

Care should be taken to ensure that the configuration is only retrieved at agent startup when using this option.

Setting a Default Configuration

In order to more easily allow agents to use both the Configuration Store while still supporting configuration via the
tradition method of a bundled configuration file the self.vip.config.set_default method was created.

set_default (config_name, contents)

3.4. Developing VOLTTRON 71

VOLTTRON Documentation, Release 6.0

Warning: This method may not be called once the Agent Configuration Store Subsystem has been initialized.
This method should only be called from __ini¢ __ or an onsetup method.

The set_default method adds a temporary configuration to the Agents Configuration Subsystem. Nothing is sent to the
platform. If a configuration with the same name exists in the platform store it will be presented to a callback method
in place of the default configuration.

The normal way to use this is to set the contents of the packaged Agent configuration as the default contents for the
configuration named config. This way the same callback used to process config configuration in the Agent will be
called when the Configuration Subsystem can be used to process the configuration file packaged with the Agent.

Note: No attempt is made to merge a default configuration with a configuration from the store.

If a configuration is deleted from the store and a default configuration exists with the same name the Agent Configu-
ration Subsystem will call the UPDATE callback for that configuration with the contents of the default configuration.

Other Methods

In a well thought out configuration scheme these methods should not be needed but are included for completeness.

List Configurations

A current list of all configurations for the Agent may be called with the self.vip.config.list method.

Unsubscribe

All subscriptions can be removed with a call to the self.vip.config.unsubscribe_all method.

Delete

A configuration can be deleted with a call to the self.vip.config.delete method.

delete (config_name, trigger_callback=False)

Note: This method may not be called from a callback for the same reason as the self.vip.config.set method.

Delete Default

A default configuration can be deleted with a call to the self.vip.config.delete_default method.

delete_default (config_name)

Warning: This method may not be called once the Agent Configuration Store Subsystem has been initialized.
This method should only be called from __iniz _ or an onsetup method.

72 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Example Agent

The following example shows how to use set_default with a basic configuration and how to setup callbacks.

def my_agent (config_path, *+kwargs):

config = utils.load_config(config_path) #Now returns {} if config path does not,,
—exist.

settingl = config.get ("settingl", 42)
setting2 = config.get ("setting2", 2.5)

return MyAgent (settingl, setting2, *xkwargs)

class MyAgent (Agent) :
def _ init_ (self, settingl=0, setting2=0.0, **kwargs):
super (MyAgent, self).__init__ (xxkwargs)

self.default_config = {"settingl": settingl,
"setting2": setting2}

self.vip.config.set_default ("config", self.default_config)

#Because we have a default config we don't have to worry about "DELETE"

self.vip.config.subscribe (self.configure_main, actions=["NEW", "UPDATE"]
—pattern="config")

self.vip.config.subscribe (self.configure_other, actions=["NEW", "UPDATE"]
—pattern="other_config/«")

self.vip.config.subscribe (self.configure_delete, actions="DELETE", pattern=
—"other_config/+")

o

o

def configure_main(self, config _name, action, contents):
#Ensure that we use default values from anything missing in the configuration.
config = self.default_config.copy ()
config.update (contents)

_log.debug ("Configuring MyAgent")

#Sanity check the types.
try:
settingl = int (config["settingl"])
setting2 = float (config["setting2"])
except ValueError as e:
_log.error ("ERROR PROCESSING CONFIGURATION: {}".format (e))
#TODO: set a health status for the agent
return

_log.debug ("Using settingl {}, setting2 {}". format (settingl, setting2))
#Do something with settingl and setting2.

def configure_other (self, config_name, action, contents):
_log.debug("Configuring From {}".format (config_name))
#Do something with contents of configuration.

def configure_delete(self, config_name, action, contents):
_log.debug ("Removing {}".format (config_name))
#Do something in response to the removed configuration.

3.4. Developing VOLTTRON 73

VOLTTRON Documentation, Release 6.0

Agent Creation Walkthrough

The VOLTTRON platfrom now has utilities to speed the creation and installation of new agents. To use these utilities
the VOLTTRON environment must be activated.

From the project directory, activate the VOLTTRON environment with:

env/bin/activate

Create Agent Code

Run the following command to start the Agent Creation Wizard:

vpkg init TestAgent tester

TestAgent is the directory that the agent code will be placed in. The directory must not exist when the command is run.
tester is the name of the agent module created by wizard.

The Wizard will promt for the following information:

Agent version number: [0.1]: 0.5

Agent author: []: VOLTTRON Team

Author's email address: []: volttron@pnnl.gov

Agent homepage: []: https://volttron.org/

Short description of the agent: []: Agent development tutorial.

Once the last question is answered the following will print to the console:

2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent
2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent/tester
2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent/setup.
=Py

2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent/config
2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent/
—~tester/agent .py

2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent/

—tester/__init__.py

The TestAgent directory is created with the new Agent inside.

Agent Directory

At this point, the contents of the TestAgent directory should look like:

TestAgent/

setup.py
config
tester

|: agent.py
__init___.py

Examine the Agent Code

The resulting code is well documented with comments and documentation strings. It gives examples of how to do
common tasks in VOLTTRON Agents.

74 Chapter 3. License

VOLTTRON Documentation, Release 6.0

The main agent code is found in tester/agent.py

Here we will cover the highlights.

Parse Packaged Configuration and Create Agent Instance

The code to parse a configuration file packaged and installed with the agent is found in the tester function:

def tester (config_path, =xxkwargs):
"""parses the Agent configuration and returns an instance of
the agent created using that configuration.

:param config _path: Path to a configuration file.

:type config _path: str
:returns: Tester
:rtype: Tester
mmwn
try:
config = utils.load_config(config_path)
except StandardError:
config = {}

if not config:
_log.info("Using Agent defaults for starting configuration.")

settingl = int (config.get ('settingl', 1))
setting2 = config.get ('setting2', "some/random/topic™)

return Tester (settingl,
setting2,
**kwargs)

The configuration is parsed with the utils.load_config function and the results are stored in the config variable.

An instance of the Agent is created from the parsed values and is returned.

Initialization and Configuration Store Support

The configuration store is a powerful feature introduced in VOLTTRON 4. The agent template provides a simple
example of setting up default configuration store values and setting up a configuration handler.

class Tester (Agent) :

mon

Document agent constructor here.
mrmmn

def _ init__ (self, settingl=1l, setting2="some/random/topic",
**xkwargs) :
super (Tester, self)._ _init__ (*+kwargs)
_log.debug ("vip_identity: " + self.core.identity)
self.settingl = settingl
self.setting2 = setting2

self.default_config = {"settingl": settingl,

(continues on next page)

3.4. Developing VOLTTRON 75

VOLTTRON Documentation, Release 6.0

(continued from previous page)

"setting2": setting2}

#Set a default configuration to ensure that self.configure is called_
—immediately to setup

#the agent.

self.vip.config.set_default ("config", self.default_config)

#Hook self.configure up to changes to the configuration file "config".

self.vip.config.subscribe (self.configure, actions=["NEW", "UPDATE"], pattern=
—"config")

def configure(self, config_name, action, contents):
Called after the Agent has connected to the message bus. If a configuration,,
—exists at startup
this will be called before onstart.

Is called every time the configuration in the store changes.
config = self.default_config.copy/()
config.update (contents)

_log.debug ("Configuring Agent")

try:
settingl = int (config["settingl"])
setting2 = str(config["setting2"])
except ValueError as e:
_log.error ("ERROR PROCESSING CONFIGURATION: {/}".format (e))
return

self.settingl = settingl
self.setting2 = setting2

self._create_subscriptions(self.setting2)

Values in the default config can be built into the agent or come from the packaged configuration file. The subscribe
method tells our agent which function to call whenever there is a new or updated config file. For more information on
using the configuration store see Agent Configuration Store

_create_subscriptions (convered in the next section) will use the value in self.setting2 to create a new subscription.

Setting up a Subscription

The Agent creates a subscription using the value of self.setting2 in the method _create_subscription. The messages
for this subscription hare handeled with the _handle_publish method:

def _create_subscriptions(self, topic):
#Unsubscribe from everything.
self.vip.pubsub.unsubscribe ("pubsub", None, None)

self.vip.pubsub.subscribe (peer="pubsub',
prefix=topic,
callback=self._handle_publish)

(continues on next page)

76 Chapter 3. License

VOLTTRON Documentation, Release 6.0

(continued from previous page)

def _handle_publish(self, peer, sender, bus, topic, headers,
message) :

pass

Agent Lifecycle Events

Methods may be setup to be called at agent startup and shudown:

@Core.receiver ("onstart™)
def onstart (self, sender, *xkwargs):
mmwn
This is method is called once the Agent has successfully connected to the,
—platform.
This is a good place to setup subscriptions if they are not dynamic or
do any other startup activities that require a connection to the message bus.
Called after any configurations methods that are called at startup.

Usually not needed if using the configuration store.

mmwn

#Example publish to pubsub

#self.vip.pubsub.publish('pubsub', "some/random/topic", message="HI!")

#Exmaple RPC call
#self.vip.rpc.call ("some_agent"”, "some_method", argl, arg2)

@Core.receiver ("onstop")
def onstop(self, sender, =*xkwargs):

mmn

This method is called when the Agent is about to shutdown, but before it

—disconnects from
the message bus.

mon

pass

As the comment mentions. With the new configuration store feature onstart methods are mostly unneeded. However
this code does include an example of how to do a Remote Proceedure Call to another agent.

Agent Remote Proceedure Calls

An agent may receive commands from other agents via a Remote Proceedure Call or RPC for short. This is done with
the @RPC.export decorattor:

@RPC.export
def rpc_method(self, argl, arg2, kwargl=None, kwarg2=None) :

mmn

RPC method

May be called from another agent via self.core.rpc.call """

return self.settingl + argl - arg2

3.4. Developing VOLTTRON 77

VOLTTRON Documentation, Release 6.0

Packaging Configuration

The wizard will automatically create a setup.py file. This file sets up the name, version, required packages, method to
execute, etc. for the agent based on your answers to the wizard. The packaging process will also use this information
to name the resulting file.

from setuptools import setup, find_packages
MAIN_MODULE = 'agent'

Find the agent package that contains the main module
packages = find_packages('.")

agent_package = 'tester'

Find the version number from the main module

agent_module = agent_package + '.' + MAIN_MODULE

_temp = __import__ (agent_module, globals(), locals(), ['__version__ '], -1)
__version_ _temp.__version___

Setup

setup (

name=agent_package + 'agent',
version=__version__ ,
author_email="volttronlpnnl.gov",
url="https://volttron.org/",
description="Agent development tutorial.",
author="VOLTTRON Team",
install_requires=|['volttron'],
packages=packages,
entry_points={

'setuptools.installation': [

'eggsecutable = ' + agent_module + ':main',

Launch Configuration

In TestAgent, the wizard will automatically create a file called “config”. It contains configuration information for the
agent. This file contains examples every datatype supported by the configuration system:

{

VOLTTRON config files are JSON with support for python style comments.

"settingl": 2, #Integers

"setting2": "some/random/topic2", #strings

"setting3": true, #Booleans: remember that in JSON true and false are not,,
—capitalized.

"setting4d": false,

"settingb5": 5.1, #Floating point numbers.

"setting6": [1,2,3,4], # Lists

"setting7": {"setting7a": "a", "setting7b": "b"} #Objects

78 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Packaging and Installing the Agent

To install the agent the platform must be running. Start the platform with the command:
volttron -1 volttron.log -vvé&

Now we must install it into the platform. Use the following command to install it and add a tag for easily referring to
the agent. From the project directory, run the following command:

python scripts/install-agent.py —-s TestAgent/ —-c TestAgent/config -t testagent
To verify it has been installed, use the following command: volttron-ctl list

This will result in output similar to the following:

AGENT IDENTITY TAG STATUS HEALTH
e testeragent-0.5 testeragent-0.5_1 testagent

Where the number or letter is the unique portion of the full uuid for the agent. AGENT is the “name” of the agent based
on the contents of its class name and the version in its setup.py. IDENTITY is the agent’s identity in the platform.
This is automatically assigned based on class name and instance number. This agent’s ID is _1 because it is the first
instance. TAG is the name we assigned in the command above. HEALTH is the current health of the agent as reported
by the agents health subsystem.

When using lifecycle commands on agents, they can be referred to be UUID (default) or AGENT (name) or TAG.

Testing the Agent
From the Command Line

To test the agent, we will start the platform (if not already running), launch the agent, and check the log file.
* With the VOLTTRON environment activated, start the platform by running (if needed):
volttron -1 volttron.log -vvé&
* Launch the agent by <uuid> using the result of the list command:
vctl start <uuid>
e Launch the agent by name with:
vctl start —--name testeragent-0.1
* Launch the agent by tag with:
volttron-ctl start —--tag testagent
e Check that it is running:
volttron—-ctl status
« Start the ListenerAgent as in Building VOLTTRON

* Check the log file for messages indicating the TestAgent is receiving the ListenerAgents messages:

Automated Test cases and documentation

Before contributing a new agent to the VOLTTRON source code repository, please consider adding two other essential
elements.

3.4. Developing VOLTTRON 79

VOLTTRON Documentation, Release 6.0

1. Integration and unit test cases

2. README file that includes details of pre-requisite software, agent setup details (such as setting up databases,
permissions, etc.)and sample configuration

VOLTTRON uses py.test as a framework for executing tests. All unit tests should be based on py.test framework.
py-test is not installed with the distribution by default. To install py.test and it’s dependencies execute the following:

’python bootstrap.py —--testing

Note: There are other options for different agent requirements. To see all of the options use:

’python bootstrap.py ——help

in the Extra Package Options section.

To run a single test module, use the command

’pytest <testmodule.py>

To run all of the tests in the volttron repository execute the following in the root directory using an activated command
prompt:

’./ci—integration/run—tests.sh

Agent Development Cheat Sheet

This is a catalogue of features available in volttron that are frequently useful in agent development.

Utilities

These functions can be found in the volttron.platform.agent.utils module. logging also needs to be imported to use the
logger.

setup_logging

You’ll probably see the following lines near the top of agent files:

utils.setup_logging ()
log = logging.getLogger(name)

This code sets up the logger for this module so it can provide more useful output. In most cases it will be better to use
the logger in lieu of simply printing messages with print.

load_config

load_config does just that. Give it the path to your config file and it will parse the json and return a dictionary.

80 Chapter 3. License

VOLTTRON Documentation, Release 6.0

vip_main

This is the function that is called to start your agent. You’ll likely see it in the main methods at the bottom of agents’
files. Whatever is passed to it (a class name or a function that returns an instance of your agent) should accept a file
path that can be parsed with load_config.

Core Agent Functionality

These tools volttron.platform.vip.agent module. Try importing

Agent Lifecycle Events

Each agent has four events that are triggered at different stages of its life. These are onsetup, onstart, onstop, and
onfinish. Registering callbacks to these events are commonplace in agent development, with onstart being the most
frequently used.

The easiest way to register a callback is with a function decorator:

@Core.receiver ('onstart"')
def function(self, sender, =**kwargs):
function_body

Periodic and Scheduled Function Calls

Functions and agent methods can be registered to be called periodically or scheduled to run at a particular time using
the Core.schedule decorator or by calling an agent’s core.schedule() method. The latter is especially useful if, for
example, a decision needs to be made in an agent’s onstart method as to whether a call should be scheduled.

from volttron.platform.scheduling import cron, periodic
@Core.schedule (t)

def function(self):

@Core.schedule (periodic (t))
def periodic_function(self):

@Core.schedule(cron('0 1 x % *'"))
def cron_function(self) :

or

inside some agent method

self.core.schedule (t, function)

self.core.schedule (periodic(t), periodic_function)
self.core.schedule(cron('0 1 * = *'), cron_function)

Subsystem

These features are available to all Agent subclasses. No extra imports are required.

3.4. Developing VOLTTRON 81

VOLTTRON Documentation, Release 6.0

Remote Procedure Calls

Remote Procedure Calls, or RPCs are a powerful way to interact with other agents. To make a function available to
call by a remote agent just add the export decorator:

@RPC.export
def function(self, ...):
function_body

function can now be called by a remote agent agent with

vip identity is the identity (a string) of the agent
where function() 1s defined
agent.vip.rpc.call (vip, 'function') .get (timeout=t)

Pubsub

Agents can publish and subscribe to topics. Like RPC, pubsub functions can be invoked via decorators or inline
through vip. The following function is called whenever the agent sees a message starting with topic_prefix.

@PubSub. subscribe ('pubsub', topic_prefix)
def function(self, peer, sender, bus, topic, headers, message) :
function_body

An agent can publish to a topic fopic with the self.vip.pubsub.publish method.

An agent can remove a subscriptions with self.vip.pubsub.unsubscribe. Giving None as values for the prefix and
callback argument will unsubscribe from everything on that bus. This is handy for subscriptions that must be updated
base on a configuration setting.

Configuration Store

Support for the configuration store is done by subscribing to configuration changes with self.vip.config.subscribe.

self.vip.config.subscribe (self.configure_main, actions=["NEW", "UPDATE"], pattern=
—"config")

See Agent Configuration Store

Heartbeat

The heartbeat subsystem provides access to a periodic publish so that others can observe the agent’s status. Other
agents can subscibe to the heartbeat topic to see who is actively publishing to it.

It it turned off by default.

Health

The health subsystem adds extra status information to the an agent’s heartbeat. Setting the status will start the heartbeat
if it wasn’t already.

82 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Agent Skeleton

import logging

from volttron.platform.vip.agent import Agent,
from volttron.platform.agent import utils

utils.setup_logging ()
log = logging.getLogger (name)

class MyAgent (Agent) :
def _ _init__ (self,
self.config =

config_path,

@Core.receiver ('onsetup')
def onsetup(self, sender,
pass

**xkwargs) :

@Core.receiver ('onstart')
def onstart (self, sender, +*xkwargs):
self.vip.heartbeat.start ()

@Core.receiver ('onstop')
def onstop(self, sender,
pass

*xkwargs) :

@Core.receiver ('onfinish')

*xkwargs) :
utils.load_config(config_path)

def onfinish(self, sender, *xkwargs):
pass

@PubSub. subscribe ('pubsub', 'some/topic')

def on_match(self, peer, sender, bus,

pass

@QRPC.export
def my_method(self):
pass
def main () :
utils.vip_main (MyAgent)

v L

if _ name_ == '_ main_
try:
main ()
except KeyboardInterrupt:
pass

topic,

Core,

PubSub, RPC

headers, message):

Driver Development

Introduction

All Voltton drivers are implemented through the Master Driver Agent and are technically sub-agents running in the
same process as the Master Driver Agent. Each of these driver sub-agents is responsible for creating an interface to a
single device. Creating that interface is facilitated by an instance of an interface class. Currently there are two interface

classes included: Modbus and BACnet.

3.4. Developing VOLTTRON

83

VOLTTRON Documentation, Release 6.0

Existing Drivers

In the directory for the Master Driver Agent you’ll see a directory called interfaces:

—— master_driver
— agent.py
— driver.py
— __init__ .py
— interfaces

__init___.py
bacnet.py
modbus .py

— socket_lock.py
— master-driver.agent
— setup.py

The files bacnet.py and modbus.py implement the interface class for each respective protocol. (The BACnet interface
is mostly just a pass-though to the BACnet Proxy Agent, but the Modbus interface is self contained.)

Looking at those two files is a good introduction into how they work.

The file name is used when configuring a driver to determine which interface to use. The name of the interface class
in the file must be called Interface.

Note: Developing a new driver does not require that your code live with the MasterDriverAgent code. You may create
the interface file anywhere that you would like and then create a symbolic link to the interface file in the interfaces
directory. When the MasterDriverAgent is packed for distribution the a copy of the file represented by the symbolic
link is packed into the agent wheel. See Using Third Party Drivers

Interface Basics

A complete interface consists of two parts: One or more register classes and the interface class.

Register Class

The Base Interface class uses a Register class to describe the registers of a device to the driver sub-agent. This class is
commonly sub-classed to store protocol specific information for the interface class to use. For example, the BACnet
interface uses a sub-classed base register to store the instance number, object type, and property name of the point on
the device represented by the register class. The Modbus interface uses several different Register classes to deal with
the different types of registers on Modbus devices and their different needs.

The register class contains the following attributes:
* read_only - True or False
* register_type - “bit” or “byte”, used by the driver sub-agent to help deduce some meta data about the point.
* point_name - Name of the point on the device. Used by the base interface for reference.
e units - units of the value, meta data for the driver
* description - meta data for the driver

 python_type - python type of the point, used to produce meta data. This must be set explicitly otherwise it
default to int.

84 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Here is an example of a Registry Class for the BACnet driver:

class Register (BaseRegister):

def _ init__ (self, instance_number, object_type, property_name, read_only,
—pointName, units, description = ''):
super (Register, self).__init__ ("byte", read_only, pointName, units,
—description = '")
self.instance_number = int (instance_number)

self.object_type = object_type
self.property = property_name

Note that this implementation is incomplete. It does not properly set the register_type or python_type.

Interface Class

The Interface Class is what is instantiated by the driver sub-agent to do it’s work.

configure(self, config_dict, registry_config_str)

This method must be implemented by an Interface implementation.
 config_dict is a dictionary of key values pairs from the configuration file’s “driver_config” section.

* registry_config_str is the contents of the “registry_config” entry in the driver configuration file. It is up to the
Interface class to parse this file according to the needs of the driver.

Here is an example taken from the BACnet driver:

def configure(self, config_dict, registry_config_str):
self.parse_config(registry_config_str) #Parse the configuration string.
self.target_address = config_dict["device_address"]
self.proxy_address = config_dict.get ("proxy_address", "platform.bacnet_ proxy")
self.ping_target (self.target_address) #Establish routing to the device 1f needed.

And here is the parse_config method (See BACnet Registry Configuration:

def parse_config(self, config_string):
if config_string is None:
return

f = StringIO(config_string) #Python's CSV file parser wants a file like object.
configDict = DictReader (f) #Parse the CVS file contents.
for regDef in configDict:

#Skip lines that have no address yet.

if not regDef['Point Name']:

continue

io_type = regDef['BACnet Object Type']

read_only = regDef['Writable'].lower () != 'true'
point_name = regDef['Volttron Point Name']

index = int (regDef['Index'])

description = regDef['Notes']

units = regDef['Units']

property_name = regDef['Property']

(continues on next page)

3.4. Developing VOLTTRON 85

VOLTTRON Documentation, Release 6.0

(continued from previous page)

register = Register (index,
io_type,
property_name,
read_only,
point_name,
units,
description = description)

self.insert_register (register)

Once a register is created it must be added with the insert_register method.

get_point(self, point_name)

This method must be implemented by an Interface implementation.
Gets the value of a point from a device and returns it.

Here is a simple example from the BACnet driver. In this case it only has to pass the work on to the BACnet Proxy
Agent for handling.

def get_point (self, point_name) :

register = self.get_register_by_name (point_name)

point_map = {point_name: [register.object_type,
register.instance_number,
register.propertyl]}

result = self.vip.rpc.call(self.proxy_address, 'read properties',

self.target_address, point_map) .get ()
return result [point_name]

Failure should be indicated by a useful exception being raised. (In this case the we just leave the Exception raised
by the BACnet proxy un-handled. This could be improved with better handling when register that does not exist is
requested.)

The Register instance for the point can be retrieved with self.get_register_by_name(point_name)

set_point(self, point_name, value)

This method must be implemented by an Interface implementation.
Sets the value of a point on a device and ideally returns the actual value set if different.

Here is a simple example from the BACnet driver. In this case it only has to pass the work on to the BACnet Proxy
Agent for handling.

def set_point (self, point_name, value):

register = self.get_register_by_name (point_name)
if register.read_only:

raise IOError("Trying to write to a point configured read only: "+point_name)
args = [self.target_address, value,

register.object_type,

register.instance_number,

register.property]l
result = self.vip.rpc.call(self.proxy_address, 'write property', =xargs).get ()
return result

86 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Failure to raise a useful exception being raised. (In this case the we just leave the Exception raised by the BACnet
proxy un-handled unless the point is read only.)

scrape_all(self)

This method must be implemented by an Interface implementation.
This must return a dictionary mapping point names to values for ALL registers.

Here is a simple example from the BACnet driver. In this case it only has to pass the work on to the BACnet Proxy
Agent for handling.

def scrape_all(self):

point_map = {}

read_registers = self.get_registers_by_type ("byte", True)

write_registers = self.get_registers_by_type("byte", False)

for register in read_registers + write_registers:

point_map[register.point_name] = [register.object_type,

register.instance_number,
register.property]

result = self.vip.rpc.call(self.proxy_address, 'read properties',
self.target_address, point_map) .get ()
return result

self.get_registers_by_type allows you to get lists of registers by their type and if they are read only. (As BACnet
currently only uses “byte”, “bit” is ignored.) As the procedure for handling all the different types in BACnet is the
same we can bundle them all up into a single request from the proxy.

In the Modbus protocol the distinction is important and so each category must be handled differently.

Developing Historian Agents

VOLTTRON provides a convenient base class for developing new historian agents. The base class automatically
subscribes to all pertinent topics, cache published data to disk until it is successfully recorded to a historian, create
the public facing interface for querying results, and spells out a simple interface for concrete implementation to meet
to make a working Historian Agent. The VOLTTRON provides support for several historians without modification.
Please use one of these if it fits your project criteria, otherwise continue reading.

The base class also breaks data to publish into reasonably sized chunks before handing it off to the concrete imple-
mentation for publication. The size of the chunk is configurable.

The base class sets up a separate thread for publication. This way if publication code needs to block for a long period
of time (up to 10s of seconds) this will no disrupt the collection of data from the bus or the functioning of the agent
itself.

BaseHistorian

All Historians must inherit from the BaseHistorian class in volttron.platform.agent.base_historian and implement the
following methods:

3.4. Developing VOLTTRON 87

VOLTTRON Documentation, Release 6.0

publish_to_historian(self, to_publish_list)

This method is called by the BaseHistorian class when it has received data from the message bus to be published.
to_publish_list is a list of records to publish in the form

[

'_id': 1,

'timestamp': timstamp,

'source': 'scrape',

'topic': 'campus/building/unit/point’',
'value': 90,

'meta': {'units':'F'}

e _id - ID of record. All IDs in the list are unique. This is used for internal record tracking.
* timestamp - Python datetime object of the time data was published at timezone UTC

* source - Source of the data. Can be scrape, analysis, log, or actuator.

* topic - Topic data was published on. Prefix’s such as “device” are dropped.

* value - Value of the data. Can be any type.

* meta - Metadata for the value. Some sources will omit this entirely.

For each item in the list the concrete implementation should attempt to publish (or discard if non-publishable) every
item in the list. Publication should be batched if possible. For every successfully published record and every record
that is to be discarded because it is non-publishable the agent must call report_handled on those records. Records
that should be published but were not for whatever reason require no action. Future calls to publish_to_historian
will include these unpublished records. publish_to_historian is always called with the oldest unhandled records. This
allows the historian to no lose data due to lost connections or other problems.

As a convenience report_all_handled can be called if all of the items in published_list were successfully handled.
query_topic_list(self)
Must return a list of all unique topics published.

query_historian(self, topic, start=None, end=None, skip=0, count=None, order=None)

This function must return the results of a query in the form:

{"values": [(timestampl: valuel), (timestamp2: value2), ...],
"metadata": {"keyl": valuel, "key2": value2, ...}}

metadata is not required (The caller will normalize this to {} for you if you leave it out)
* topic - the topic the user is querying for.
* start - datetime of the start of the query. None for the beginning of time.

* end - datetime of the end of of the query. None for the end of time.

88 Chapter 3. License

VOLTTRON Documentation, Release 6.0

* skip - skip this number of results (for pagination)
* count - return at maximum this number of results (for pagination)

¢ order - “FIRST_TO_LAST” for ascending time stamps, “LAST_TO_FIRST” for descending time stamps.

historian_setup(self)

Implementing this is optional. This function is run on the same thread as the rest of the concrete implementation at
startup. It is meant for connection setup.

Developing Market Agents

VOLTTRON provides a convenient base class for developing new market agents. The base class automatically sub-
scribes to all pertinent topics, and spells out a simple interface for concrete implementation to make a working Market
Agent.

Markets are implemented by the Market Service Agent which is a core service agent. The Market Service Agent
publishes information on several topics to which the base agent automatically subscribes. The base agent also provides
all the methods you will need to interact with the Market Service Agent to implment your market transactions.

MarketAgent

All Market Agents must inherit from the MarketAgent class in volttron.platform.agent.base_market_agent and call the
following method:

self.join_market (market_name, buyer_seller, reservation_callback, offer_callback,
—aggregate_callback, price_callback, error_callback)

This method causes the market agent to join a single market. If the agent wishes to participate in several markets
it may be called once for each market. The first argument is the name of the market to join and this name must be
unique across the entire volttron instance because all markets are implmented by a single market service agent for each
volttron instance. The second argument describes the role that this agent wished to play in this market. The value is
imported as:

from volttron.platform.agent.base market_agent.buy sell import BUYER, SELLER

Arguments 3-7 are callback methods that the agent may implement as needed for the agent’s participation in the
market.

The Reservation Callback

reservation_callback (self, timestamp, market_name, buyer_seller)

This method is called when it is time to reserve a slot in the market for the current market cycle. If this callback is not
registered a slot is reserved for every market cycle. If this callback is registered it is called for each market cycle and
returns True if a reservation is wanted and False if a reservation is not wanted. The name of the market and the roll
being played are provided so that a single callback can handle several markets. If the agent joins three markets with
the same reservation callback routine it will be called three times with the appropriate market name and buyer/seller
role for each call. The MeterAgent example illustrates the use of this of this method and how to determine whether to
make an offer when the reservation is refused. A market will only exist if there are reservations for at least one buyer
or one seller. If the market fails to achieve the minimum participation the error callback will be called. If only buyers
or only sellers make reservations any offers will be rejected with the reason that the market has not formed.

3.4. Developing VOLTTRON 89

VOLTTRON Documentation, Release 6.0

The Offer Callback

offer_callback(self, timestamp, market_name, buyer_seller)

If the agent has made a reservation for the market and a callback has been registered this callback is called. If the
agent wishes to make an offer at this time the market agent computes either a supply or a demand curve as appropriate
and offers the curve to the market service by calling the make_offer method. The name of the market and the roll
being played are provided so that a single callback can handle several markets. For each market joined either an offer
callback, an aggregate callback, or a cleared price callback is required.

The Aggregate Callback

aggregate_callback (self, timestamp, market_name, buyer_seller, aggregate_curve)

When a market has received all its buy offers it calculates an aggregate demand curve. When the market receives all
of its sell offers it calculates an aggregate supply curve. This callback delivers the aggregate curve to the market agent
whenever the appropriate curve becomes available. If the market agent wants to use this opportunity to make an offer
on this or another market it would do that using the make_of fer method. If the aggregate demand curve is received,
obviously you could only make a supply offer on this market. If the aggregate supply curve is received, obviously you
could only make a demand offer on this market. You can of course use this information to make an offer on another
market. The example AHUAgent does this. The name of the market and the roll being played are provided so that a
single callback can handle several markets. For each market joined either an offer callback, an aggregate callback, or
a cleared price callback is required.

The Price Callback

price_callback(self, timestamp, market_name, buyer_seller, price, quantity)

This callback is called when the market clears. If the market agent wants to use this opportunity to make an offer on
this or another market it would do that using the make_of fer method. Once the market has cleared you can’t make
an offer on that market. You can of course use this information to make an offer on another market. The example
AHUAgent does this. The name of the market and the roll being played are provided so that a single callback can
handle several markets. For each market joined either an offer callback, an aggregate callback, or a cleared price
callback is required.

The Error Callback

error_callback (self, timestamp, market_name, buyer_seller, error_code, error_message,
—aux)

This callback is called when an error occurs isn’t in response to an RPC call. The error codes are documented in:

from volttron.platform.agent.base _market_agent.error_codes import NOT_FORMED, SHORT_
—OFFERS, BAD_STATE, NO_INTERSECT

¢ NOT_FORMED - If a market fails to form this will be called at the offer time.
* SHORT_OFFERS - If the market doesn’t receive all its offers this will be called while clearing the market.

* BAD_STATE - This indicates a bad state transition while clearing the market and should never happen, but may
be called while clearing the market.

90 Chapter 3. License

VOLTTRON Documentation, Release 6.0

e NO_INTERSECT - If the market fails to clear this would be called while clearing the market and an auxillary
array will be included. The auxillary array contains comparisions between the supply max, supply min, demand
max and demand min. They allow the market client to make determinations about why the curves did not
intersect that may be useful.

The error callback is optional, but highly recommended.

Agent Development in Eclipse

The Eclipse IDE (integrated development environment), while not required for agent development, can be a powerful
developmental tool. Download the IDE from the following links. Choose a download mirror closest to your location.
For 32-bit machines

For 64-bit machines

To go to the main Eclipse webpage, go to http://eclipse.org/

Installing Eclipse

To install Eclipse, enter the following commands in a terminal:

1. Install Eclipse dependency:

apt—-get install openjdk-7-jdk

2. After downloading the eclipse archive file, move the package to the opt directory (enter this command from a
terminal in the directory where eclipse was downloaded):

$ tar —-xvf eclipse-java-mars-R-linux-gtk-x86_64.tar.gz
mv eclipse /opt/

* For 32-bit machines, replace “gtk-x86_64" with “linux-gtk™ in the previous command.

3. Create desktop shortcut:

touch /usr/share/applications/eclipse.desktop
nano /usr/share/applications/eclipse.desktop

Enter the following text, as shown in Figure 1, and save the file. To avoid typos, copy and paste the following:

[Desktop Entry]
Name=Eclipse
Type=Application
Exec=/opt/eclipse/eclipse
Terminal=false
Icon=/opt/eclipse/icon.xpm
Comment=Integrated Development Environment
NoDisplay=false
Categories=Development; IDE
Name [en]=eclipse

3.4. Developing VOLTTRON 91

http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/mars/R/eclipse-java-mars-R-linux-gtk.tar.gz
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/mars/R/eclipse-java-mars-R-linux-gtk-x86_64.tar.gz
http://www.eclipse.org/

VOLTTRON Documentation, Release 6.0

Terminal - e M
Modified

GNU nano 2.2.6 File:

Jusr/sharejapplicationsseclipse. desktop

[Desktop Entry)

Name=Eclipse

Type=Application

Exec=/opt/eclipse/eclipse

Terminal=false

Icon=/opt/eclipse/icon. xpm
Comment=Integrated Development Environment
NoDisplay=false

Categories=Development ; IDE

Name [en |=eclipse

Figure 1. Eclipse Desktop File
4. Copy the shortcut to the desktop:

$ cp /usr/share/applications/eclipse.desktop ~/Desktop/

Eclipse is now installed and ready to use.

Installing Pydev and EGit Eclipse Plug-ins

The transactional network code is stored in a Git repository. A plug-in is available for Eclipse that makes development
more convenient (note: you must have Git installed on the system and have built the project).

1. Select Help. Select Install New Software (Figure 2).

92 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Fle Edit Navigate Search Project Pydev Eunm Window S0

ST IS S IS, S o b v oo

{7) Help Contents
I PyDev Package Explorer 3 m o @ B |% search
Dynamic Help

b (5 voltron [velron 3.x)
Ky ASSiSL.. Shift+Cari+L
Tips and Tricks...

& Report Bug or Enhancement...

Cheat Sheets...

% Perform Setup Tasks...

%y Check for Updates
G Install New Software...
B Installavion Details
2} Eclipse Marketplace...

@ About Edlipse

Figure 2. Installing Eclipse EGit Plugin
2. Click the Add button (Figure 3).

3.4. Developing VOLTTRON 93

VOLTTRON Documentation, Release 6.0

Available Software
Select a site or enter the location of 2 site.

[{type niter test

I)@ There & nosie selected,

Figure 3. Installing Eclipse EGit Plugin (continued)
3. As shown in Figure 4, enter the following information:
* For name use: EGit

« For location: http://download.eclipse.org/egit/updates

94 Chapter 3. License

http://download.eclipse.org/egit/updates

VOLTTRON Documentation, Release 6.0

Available Software J
Select a sibe of enter the location of a site. i E P

Whork: with: ;I:ypeutﬂelectasrte ¥ | Add... |

And more softwane by working with the “Avallabie Softwine SIEES® preferences,

[‘-'r:'l-l'l'--: bzt =

Name _ Wersion
[(1(D) There s no site selectid,

Add Repository + x|
Name: |EGR || Lecal...
Location: | hitp:fidovnioad.eclipse_org/egit/updates | Archive... |

| selecta J{E) [cancer |[__ox_|

Details

] Show only the latest versions of avallable software || Hide items that are akeady Installed
&l Group items by category What Is already Instalkied?
[show only software applicable te target environment

[£] Contact all update sites during install to find required software

@ st i L, PAER = Cancel | Fir

Figure 4. Installing Eclipse Egit Plugin (continued)
4. After clicking OK, check the Select All button.

5. Click through Next > Agree to Terms > Finish. Allow Eclipse to restart.
6. After installing Eclipse, you must add the PyDev plug-in to the environment.
In Eclipse:
 Select Help and select Install New Software.
¢ Click the Add button.
* As shown in Figure 5, enter the following information:

— For name use: PyDev

3.4. Developing VOLTTRON 95

VOLTTRON Documentation, Release 6.0

— For location: http://pydev.org/updates

— Click OK.
Available Software
Select a site or enter the location of a site. 8

Werk with: |type or select a site t-_'l add... |

Find more softwam by working with the *Avallable Software Sites® prefarances.

".-,-||. it i al
Hama Warsion |
71 There is no site selecked.
fdd Repository 4 %
Name: | PyDev Lecal..
Location: | nttpyipydev.orgiupdated | archive... |
Select Adl P T ST P P e —
@ | cancer || ok |

Detalls

[i=] Show only the Jatest versions of available software [| Hide ltems that are already Installed
Group ltems by category What is glready installed?
[T Show anly software applicable to tamet envireament

|2) Contact all update sites during install to find required saftware

@ < Hac . Mext - Cancel |

Figure 5. Installing Eclipse PyDev Plugin
7. Check the box for PyDev.
8. Click through Next > Agree to Terms > Finish. Allow Eclipse to restart.

Checkout VOLTTRON Project

VOLTTRON can be imported into Eclipse from an existing VOLTTRON project (VOLTTRON was previously checked
out from GitHub) or a new download from GitHub.

96 Chapter 3. License

http://pydev.org/updates

VOLTTRON Documentation, Release 6.0

Import VOLTTRON into Eclipse from an Existing Local Repository (Previously Downloaded VOLT-
TRON Project)

To import an existing VOLTTRON project into Eclipse, complete the following steps:

1. Select File and select Import (Figure 6).

S

[File] Edit Source Refactoring Mavigate Search Project Pyd

MNew Alt+Shift+MN »
Open File...
Clase Ctrl+W
Close All Ctrl+ Shift+W
Save Ctrl+5
Save As...
Save All Ctrl=Shift+5
Revert
Move...

Ei? Rename... F2

27 Refresh F5
Convert Line Delimiters To b
F‘rint.-. I::I;rlq-F‘
switch Workspace ¥
Restart

gxg Import...

ey Export..
Properties Alt+Enter

Figure 6. Checking VOLTTRON with Eclipse from Local Source
2. Select Git. Select Projects from Git. Click the Next button (Figure 7).

3.4. Developing VOLTTRON 97

VOLTTRON Documentation, Release 6.0

23 Projects from Git (with smart import)
» (= Gradle

» (= Install

b (= Maven

} (= Oomph

} (= Run/Debug
» (= Tasks

Figure 7. Checking VOLTTRON with Eclipse from Local Source (continued)
3. Select Existing local repository and click the Next button (Figure 8).

98 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Import Projects from Git + X
Select Repository Source GIT
Select a location of Git Repositories o
type filter text €1
¥ Existing local repository
[Clone URI
@ < Back]l MNext > | I Cancel | | Finish

Figure 8. Checking VOLTTRON with Eclipse from Local Source (continued)
4. Select Add (Figure 9).

3.4. Developing VOLTTRON 99

VOLTTRON Documentation, Release 6.0

Import Projects from Git + X
Select a Git Repository GIT
You can also clone a repository or add local repositories to the list d
| € | Add... |
@ < Back | Next> | | Cancel | [Fnish

Figure 9. Checking VOLTTRON with Eclipse from Local Source (continued)
5. Select Browse. Navigate to the top-level base VOLTTRON directory. Select OK (Figure 10).

100 Chapter 3. License

VOLTTRON Documentation, Release 6.0

x

h Y | + | [@ivolttron Create Folder |
Places Name > |size | Modified |
) Recent i applications 15:24
i Home e 15:23
Bio |E examples 15:23
- b 15:23
ﬁmmm - SEripts 15:24
i ik |E services 15:24
titiat i voltron 15:23
i Pictures |iuﬂm~mmﬂu 15:23
i'lﬁd&ﬂi &” ST DLy | T
i eclipse B8] coPYING
Devices |__J||._-- 1 3 1
- | prvlinkr g
| README.T 4 byt
[BJRELEAS E 5
=y re I 79 brytos
) set 4348
| wolttran.] BMBE
| Cancel | | OK

Figure 10. Checking Out VOLTTRON with Eclipse from Local Source (continued)
6. Click Finish (Figure 11).

3.4. Developing VOLTTRON

101

VOLTTRON Documentation, Release 6.0

Search and select Git repositories on your local file system
search for local Git repositories on the file system

Figure 11. Checking Out VOLTTRON with Eclipse from Local Source (continued)
7. Click Next (Figure 12).

102 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Import Projects from Git + X
Select a Git Repository GIT
You can also clone a repository or add local repositories to the list
type filter text €1 || Add..
@ < Back ” Next > | I Cancel | | Finish

Figure 12. Checking Out VOLTTRON with Eclipse from Local Source (continued)

8. Select Import as general project. Click Next. Click Finish (Figure 13). The project will be imported into the

workspace.

3.4. Developing VOLTTRON

VOLTTRON Documentation, Release 6.0

Import Projects from Git
Select a wizard to use for importing projects

Depending on the wizard, you may select a directory to determine the
wizard's scope

Glr

‘Wizard for project import
() Import gxisting Eclipse projects
() Import using the New Project wizard
@ Import as general project

b (= .git

» (= .metadata
¥ (= applications
P =env

¥ (= examples

» =lib

» (= scripts

b (= services

| i

w & Working Tree - /home/voltronivoltron

@ < Back j

Next > J| Cancel

Finish

Figure 13. Checking Out VOLTTRON with Eclipse from Local Source (continued)

Import New VOLTTRON Project from GitHub

To import a new VOLTTRON project directly from GitHub into Eclipse, complete the following steps:

1. Select File and select Import (Figure 14).

104

Chapter 3. License

VOLTTRON Documentation, Release 6.0

S

[File] Edit Source Refactoring Mavigate Search Project Pyd

Mew

Open File...

Close
Close All

Save
Save As...
Save All

Revert

Move...
Rename...
Refresh

Convert Line Delimiters To

(9 (%

Print...

Switch Workspace
Restart

geg Import...
iy Export..

Properties

Figure 14. Checking Out VOLTTRON with Eclipse from GitHub

Alt+Shift+N »

Ctrl+W

Ctrl+Shift+W

Ctri+5

Ctrl+5hift+5

F2

F5

'::tr|+|:'

Alt+Enter

2. Select Git. Select Projects from Git. Click the Next button (Figure 15).

3.4. Developing VOLTTRON

105

VOLTTRON Documentation, Release 6.0

Import + X
Select “\

Choose import source. g

Select an import source:

type filter text a

b = General :
<, Projects from Git '
=1 Projects from Git (with smart import)

¥ (= Gradle

b = Install

b (= Maven

» (= Oomph

» (= Run/Debug &

» (= Tasks

@ < Back || Next > _'i Cancel J Finish]

Figure 15. Checking Out VOLTTRON with Eclipse from GitHub (continued)
3. Select Clone URI and select Next (Figure 16).

106 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Import Projects from Git + X
Select Repository Source GIT
Select a location of Git Repositories d
type filter text 1

(] Existing local repository

4 Clone URI

@ l < Back || Mext >]| Cancel l| Finish

Figure 16. Checking Out VOLTTRON with Eclipse GitHub (continued)

4. Fill in https://github.com/VOLTTRON/volttron.git for the URI. If you have a GitHub account, enter a username
and password in the User and Password sections. This is not required but will allow you to receive notifications

from GitHub for VOLTTRON related news. (Figure 17)

3.4. Developing VOLTTRON

https://github.com/VOLTTRON/volttron.git

VOLTTRON Documentation, Release 6.0

Source Git Repository
Enter the location of the source repository.

Figure 17. Checking Out VOLTTRON with Eclipse from GitHub (continued)
5. Select the master branch (Figure 18).

108 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Clone Git Repository + X J
Branch Selection
!L- IT | [n'
Select branches to clone from remote repository. Remote tracking branches d
will be created to track updates for these branches in the remote repository.
Branches of https://github.com/VOLTTRONAvolttron: u
type filter text €1
Oe2x
[] & 3x il
(] @& 4.0-patch B
[g% develop S
("] #s fix-bacnet-grab-hardcode R
0
[] #= releases/3.5rc1 :
[] & releases/4.0.1 <
(| &% releasesivolttron-3rd-tech-meeting n
m
C
- " " E
| SelectAll || Deselect Al
L
@ < Back || Next > Cancel | | Finish |
F

Figure 18. Checking Out VOLTTRON with Eclipse from GitHub (continued)

6. Select a location to save the local repository (Figure 19).

3.4. Developing VOLTTRON 109

VOLTTRON Documentation, Release 6.0

Local Destination
Configure the local storage location for volttron,

Figure 19. Checking Out VOLTTRON with Eclipse from GitHub (continued)

7. Select Import as general project. Select Next. Select Finish (Figure 20). The project will now be imported into
the workspace.

110 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Import Projects from Git + X
Select a wizard to use for importing projects GIT
Depending on the wizard, you may select a directory to determine the \;Eg A
wizard's scope

‘Wizard for project import
. Import existing Eclipse projects
(| Import using the New Project wizard

@ Import as general project

b (= .git

» (= .metadata
» (= applications
P =env

¥ (= examples

» =lib

» (= scripts

b (= services

[.- i

@ < Back J MNext > || Cancel Finish

Figure 20. Checking Out VOLTTRON with Eclipse from GitHub (continued)

If the VOLTTRON project has not been built (<project directory>/bootstrap.py file has not been run), proceed to
##Section 2.4 Building the VOLTTRON Platform## and follow the instruction for running the bootstrap.py script

before proceeding to the following sections.

Linking Eclipses

PyDev must now be configured to use the Python interpreter packaged with VOLTTRON.

1. Select Window and select Preferences.

3.4. Developing VOLTTRON

VOLTTRON Documentation, Release 6.0

2. Expand the PyDev tree.

3. Select Interpreters and select Python interpreter.

4. Select New (Figure 21).

| oype filier seex
General
At
Code Recommenders

Edaor
Inberacte Console
Interpreters

Ithen Inberpreter

L

bronPython Inberpreber

Phan rfepreler |

Fl'.l'fll'lﬂl'.l'l.
Python Interpreters

Pythenicgerpreters (e pythonens). Double-chick to rerame.

| Drac Auto-Conlig
| Advanoed Aute-Config |

Rt
WP

iy

Bilitvaries | Forced Buitins | Predefined | B§Emvironment | # String Substiution variables

System PYTHOMPATH. Rporder with Drag & Drop.

| Restoce Delauks | Apply |

Gt || ok |

Figure 21. Configuring PyDev

5. Select Browse and navigate to the pydev-python file located at (<project directory>/scripts/

pydev-python) (Figure 22).
6. Select OK (Figure 22).

112

Chapter 3. License

VOLTTRON Documentation, Release 6.0

Figure 22. Configuring PyDev (continued)
7. Select All and uncheck the VOLTTRON base directory (Figure 23).

3.4. Developing VOLTTRON 113

VOLTTRON Documentation, Release 6.0

Selection needed + M |

Select the folders to be added to the SYSTEM pythonpath!
IMPORTANT: The folders for your PROJECTS should NOT be added here, but in your project configuration.

Checlchttp/fpydev.org/manual_101_interpreter.himl for more details.

(7] & fhomeNvolttron-userAvolttron

£ & homenoltron-userivoltronfenviibipython2,7

& & /homeAvoltron-userivoltronsenviib/python2. 7Aib-dynload

B & fusrilibipython2.7

& fuse/libipython2.7/plat-x86_64-linux-gnu

B & rusriibipython2. 7/ib-tk

B & /homenoitron-userivoltronfenviocal/ib/python2. 7/site-packages

()| fhomeAvoltron-userivolttronfervib/python2 7/site-packanes
(B &) fopeclipse/plugins/org.python.pydev_4.4.0.20151005230%pysrc

Select All not in Workspace | | SelectAll | | Deselect Al

@ l Cancel || OK

Figure 23. Configuring PyDev (continued)

8. In the Project/PackageExplorer view on the left, right-click on the project, PyDev, and set as PyDev Project
(Figure 24).

114 Chapter 3. License

VOLTTRON Documentation, Release 6.0

ig' Fpgl.'q:!mliﬁl-ﬁuln'-

i COR T paste oahev
L ¥ Delets
Ji L
H . Remoys from Comens
[RE Build Path [
Br Refacior Shife=Al+T »
B L It
Eus Evport
o Rufresh -
Cloge Froject
Assign Working Sees...
Yaldate
fun As b
Db Az R
Team ,
Cornpane With "
Replsce With '
Restone from Local oy
e R
Corfigure Sl A b
Zource - Saurce format python ks
Propertied o) B el ol ard *$py. class Files
(2 Setas Source Rolder |add o PYTHONPATH]
Set a3 Cyarep Progect
& Setas PyDev Project

Figure 24. Setting as PyDev Project

9. Switch to the PyDev perspective: Select Window. Select Perspective. Select Open Perspective. Select Other.
Select PyDev (Figure 25). Eclipse should now be configured to use the project’s environment.

3.4. Developing VOLTTRON 115

VOLTTRON Documentation, Release 6.0

Open Perspective + X

35 Debug

i) Git

%Jjava (default)

& Java Browsing
feJjava Type Hierarchy
(Y Planning

{5 Resource
£PTeam Synchronizing
X XML

Cancel ‘ [OK

Figure 25. Setting PyDev Perspective in Eclipse

Running the VOLTTRON Platform and Agents

VOLTTRON and agents within VOLTTRON can now be run within Eclipse. This section will describe the process to
run VOLTTRON and an agent within Eclipse.

Setup a Run Configuration for the Platform

The following steps describe the process for running VOLTTRON within Eclipse:

116 Chapter 3. License

VOLTTRON Documentation, Release 6.0

1. Select Run and select Run Configurations (Figure 26).

File Edit Mavigate Search Project Pydev

3 PyDev Package Explor ﬁ‘ = M

BEgS ¢ 3P

w & yoltron {volttron master] T —

F 5 applications

P e

P (5 examples

b lib

P (5 scripts

b Gy services

b (5 volttron

¢ = voltron.egg-info

-

BvE~6E G ™ 4]

PyDev - Eclipse
Window Help

= Set Next Statement

@, Run

%, Debug
Run History
Run As

Debug History
Debug As
Debug Configurations....

" Manage Python Exception Breakpaints

7% Disable Step into properties

@, External Tools

Ctrl+Ale+R

Ctri=F11
F11

k

k

b

Figure 26. Running VOLTTRON Platform, Setting Up a Run Configuration

2. Select Python Run from the menu on left. Click the New launch configuration button (Figure 27).

3.4. Developing VOLTTRON

117

VOLTTRON Documentation, Release 6.0

Figure 27. Running VOLTTRON Platform, Setting Up a Run Configuration (continued)

3. Change the name (any name may be used but for this example the name VOLTTRON was chosen) and select
the main module (<project directory>/volttron/platform/main.py).

4. Select the Arguments tab and enter ‘-vv’ in the Program arguments field (Figure 28) then select the Run button.

118 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Run Cenfigurations
Create, manage, and run configurations

O mX = Ihmlmm

[type filter tex

G Gradie Project

A" IronPythan Bun
&' IronPythan unittest

B Java Applet
[T Java Application

Variables...

Ju it VM arguments (for pythonexe or java.exa):

]
-

& hython run
&' ython unittest

mid bdaven Build
Elryoev Djange

L3 pyDey Google App Run

Warking directony;

v @ Python Run

£ Defaulc

| ${project_loc/selected project name) \

[Crher: |

& Pythan unittest

«Juy Task Context Test

Variables |'

|]

Workspace. | | File Systemi.

Filter matched 15 of 15 gems

@

| cose || |

Figure 28. Running VOLTTRON Platform, Setting Up a Run Configuration (continued)

5. If the run is successful, the console should appear similar to Figure 29. If the run does not succeed (red text
describing why the run failed will populate the console), click the all stop icon (two red boxes overlaid) on the

console and then retry.

B2 Conscle I3 |

exiem RE=EEH ~9o-n- =0

Figure 29. Running VOLTTRON Platform, Console View on Successful Run

3.4. Developing VOLTTRON

119

VOLTTRON Documentation, Release 6.0

Configure a Run Configuration for the Listener Agent

The following steps describe the process for configuring an agent within Eclipse:

1. Select Run and select Run Configurations (Figure 30).

PyDev - Eclipse
File Edit Navigate Search Project Pydev Window Help
i ' ' =t Set Next Statement Crrl+Al+R
: rj - E o .J'ILI Ml E g i #
. Q, Run Ctri+F11
i2 PyDev Package Explor 3 | S .y %, Debug F11
L
Run History b
El i sy -
g v _ Run As b
F 5 applications
P ey Debuqg History b
P [examples Debug As b
Py lib Debug Configurations....
» .
o Sl " Manage Python Exception Breakpaints
b &y services
% Disable Step into properues
k E'—u- volttron
kb (= voltron.egg-info @, External Tools b

Figure 30. Running the Listener Agent, Setting Up a Run Configuration

2. Select Python Run from the menu on left and click the New launch configuration button (Figure 31).

120 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Figure 31. Running the Listener Agent, Setting Up a Run Configuration (continued)

3. Change the name (for this example Listener is used) and select the main module (<project directory>/
examples/ListenerAgent/listener/agent.py) (Figure 32).

3.4. Developing VOLTTRON 121

VOLTTRON Documentation, Release 6.0

-
Run Configurations =N

Create, manage, and run configurations @

SR e |

[
el

[type fiter tae a | ! ri MaNmmqa |rmpm.r] o Ma;hi‘&nﬁ-nnm]l:l :utm]
G Gradle Project Project

A" [ronPython unimest

Bl Java Applet -Main Module

1 Java Appiication | $qworkspace._locvelftronfexamples ListenerAgentfistener/agent py} || Browse.. |
Ju JLrnie

At EYTHONPATH that wall be uied in the run:

& ython unittest Emﬂmﬂuﬁmmﬂmﬂw,lAnjmmmmwmmm
| hometmittron-userroltronemlibypythan. 7

it M aven Build |
| i i

Bl Fyoev Djange ;Mﬁmﬁmmmﬂmrmmw A-dyricad

25 FyDev Google App Run Emn!wnm.? .
= @ Pythan Fun gI.I'L.l:‘.;.ﬂ|t:|I'|:.l'_r:rn|:u||'|2.Tfu'?pl:llt—]navﬂﬁ-_vli-ll:-l|r'|l.nn|-cgr|l.1
I (=

& vou 1Mmmmmlww Jhyite-packages

& Python unittess iﬁmﬂmhmmerhﬂmmmﬂlwpym?ﬁnbpadﬂges

Jyg Task Conneot Test -Iwmmﬂuglmmﬁmw_uuzmsmmuﬁmm
F g . .

Revart

Fiter matched 16 of 16 Rems - | Apply

(@) | cose | mm |

Figure 32. Running the Listener Agent, Setting Up a Run Configuration (continued)

4. Click the Arguments tab and change Working directory to Default (Figure 33).

122 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Run Configurations

Create, manage, and run configurations

+

»

X

s X B

Name: | Listener

| pypes filber tet

a |

(& Gradle Project

A" IronPython Run

& IronPython unitest
Bl java Applet

[¥1 java Application

Jut JUinit

& pthon run

& python unittest

i Maven Build
Ellpyoev Djanga

A3 PyDev Google App R

w @ Python Run

& VOLTTRON
& Python unittest

Filter matched 16 of 16 mems

=

Program argumants:

-
& Main |+ Arguments \E Interpreter

|
|

s

|

Variables...

VM argurments ({or python.exe or java.exek

Working directony:

i3 Defaulc

$project_locrselected project namsa}

() Other: |

Figure 33. Running the Listener Agent, Setting Up a Run Configuration (continued)

@

::luu||m-||

5. In the Environment tab, select New and add the following environment variables (bulleted list below), as shown

in Figure 34:

* AGENT_CONFIG = /home/<USER>/examples /ListenerAgent/config

AGENT_CONFIG is the absolute path the agent’s configuration file. To access a remote message bus, use the VIP
address as described in ##Section 3.5 Platform Management: VOLTTRON Management Central .##

3.4. Developing VOLTTRON

123

VOLTTRON Documentation, Release 6.0

Create, manage, and run configurations @

(i % & Mame: | Listerier |

[r_.'pe filter text a |||a Hah'll-m = Interpreter &Hﬁ!ﬂi[- Emﬁm;\ Er.nm'lm|

{5 Gradle Project Erwironment variables to ser

@' ironPython fun Variable | Value | New.
A TranPython uramest AGENT_CONAG Select..
Bl Java Applet

3] Java Application (Edit Environment Variable + % | :
EdiL... |
Jul Uit

& jython run Name: ||-lGEHT_1:cr|~.|F|ﬁ | [T |
A Jython unittest Value: | omevaltron-userivaltiron/exam | | Vaiables... |
m Maven Build
Ed#yDev Django l’ﬁ
£3.PyDev Google App Rl | Citcel o

@ Python Run

Listener

@ VOLTTRON | Replace native ervironment with specified environment
& Python unittest

i 5 F
Filter matched 16 of 16 items e || ey

(7) . clse || mm |

Figure 34. Running the Listener Agent, Setting Up a Run Configuration

) Append smvironr

6. Click Run. This launches the agent. You should see the agent start to publish and receive its own heartbeat
message (Figure 35).

+ Saarth @ Comoke B Harory sxhon a2 B Be~n- =«

TR i PP T W TG P Tl MO U I |, A e el LT ol |] #4111

THES-TE0-B0 11:-1ECNE, 240 E&in IMFD; hmllo

2005 00-00 11:id=SF, i) wmaln DEEMG: Peed: Cpubidubt, Sesder! ©bEOTOCOD-DESd-S88T-BAED . saTEATIDN0AR 1, Bed: ut ", Tople: Cdevidei)fias
POESED-0G 11CLScBe,PEY _ maln__ DERNGD Peerl Cpubsub’, Sesder] “d300eREE-eS0d - A0sl-Dhel-SET0RIEITE" |, Bl ut ", TOPICD CevEDEFTe]
FEEL-EE-BL J1-1%:EF. AR08 mEin DEEH:: Pear: “pubsub’, Sesder: "bE)Tccilil- Bd%d - 887 -E3Ed] - #01EOTPELSdE" ;. Bep; u"", Topic: ‘devices/ien)
MHEL-TO-BE 11:-1%:-0%, MEL mEln DINE: Pesr "pubsub”, TSesder: "dYPHEEITE-e30d-Acad-Ele -BMIADRIASETEY ;. Bem: uW'", Toplic "daviceiSinn

Figure 35. Listener Agent Output on Eclipse Console

The process for running other agents in Eclipse is identical to that of the Listener agent. Several useful development
tools are available within Eclipse and PyDev that make development, debugging, and testing of agents much simpler.

124 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Agent Creation Walkthrough

Developers should look at the Listener agent before developing their own agent. The Listener agent illustrates the
basic functionality of an agent. The following example demonstrates the steps for creating an agent.

Agent Folder Setup

Create a folder within the workspace to help consolidate the code your agent will utilize.
1. In the VOLTTRON base directory, create a new folder TestAgent.

2. In TestAgent, create a new folder tester. This is the package where the Python code will be created (Figure 36).

3.4. Developing VOLTTRON 125

VOLTTRON Documentation, Release 6.0

{8 PyDevPackage Explorer i

w 5= volttron [volttron master]
¥ (5> applications
b = env
¥ (5> examples
P (3 lib
b [y scripts
b > services
¥ (= TestAgent
| mreser
b > volttron
b (=volttron.egg-info
bootstrap.py
i COPYING
3 make-datapub
5 make-listener
5 pylintre
4 README
¥ README.md
| RELEASE_NOTES.txt
L requirements.txt
) setup.py
7 volttron.log
¥ & python (fhome/vo ... enw/binfpython2.7)

Figure 36. Creating an Agent Test Folder

Create Agent Code

The following steps describe the necessary agent files and modules.
1. In tester, create a file called __init__.py, which tells Python to treat this folder as a package.
2. In the tester package folder, create the file festagent.py

3. Create a class called TestAgent.

126 Chapter 3. License

VOLTTRON Documentation, Release 6.0

4. Import the packages and classes needed:

from _ future import absolute_import

from datetime import datetime
import logging
import sys

from volttron.platform.vip.agent import Agent, Core
from volttron.platform.agent import utils

5. Setup alogger. The utils module from volttron.platform.agent builds on Python’s already robust
logging module and is easy to use. Add the following lines after the import statements:

utils.setup_logging ()
_log = logging.getLogger (_name_)

This agent will inherit features from the Agent class (base class) extending the agent’s default functionality. The class
definition for the TestAgent will be configured as shown below (with __init__).

class TestAgent (Agent) :
def _ _init__ (self, config_path, xxkwargs):
super (TestAgent, self).__ _init__ (xxkwargs)

Setting up a Subscription

1. Create a startup method. This method is tagged with the decorator @Core.receiver ("onstart"). The
startup method will run after the agent is initialized. The TestAgent’s startup method will contain a subscription
to the Listener agent’s heartbeat (heartbeat/listeneragent). The TestAgent will detect when a message with this
topic is published on the message bus and will run the method specified with the callback keyword argument
passed to self.vip.pubsub.subscribe.

@Core.receiver ("onstart™)
def starting(self, sender, +**kwargs):
Subscribes to the platform message bus on
the heatbeat/listeneragent topic
print ('TestAgent example agent start-up function')
self.vip.pubsub.subscribe ('pubsub', 'heartbeat/listeneragent',
callback=self.on_heartbeat)

2. Create the callback method. Typically, the callback is the response to a message (or event). In this simple
example, the TestAgent will do a print statement and publish a message to the bus:

def on_heartbeat (self, peer, sender, bus, topic, headers, message):
""'TestAgent callback method'''
print ('Matched topic: , for bus: '.format (topic, bus))
self.vip.pubsub.publish ('pubsub',
'testagent/publish’',
headers=headers,
message='test publishing') .get (timeout=30)

3.4. Developing VOLTTRON 127

VOLTTRON Documentation, Release 6.0

Argument Parsing Main Method

The test agent will need to be able to parse arguments being passed on the command line by the agent launcher. Use
the utils.default_main method to handle argument parsing and other default behavior.

1. Create a main method that can be called by the launcher:

def main(argv=sys.argv) :
"'"'Main method called by the eggsecutable.'''
try:

utils.vip_main (TestAgent)

except Exception as e:

_log.exception (e)
if name == '_ _main_ ':
Entry point for script
sys.exit (main())

Create Support Files for Test Agent

VOLTTRON agents need configuration files for packaging, configuration, and launching. The “setup.py” file details
the naming and Python package information. The launch configuration file is a JSON-formatted text file used by the
platform to launch instances of the agent.

Packaging Configuration

In the TestAgent folder, create a file called “setup.py”. This file sets up the name, version, required packages, method
to execute, etc. for the agent. The packaging process will also use this information to name the resulting file.

from setuptools import setup, find_packages

#get environ for agent name/identifier
packages = find_packages('.")
package = packages|[0]

setup (

name = package + 'agent',
version = "0.1",
install_requires = ['volttron'],
packages = packages,
entry_points = {

'setuptools.installation': [

'eggsecutable = ' + package + '.testagent:main',

Launch Configuration

In TestAgent, create a file called “testagent.launch.json”. This is the file the platform will use to launch the agent. It
can also contain configuration parameters for the agent:

128 Chapter 3. License

VOLTTRON Documentation, Release 6.0

"agentid": "Testl"

Testing the Agent

From a terminal, in the base VOLTTRON directory, enter the following commands (with the platform activated and
VOLTTRON running):

1. Run pack_install script on TestAgent:

$./scripts/core/pack_install.sh TestAgent TestAgent/config test-agent

» Upon successful completion of this command, the terminal output will show the install directory, the agent
UUID (unique identifier for an agent; the UUID shown in red is only an example and each instance of an agent
will have a different UUID) and the agent name (blue text):

Installed /home/volttron-user/.volttron/packaged/testeragent-0.1l-py2-none—any.whl
as d4cab557a-496c-4£f02-8ad9-42£5d435868a testeragent-0.1

2. Start the agent:

$ volttron-ctl start --tag test-agent

3. Verify that the agent is running:

$ volttron-ctl status
$ tail -f volttron.log

If changes are made to the Passive AFDD agent’s configuration file after the agent is launched, stop and reload the
agent. In a terminal, enter the following commands:

$ volttron-ctl stop --tag test-agent
$ volttron-ctl remove --tag test-agent

Re-build and start the updated agent (Figure 37).

Figure 37. TestAgent Output In VOLTTRON Log

Running the TestAgent in Eclipse

Warning: Before attempting to run an agent in Eclipse, please see the note in: AgentDevelopment

If you are working in Eclipse, create a run configuration for the TestAgent based on the Listener agent configuration
in the Eclipse development environment ##(Section 5.5.5 Running the VOLTTRON Platform and Agents)##.

1. Launch the platform (##Section 5.5.5.1 Setup a Run Configuration for the Platform##)

2. Launch the TestAgent by following the steps outlined in Launching the Listener <Start-Listener-Eclipse> for
launching the Listener agent.

3.4. Developing VOLTTRON 129

VOLTTRON Documentation, Release 6.0

3. Launch the Listener agent. TestAgent should start receiving the heartbeats from Listener agent and the following
should be displayed in the console (Figure 38).

B consol - xem spEEE MFe >~ -
fhemehalttron-userialitmnTestAgenLTesienTestagent.py

FBl15-18-86 1E:80:36, 717 naln INFD: TestAgent exanple agent start-up fTunctilon

215-18-06 18:00:39, §92 nain INFO: Matched topic: heartbeat/listeneragent, for bus:

F815-18-86 18044 1321 naln INFO: MHatched toplc: hnnllten:ﬁﬂlurenﬁlaqqn1_ Tar bus

I015-18-86 18:069:49, 114 main INFO: Matched topic: heartbeat/listeneragent, far bus:

F815-18-86 1E:6%:54,. 118 nalin INFO: Hatched toplc: heartbeats/listensragent, Tor bus

Figure 38. Console Output for TestAgent

Adding Additional Features to the TestAgent

Additional code can be added to the TestAgent to utilize additional services in the platform. The following sections
show how to use the weather and device scheduling service within the TestAgent.

Subscribing to Weather Data

This agent can be modified to listen to weather data from the Weather agent by adding the following line at the end
of the TestAgent startup method. This will subscribe the agent to the temperature subtopic. For the full list of topics
available, please see:

https://github.com/VOLTTRON/volttron/wiki/WeatherAgentTopics

self.vip.pubsub.subscribe ('pubsub', 'weather/temperature/temp_f"',
callback=self.on_weather)

Add the callback method on_weather:

def on_weather(self, peer, sender, bus, topic, headers, message):
print ("TestAgent got weather\nTopic: }, Message: {}".format (topic, message))

The platform log file should appear similar to Figure 39.
TRt i P
Figure 39. TestAgent Output when Subscribing to Weather Topic

Utilizing the Scheduler Agent

The TestAgent can be modified to publish a schedule to the Actuator agent by reserving time on virtual devices.
Modify the following code to include current time ranges and include a call to the publish schedule method in setup.
The following example posts a simple schedule. For more detailed information on device scheduling, please see:

https://github.com/VOLTTRON/volttron/wiki/ActuatorAgent

Ensure the Actuator agent is running as per ##Section 3.3 Device Control: Configuring and Launching the Actuator
Agent##. Add the following line to the TestAgent’s import statements:

from volttron.platform.messaging import topics

130 Chapter 3. License

https://github.com/VOLTTRON/volttron/wiki/WeatherAgentTopics
https://github.com/VOLTTRON/volttron/wiki/ActuatorAgent

VOLTTRON Documentation, Release 6.0

Add the following lines to the TestAgent’s starting method. This sets up a subscription to the ACTUA-
TOR_RESPONSE topic and calls the publish_schedule method.

self.vip.pubsub.subscribe ('pubsub', topics.ACTUATOR_RESPONSE,
callback=self.on_schedule_result)
self.publish_schedule ()

The publish_schedule method sends a schedule request message to the Actuator agent (Update the schedule with
appropriate times):

def publish_schedule (self) :

headers = {

'"AgentID': self._agent_id,

"type': 'NEW_SCHEDULE',

'requesterID': self._agent_id, # Name of requesting agent

'taskID': self._agent_id + "-TASK", # Unique task ID

'priority': 'LOW' # Task Priority (HIGH, LOW, LOW_PREEMPT)
}
msg = [

First time slot.
Start of time slot.
End of time slot.
Second time slot.
Start of time slot.
End of time slot.
Third time slot.
Start of time slot.
End of time slot.

["campus/building/devicel",
"2014-1-31 12:27:00",
"2014-1-31 12:29:00"7,

["campus/building/devicel",
"2014-1-31 12:26:00",
"2014-1-31 12:30:00"7,

["campus/building/device2",
"2014-1-31 12:30:00",
"2014-1-31 12:32:00"7,

#etc. ..

FH o H H I W W R H

]

self.vip.rpc.call('platform.actuator’', # Target agent
'request_new_schedule', # Method to call
agent_id, # Requestor
"some task", # TaskID
"Low", # Priority
msqg) .get (timeout=10) # Request,,

—message

Add the call back method for the schedule request:

def on_schedule_result (self, topic, headers, message, match):
print (("TestAgent schedule result \nTopic: {topic}, "
"{headers}, Message: {message}")

.format (topic=topic, headers=headers, message=message))

Full TestAgent Code

The following is the full TestAgent code built in the previous steps:

from _ future import absolute_import
from datetime import datetime
import logging

import sys

from volttron.platform.vip.agent import Agent, Core

(continues on next page)

3.4. Developing VOLTTRON 131

VOLTTRON Documentation, Release 6.0

(continued from previous page)

from volttron.platform.agent import utils
from volttron.platform.messaging import headers as headers_mod

utils.setup_logging()
_log = logging.getLogger (__name__)

class TestAgent (Agent) :
def _ _init__ (self, config_path, xxkwargs):
super (TestAgent, self).__init__ (x+xkwargs)

@Core.receiver ("onstart")
def starting(self, sender, =xxkwargs):
rrir
Subscribes to the platform message bus on
the heatbeat/listeneragent topic
rrir
_log.info ('TestAgent example agent start-up function')
self.vip.pubsub.subscribe (peer="pubsub', topic='heartbeat/listeneragent',
callback=self.on_heartbeat)
self.vip.pubsub.subscribe ('pubsub', topics.ACTUATOR_RESPONSE,
callback=self.on_schedule_result)
self.vip.pubsub.subscribe ('pubsub', 'weather/temperature/temp_f',
callback=self.on_weather)

self.publish_schedule ()

def on_heartbeat (self, peer, sender, bus, topic, headers, message):
""'"TestAgent callback method'''
_log.info ('Matched topic: {}, for bus: {}'.format (topic, bus))
self.vip.pubsub.publish (peer="pubsub',
topic='testagent/publish',
headers=headers,
message='test publishing') .get (timeout=30)

def on_weather (self, peer, sender, bus, topic, headers, message):
log.info(

.

"TestAgent got weather\nTopic: {}, Message: {}".format (topic, message))

def on_schedule_result (self, topic, headers, message, match):
print (("TestAgent schedule result \nTopic: {topic}, "
" {headers}, Message: {message}")

.format (topic=topic, headers=headers, message=message))

def main(argv=sys.argv) :
"'"'Main method called by the eggsecutable.'''
try:
utils.vip_main (TestAgent)
except Exception as e:
_log.info(e)

if name == '__main__ ':
Entry point for script
sys.exit (main())

132 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Message Debugging

VOLTTRON agent messages are routed over the VOLTTRON message bus. The Message Debugger Agent provides
enhanced examination of this message stream’s contents as an aid to debugging and troubleshooting agents and drivers.

When enabled, the Message Debugger Agent captures and records each message as it is routed. A second process,
Message Viewer, provides a user interface that optimizes and filters the resulting data stream, either in real time or
retrospectively, and displays its contents.

The Message Viewer can convey information about high-level interactions among VOLTTRON agents, representing
the message data as conversations that can be filtered and/or expanded. A simple RPC call involving 4 individual
message send/receive segments can be displayed as a single row, which can then be expanded to drill down into the
message details. This results in a higher-level, easier-to-obtain view of message bus activity than might be gleaned by
using grep on verbose log files.

Pub/Sub interactions can be summarized by topic, including counts of messages published during a given capture
period by sender, receiver and topic.

Another view displays the most-recently-published message, or message exchange, that satisfies the current filter
criteria, continuously updated as new messages are routed.

Enabling the Message Debugger

In order to use the Message Debugger, two steps are required:
* VOLTTRON must have been started with a ——msgdebug command line option.
* The Message Debugger Agent must be running.

When VOLTTRON has been started with ——msgdebug, its Router publishes each message to an IPC socket for which
the Message Debugger Agent is a subscriber. This is kept disabled by default because it consumes a significant quantity
of CPU and memory resources, potentially affecting VOLTTRON timing and performance. So as a general rule, the
--msgdebug option should be employed during development/debugging only, and should not be left enabled in a
production environment.

Example of starting VOLTTRON with the ——msgdebug command line option:

(volttron) volttron -vv -1 logl ' --msgdebug

If VOLTTRON is running in this mode, the stream of routed messages is available to a subscribing Message Debugger
Agent. It can be started from volttron-ctl in the same fashion as other agents, for example:

(volttron) $ volttron-ctl status

AGENT IDENTITY TAG STATUS
fd listeneragent-3.2 listener listener
08 messagedebuggeragent-0.1 platform.messagedebugger platform.messagedebugger
el vcplatformagent-3.5.4 platform.agent vCcp
47 volttroncentralagent-3.5.5 volttron.central vC

(volttron) $ volttron-ctl start 08
Starting 089c53£f0-£225-4608-aecb-3e86e0df30eb messagedebuggeragent-0.1

(volttron) $ volttron—-ctl status

AGENT IDENTITY TAG STATUS
fd listeneragent-3.2 listener listener
08 messagedebuggeragent-0.1 platform.messagedebugger platform.messagedebugger,
—running [43498]

(continues on next page)

3.4. Developing VOLTTRON 133

VOLTTRON Documentation, Release 6.0

(continued from previous page)

el vcplatformagent-3.5.4 platform.agent vep
47 volttroncentralagent-3.5.5 volttron.central vC

See Agent Creation Walkthrough for further details on installing and starting agents from volttron-ctl.

Once the Message Debugger Agent is running, it begins capturing message data and writing it to a SQLite database.

Message Viewer

The Message Viewer is a separate process that interacts with the Message Debugger Agent primarily via VOLTTRON
RPC calls. These calls allow it to request and report on filtered sets of message data.

Since the Agent’s RPC methods are available for use by any VOLTTRON agent, the Message Viewer is really just
one example of a Message Debugger information consumer. Other viewers could be created to satisfy a variety of
specific debugging needs. For example, a viewer could support browser-based message debugging with a graphical
user interface, or a viewer could transform message data into PCAP format for consumption by WireShark.

The Message Viewer in services/ops/MessageDebuggerAgent/messageviewer/viewer.py implements a command-line
UI, subclassing Python’s Cmd class. Most of the command-line options that it displays result in a MessageDebugger-
Agent RPC request. The Message Viewer formats and displays the results.

In Linux, the Message Viewer can be started as follows, and displays the following menu:

(volttron) $ cd services/ops/MessageDebuggerAgent/messageviewer
(volttron) $ python viewer.py
Welcome to the MessageViewer command line. Supported commands include:
display_message_stream
display_messages
display_exchanges
display_exchange_details
display_session_details_by_agent <session_id>
display_session_details_by_topic <session_id>

list_sessions

set_verbosity <level>
list_filters

set_filter <filter_name> <value>
clear_filters

clear_filter <filter_name>

start_streaming
stop_streaming
start_session

stop_session

delete_session <session_id>
delete_database

help

quit
Please enter a command.
Viewer>

134 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Command-Line Help

The Message Viewer offers two help levels. Simply typing help gives a list of available commands. If a command
name is provided as an argument, advice is offered on how to use that command:

Viewer> help

Documented commands (type help <topic>):

clear_filter display_messages set_filter
clear_filters display_session_details_by_agent set_verbosity
delete_database display_session_details_by_topic start_session
delete_session help start_streaming
display_exchange_details 1list_filters stop_session
display_exchanges list_sessions stop_streaming
display_message_stream quit

Viewer> help set_filter
Set a filter to a value; syntax is: set_filter <filter_name> <value>

Some recognized filters include:

freqg <n>: Use a single-line display, refreshing every <n> seconds (<n>_
—can be floating point)

session_id <n>: Display Messages and Exchanges for the indicated
—debugging session ID only

results_only <n>: Display Messages and Exchanges only if they have a
—result
sender <agent_name>
recipient <agent_name>
device <device_name>
point <point_name>
. topic <topic_name>: Matches all topics that start with the supplied
—<topic_name>

starttime <YYYY-MM-DD HH:MM:SS>: Matches rows with timestamps after the
—supplied time

endtime <YYYY-MM-DD HH:MM:SS>: Matches rows with timestamps before the
—supplied time

(etc. —— see the structures of DebugMessage and DebugMessageExchange)

Debug Sessions

The Message Debugger Agent tags each message with a debug session ID (a serial number), which groups a set of
messages that are bounded by a start time and an end time. The 1ist_sessions command describes each session
in the database:

Viewer> list_sessions

rowid start_time end_time num_messages
1 2017-03-20 17:07:13.867951 - 2243
2 2017-03-20 17:17:35.725224 - 1320
3 2017-03-20 17:33:35.103204 2017-03-20 17:46:15.657487 12388

A new session is started by default when the Agent is started. After that, the stop_sessionand start_session
commands can be used to create new session boundaries. If the Agent is running but no session is active (i.e., because
stop_session was used to stop it), messages are still written to the database, but they have no session ID.

3.4. Developing VOLTTRON 135

VOLTTRON Documentation, Release 6.0

Filtered Display

The set_filter <property> <value> command enables filtered display of messages. A variety of proper-
ties can be filtered.

In the following example, message filters are defined by session_id and sender, and the display_messages com-
mand displays the results:

Viewer> set_filter session_id 4

Set filters to {'session_id': '4'"'}

Viewer> set_filter sender testagent

Set filters to {'sender': 'testagent', 'session_id': '4"'}
Viewer> display_messages

timestamp direction sender recipient request_id .
. subsystem method topic device .
—point result

11:51:00 incoming testagent messageviewer.connection - .
[RPC pubsub.sync - - -

11:51:00 outgoing testagent pubsub - o
[RPC pubsub.push - - -

11:51:00 incoming testagent platform.driver .
—1197886248649056372.284581685 RPC get_point - .
— chargepointl Status -

11:51:01 outgoing testagent platform.driver .
—1197886248649056372.284581685 RPC - - o
— - - AVAILABLE

11:51:01 incoming testagent pubsub .
—1197886248649056373.284581649 RPC pubsub.publish test_topic/test_
—subtopic - - -

11:51:01 outgoing testagent pubsub .
—1197886248649056373.284581649 RPC - - o
o - - None

Debug Message Exchanges

A VOLTTRON message’s request ID is not unique to a single message. A group of messages in an “exchange”
(essentially a small conversation among agents) will often share a common request ID, for instance during RPC
request/response exchanges.

The following example uses the same filters as above, and then uses display_exchanges to display a single line
for each message exchange, reducing the number of displayed rows from 6 to 2. Note that not all messages have a
request ID; messages with no ID are absent from the responses to exchange queries.

Viewer> list_filters

{'sender': 'testagent', 'session_id': '4'}
Viewer> display_exchanges

sender recipient sender_time topic device .
—point result

testagent platform.driver 11:51:00 - chargepointl |
—Status AVAILABLE

testagent pubsub 11:51:01 test_topic/test_subtopic - -
s None

136 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Special Filters

Most filters that can be set with the set_filter command are simple string matches on one or another property of
a message. Some filters have special characteristics, though. The set_filter starttime <timestamp> and
set_filter endtime <timestamp> filters are inequalities that test for messages after a start time or before
an end time.

In the following example, note the use of quotes in the endtime value supplied to set_filter. Any filter value can be
delimited with quotes. Quotes must be used when a value contains embedded spaces, as is the case here:

Viewer> list_sessions

rowid start_time end_time num_messages
1 2017-03-20 17:07:13.867951 - -
2 2017-03-20 17:17:35.725224 - -
3 2017-03-21 11:48:33.803288 2017-03-21 11:50:57.181136 6436
4 2017-03-21 11:50:59.656693 2017-03-21 11:51:05.934895 450
5 2017-03-21 11:51:08.431871 - 74872
6 2017-03-21 12:17:30.568260 - 2331
Viewer> set_filter session_id 5
Set filters to {'session_ id': '5"}

Viewer> set_filter sender testagent

Set filters to {'sender': 'testagent', 'session_id': '5'"}
Viewer> set_filter endtime '2017-03-21 11:51:30"
Set filters to {'endtime': '2017-03-21 11:51:30', 'sender': 'testagent', 'session_id
—r ' H ! 5 ' }
Viewer> display_exchanges

sender recipient sender_time topic device .
—point result

testagent platform.driver 11:51:11 - chargepointl |
—Status AVAILABLE

testagent pubsub 11:51:11 test_topic/test_subtopic -
s None

testagent platform.driver 11:51:25 - chargepointl |
—Status AVATILABLE

testagent pubsub 11:51:25 test_topic/test_subtopic - -
N None

testagent platform.driver 11:51:26 - chargepointl |
—Status AVATILABLE

testagent pubsub 11:51:26 test_topic/test_subtopic - -
oy None

Another filter type with special behavior is set_filter topic <name>. Ordinarily, filters do an exact match
on a message property. Since message topics are often expressed as hierarchical substrings, though, the t opic filter
does a substring match on the left edge of a message’s topic, as in the following example:

Viewer> set_filter topic test_topic

Set filters to {'topic': 'test_topic', 'endtime': '2017-03-21 11:51:30', 'sender':
—'testagent', 'session_id': '5'"}
Viewer> display_exchanges

sender recipient sender_time topic device point
— result

testagent pubsub 11:51:11 test_topic/test_subtopic - - o
s None

testagent pubsub 11:51:25 test_topic/test_subtopic - - o
. None

testagent pubsub 11:51:26 test_topic/test_subtopic - - o
s None
Viewer>

3.4. Developing VOLTTRON 137

VOLTTRON Documentation, Release 6.0

Another filter type with special behavior is set_filter results_only 1. In the JSON representation of a
response to an RPC call, for example an RPC call to a Master Driver interface, the response to the RPC request
typically appears as the value of a ‘result’ tag. The results_only filter matches only those messages that have a
non-empty value for this tag.

In the following example, note that when the results_only filter is set, it is given a value of ‘1’. This is actually
a meaningless value that gets ignored. It must be supplied because the set_filter command syntax requires that a value
be supplied as a parameter.

In the following example, note the use of clear_filter <property> toremove a single named filter from the
list of filters that are currently in effect. There is also a clear_filters command, which clears all current filters.

Viewer> clear_filter topic

Set filters to {'endtime': '2017-03-21 11:51:30', 'sender': 'testagent', 'session_id
—': '5"}
Viewer> set_filter results_only 1
Set filters to {'endtime': '2017-03-21 11:51:30', 'sender': 'testagent', 'session_id
—': '5', 'results_only': '1'}
Viewer> display_exchanges

sender recipient sender_time topic device point .
—result

testagent platform.driver 11:51:11 - chargepointl Status .
—~AVAILABLE

testagent platform.driver 11:51:25 - chargepointl Status .
—AVAILABLE

testagent platform.driver 11:51:26 - chargepointl Status .
—AVAILABLE

Streamed Display

In addition to exposing a set of RPC calls that allow other agents (like the Message Viewer) to query the Message
Debugger Agent’s SQLite database of recent messages, the Agent can also publish messages in real time as it receives
them.

This feature is disabled by default due to the large quantity of data that it might need to handle. When it is enabled,
the Agent applies the filters currently in effect to each message as it is received, and re-publishes the transformed,
ready-for-debugging message to a socket if it meets the filter criteria. The Message Viewer can listen on that socket
and display the message stream as it arrives.

In the following display_message_stream example, the Message Viewer displays all messages sent by the
agent named ‘testagent’, as they arrive. It continues to display messages until execution is interrupted with ctrl-C:

Viewer> clear_filters

Set filters to {}

Viewer> set_filter sender testagent
Set filters to {'sender': 'testagent'}
Viewer> display_message_stream
Streaming debug messages

timestamp direction sender recipient request_id subsystem .
—method topic device point result

12:28:58 outgoing testagent pubsub - RPC o
—pubsub.push - - - -

12:28:58 incoming testagent platform.d 11978862486 RPC get_
—point - chargepoint Status -

iver 49056826.28 L
y 1
4581713

(continues on next page)

138 Chapter 3. License

VOLTTRON Documentation, Release 6.0

(continued from previous page)

12:28:58 outgoing testagent platform.dr 11978862486 RPC - o
— - - - AVAILABLE
iver 49056826.28
4581713
12:28:58 incoming testagent pubsub 11978862486 RPC o
—pubsub.publ test_topic/ - - -
49056827.28 ish |
— test_subtop
4581685 o
- ic
12:28:58 outgoing testagent pubsub 11978862486 RPC - o
s - - - None
49056827.28
4581685
12:28:58 outgoing testagent pubsub - RPC .

—pubsub.push - - - -
"CViewer> stop_streaming
Stopped streaming debug messages

(Note the use of wrapping in the column formatting. Since these messages aren’t known in advance, the Message
Viewer has incomplete information about how wide to make each column. Instead, it must make guesses based on
header widths, data widths in the first row received, and min/max values, and then wrap the data when it overflows the
column boundaries.)

Single-Line Display

Another filter with special behavior is set_filter freq <seconds>. This filter, which takes a number N as
its value, displays only one row, the most recently captured row that satisfies the filter criteria. (Like other filters, this
filter can be used with either display_messages or display_exchanges.) It then waits N seconds, reissues
the query, and overwrites the old row with the new one. It continues this periodic single-line overwritten display until
it is interrupted with ctrl-C:

Viewer> list_filters

{'sender': 'testagent'}
Viewer> set_filter freqg 10
Set filters to {'freg': '10', 'sender': 'testagent'}
Viewer> display_exchanges

sender recipient sender_time topic device point,,
— result

testagent pubsub 12:31:28 test_topic/test_subtopic - - o
s None

(Again, the data isn’t known in advance, so the Message Viewer has to guess the best width of each column. In this
single-line display format, data gets truncated if it doesn’t fit, because no wrapping can be performed — only one
display line is available.)

Displaying Exchange Details

The display_exchange_details <request_id> command provides a way to get more specific details
about an exchange, i.e. about all messages that share a common request ID. At low or medium verbosity, when
this command is used (supplying the relevant request ID, which can be obtained from the output of other commands),
it displays one row for each message:

3.4. Developing VOLTTRON 139

VOLTTRON Documentation, Release 6.0

Viewer> set_filter sender testagent

Set filters to {'sender':

Viewer> display_messages

'testagent’,

'session_id':

|4|}

timestamp direction sender recipient request_id o
. subsystem method topic device .
—point result

11:51:00 incoming testagent messageviewer.connection - o
— RPC pubsub.sync - - -
o _

11:51:00 outgoing testagent pubsub - o
o RPC pubsub.push - - -
o _

11:51:00 incoming testagent platform.driver o
—1197886248649056372.284581685 RPC get_point - .
— chargepointl Status -

11:51:01 outgoing testagent platform.driver o
—1197886248649056372.284581685 RPC - - o
— - - AVAILABLE

11:51:01 incoming testagent pubsub o
—1197886248649056373.284581649 RPC pubsub.publish test_topic/test_
—subtopic - - -

11:51:01 outgoing testagent pubsub o
—1197886248649056373.284581649 RPC - - o
- - None

Viewer> display_exchange_details 1197886248649056373.284581649

timestamp direction sender recipient request_id o
—subsystem method topic device point o
—result

11:51:01 incoming testagent pubsub 1197886248649056373.284581649 _,
—RPC pubsub.publish test_topic/test_subtopic - - -

11:51:01 outgoing testagent pubsub 1197886248649056373.284581649 |
<RPC - - - - .
—None

At high verbosity, display_exchange_details switches display formats, showing all properties for each mes-
sage in a json-like dictionary format:

Viewer> set_verbosity high
Set verbosity to high
Viewer> display_exchange_details 1197886248649056373.284581649

"data": "{\"params\":{\"topic\":\"test_topic/test_subtopic\",\"headers\":{\"Date\
—":\"2017-03-21T11:50:56.293830\", \"max_compatible_version\":\"\",\"min_compatible_
—version\":\"3.0\"}, \"message\": [{\"property_1\":1,\"property_2\":2}, {\"property_3\
—":3,\"property_4\":4}]1,\"bus\":\"\"},\"Jsonrpc\":\"2.0\", \"method\" :\"pubsub.
—publish\",\"id\":\"15828311332408898779.284581649\"}",

"device": "",

"direction": "incoming",
"frame7":
"frame8":
"frame9":

wn
’
wn
’

nn
’

"headers": "{u'Date':
u'min_compatible_version':
"message":
—': 431",
"message_size":

u'2017-03-21T11:50:56.293830",
ul3.ol}ll’
"[{u'property_1': 1, u'property_2':

u'max_compatible_version': u'

2}, {u'property_3': 3, u'property_4

374,

(continues on next page)

140 Chapter 3. License

VOLTTRON Documentation, Release 6.0

(continued from previous page)

"message_value": "{u'property_1': 1, u'property_2': 2}",

"method": "pubsub.publish",

"params": "{u'topic': u'test_topic/test_subtopic', u'headers': {u'Date': u'2017-
—03-21T11:50:56.293830"', u'max_compatible_version': u'', u'min_compatible_version': u
—'3.0"}, u'message': [{u'property_1': 1, u'property_2': 2}, {u'property_3': 3, u
—'property_4': 4}], u'bus': u''}",

"point": "",

"point_value": "",

"recipient": "pubsub",

"request_id": "1197886248649056373.284581649",

"result": "",

"sender": "testagent",

"session_id": 4,

"subsystem": "RPC",

"timestamp": "2017-03-21 11:51:01.027623",

"topic": "test_topic/test_subtopic",

"user_id": "",

"vip_signature": "VIPL1"

}
{
"data": "{\"params\":{\"topic\":\"test_topic/test_subtopic\",\"headers\": {\"Date\

—":\"2017-03-21T11:50:56.293830\", \"max_compatible_version\":\"\",\"min_compatible_
—version\":\"3.0\"}, \"message\": [{\"property_1\":1,\"property_2\":2}, {\"property_3\
—":3,\"property_4\":4}]1,\"bus\":\"\"}, \"Jsonrpc\":\"2.0\", \"method\" :\"pubsub.
—publish\",\"id\":\"15828311332408898779.284581649\"}",

"device": "",

"direction": "outgoing",

"frame7": "",

"frame8": "",

"frame9": "",

"headers": "{u'Date': u'2017-03-21T11:50:56.293830"', u'max_compatible_version': u'
—', u'min_compatible_version': u'3.0"'}",

"message": "[{u'property_1': 1, u'property_2': 2}, {u'property_3': 3, u'property_4
' 4y,

"message_size": 383,

"message_value": "{u'property_1': 1, u'property_2': 2}",

"method": "pubsub.publish",

"params": "{u'topic': u'test_topic/test_subtopic', u'headers': {u'Date': u'2017-
—03-21T11:50:56.293830"', u'max_compatible_version': u'', u'min_compatible_version': u
—'3.0"}, u'message': [{u'property_1': 1, u'property_2': 2}, {u'property_3': 3, u
—'property_4': 4}], u'bus': u''}",

"point": "",

"point_value": "",

"recipient": "testagent",

"request_id": "1197886248649056373.284581649",

"result": "",

"sender": "pubsub",

"session_id": 4,

"subsystem": "RPC",

"timestamp": "2017-03-21 11:51:01.031183",

"topic": "test_topic/test_subtopic",

"user_id": "testagent",

"vip_signature": "VIP1"

3.4. Developing VOLTTRON 141

VOLTTRON Documentation, Release 6.0

Verbosity

As mentioned in the previous section, Agent and Viewer behavior can be adjusted by changing the current verbosity
with the set_verbosity <level> command. The default verbosity is low. low, medium and high levels are
available:

Viewer> set_verbosity high

Set verbosity to high

Viewer> set_verbosity none

Invalid verbosity choice none; valid choices are ['low', 'medium', 'high']

At high verbosity, the following query formatting rules are in effect:
* When displaying timestamps, display the full date and time (including microseconds), not just HH:MM:SS.
* In responses to display_message_exchanges, use dictionary format (see example in previous section).
* Display all columns, not just “interesting” columns (see the list below).
* Don’t exclude messages/exchanges based on excluded senders/receivers (see the list below).
At medium or low verbosity:
* When displaying timestamps, display HH:MM:SS only.
* In responses to display_message_exchanges, use table format.
* Display “interesting” columns only (see the list below).
» Exclude messages/exchanges for certain senders/receivers (see the list below).
At low verbosity:
e If > 1000 objects are returned by a query, display the count only.

The following “interesting” columns are displayed at low and medium verbosity levels (at high verbosity levels, all
properties are displayed):

Debug Message Debug Message Exchange Debug Session
timestamp sender_time rowid
direction start_time
sender sender end_time
recipient recipient num_messages
request_id

subsystem

method

topic topic

device device

point point

result result

Messages from the following senders, or to the following receivers, are excluded at low and medium verbosity levels:

Sender Receiver
(empty) (empty)

None

control control
config.store config.store
pubsub

(continues on next page)

142 Chapter 3. License

VOLTTRON Documentation, Release 6.0

(continued from previous page)

control.connection
messageviewer.connection
platform.messagedebugger
platform.messagedebugger.loopback_rpc

These choices about which columns are “interesting” and which senders/receivers are excluded are defined as param-
eters in Message Viewer, and can be adjusted as necessary by changing global value lists in viewer.py.

Session Statistics

One useful tactic for starting at a summary level and drilling down is to capture a set of messages for a session and then
examine the counts of sending and receiving agents, or sending agents and topics. This gives hints on which values
might serve as useful filters for more specific queries.

The display_session_details_by_agent <session_id> command displays statistics by sending and
receiving agent. Sending agents are table columns, and receiving agents are table rows. This query also applies
whatever filters are currently in effect; the filters can reduce the counts and can also reduce the number of columns
and rows.

The following example shows the command being used to list all senders and receivers for messages sent during debug
session 7:

Viewer> list_sessions
rowid start_time end_time num_messages

1 2017-03-20 17:07:13.867951 - -

2 2017-03-20 17:17:35.725224 - -

3 2017-03-21 11:48:33.803288 2017-03-21 11:50:57.181136 6436
4 2017-03-21 11:50:59.656693 2017-03-21 11:51:05.934895 450

5 2017-03-21 11:51:08.431871 - 74872
6 2017-03-21 12:17:30.568260 2017-03-21 12:38:29.070000 60384
7 2017-03-21 12:38:31.617099 2017-03-21 12:39:53.174712 3966

Viewer> clear_filters
Set filters to {}
Viewer> display_session_details_by_agent 7

Receiving Agent control listener messageviewer.connection
—platform.driver platform.messagedebugger pubsub testagent

(No Receiving Agent) - - 2 o
o _ _ _ _

control - _ _ -
A - — 2 _

listener - - - o
. - - 679 -

messageviewer.connection - - - o
“—> - 3 - -

platform.driver - - - o
- - - 1249 16

platform.messagedebugger - - 3 o

pubsub 2 679 - o
o 1249 - 4 31

testagent - - - -
- 16 - 31 -
The display_session_details_by_topic <session_id> command is similar to

display_session_details_by_agent, but each row contains statistics for a topic instead of for a
receiving agent:

3.4. Developing VOLTTRON 143

VOLTTRON Documentation, Release 6.0

Viewer> display_session_details_by_topic 7

Topic control listener messageviewer.
—connection platform.driver platform.messagedebugger pubsub testagent
(No Topic) 1 664 o
- 5 640 3 1314 39
devices/chargepointl/Address - - o
o - 6 - 6 -
devices/chargepointl/City - - o
- - 6 - 6 -
devices/chargepointl/Connector - - o
o - 5 - 5 -
devices/chargepointl/Country - - o
o - 5 - 5 -
devices/chargepointl/Current - - o
- - 6 - 6 -
devices/chargepointl/Description - - o
o - 6 _ 6 _
devices/chargepointl/Energy - - o
o - 5 - 5 -
devices/chargepointl/Lat - - o
- - 6 - 6 -
devices/chargepointl/Level - - o
o - 5 _ 5 _
devices/chargepointl/Long - - o
o - 6 - 6 -
devices/chargepointl/Mode - - o
o= 5 - 5 -
devices/chargepointl/Power - - o
- - 6 - 6 -
devices/chargepointl/Reservable - - o
o - 5 - 5 -
devices/chargepointl/State - - o
o - 6 - 6 -
devices/chargepointl/Status - - o
R 5 _ 5 _
devices/chargepointl/Status.TimeSta - - o
o - 6 - 6 -
mp
devices/chargepointl/Type - - o
o - 6 - 6 -
devices/chargepointl/Voltage - - o
o - 5 - 5 -
devices/chargepointl/alarmTime - - L
- - 6 - 6 -
devices/chargepointl/alarmType - B o
o - 6 - 6 -
devices/chargepointl/all - - o
- - 5 - 5 -
devices/chargepointl/allowedLoad - - o
o 6 - 6 -
devices/chargepointl/clearAlarms - B o
R 6 - 6 _
devices/chargepointl/currencyCode - - o
o - 6 - 6 -
devices/chargepointl/driverAccountN - - o
o - 5 - 5 _
umber
(continues on next page)
144 Chapter 3. License

VOLTTRON Documentation, Release 6.0

(continued from previous page)

devices/chargepointl/driverName

[

o - 5 5 -
devices/chargepointl/endTime - o
o = 5 5 -
devices/chargepointl/mainPhone - o
o = 6 6 -
devices/chargepointl/maxPrice - L
- 5 5 -
devices/chargepointl/minPrice - L
o = 5 5 -
devices/chargepointl/numPorts - .
o = 6 6 -
devices/chargepointl/orgID - L
— - 5 5 -
devices/chargepointl/organizationNa B L
o = 5 5 -
me
devices/chargepointl/percentShed B L
o - 6 6 -
devices/chargepointl/portLoad - L
o = 6 6 -
devices/chargepointl/portNumber - L
o = 6 6 -
devices/chargepointl/sessionID B L
o - 5 5 -
devices/chargepointl/sessionTime - o
o = 6 6 -
devices/chargepointl/sgID - .
o - 6 6 -
devices/chargepointl/sgName B L
o = 6 6 -
devices/chargepointl/shedState - o
o = 5 5 -
devices/chargepointl/startTime - .
o - 6 6 -
devices/chargepointl/stationID - L
o = 5 5 -
devices/chargepointl/stationMacAddr - .
o = 6 6 -
devices/chargepointl/stationManufac - o
- = 5 5 -
turer
devices/chargepointl/stationModel - L
o = 6 6 -
devices/chargepointl/stationName - L
o - 5 5 -
devices/chargepointl/stationRightsP - B
- - 6 6 -
rofile
devices/chargepointl/stationSerialN - B
- - 6 6 -
um
heartbeat/control - .
- - - 1 -
heartbeat/listener 15 o
- - - 15 -
heartbeat/platform.driver - L
o = 1 1 (continues on next page)

3.4. Developing VOLTTRON

145

VOLTTRON Documentation, Release 6.0

(continued from previous page)

heartbeat /pubsub - -

— — — 2 —
test_topic/test_subtopic - -
- = - - 8 8

[

—

Database Administration

The Message Debugger Agent stores message data in a SQLite database’s DebugMessage, DebugMessageExchange
and DebugSession tables. If the database isn’t present already when the Agent is started, it is created automatically.

The SQLite database can consume a lot of disk space in a relatively short time, so the Message Viewer has command-
line options that recover that space by deleting the database or by deleting all messages belonging to a given debug
session.

The delete_session <session_id> command deletes the database’s DebugSession row with the indicated
ID, and also deletes all DebugMessage and DebugMessageExchange rows with that session ID. In the following
example, delete_session deletes the 60,000 DebugMessages that were captured during a 20-minute period as
session 6:

Viewer> list_sessions

rowid start_time end_time num_messages
1 2017-03-20 17:07:13.867951 - -
2 2017-03-20 17:17:35.725224 - -
3 2017-03-21 11:48:33.803288 2017-03-21 11:50:57.181136 6436
4 2017-03-21 11:50:59.656693 2017-03-21 11:51:05.934895 450
5 2017-03-21 11:51:08.431871 - 74872
6 2017-03-21 12:17:30.568260 2017-03-21 12:38:29.070000 60384
7 2017-03-21 12:38:31.617099 2017-03-21 12:39:53.174712 3966
8 2017-03-21 12:42:08.482936 - 3427
Viewer> delete_session 6
Deleted debug session 6
Viewer> list_sessions
rowid start_time end_time num_messages
1 2017-03-20 17:07:13.867951 - -
2 2017-03-20 17:17:35.725224 - -
3 2017-03-21 11:48:33.803288 2017-03-21 11:50:57.181136 6436
4 2017-03-21 11:50:59.656693 2017-03-21 11:51:05.934895 450
5 2017-03-21 11:51:08.431871 - 74872
7 2017-03-21 12:38:31.617099 2017-03-21 12:39:53.174712 3966
8 2017-03-21 12:42:08.482936 - 4370

The delete_database command deletes the entire SQLite database, removing all records of previously-captured
DebugMessages, DebugMessageExchanges and DebugSessions. The database will be re-created the next time a debug

session is started.

Viewer> delete_database
Database deleted
Viewer> list_sessions
No query results
Viewer> start_session

Message debugger session 1 started

Viewer> list_sessions

rowid start_time end_time num_messages
1 2017-03-22 12:39:40.320252 - 180
146 Chapter 3. License

VOLTTRON Documentation, Release 6.0

It’s recommended that the database be deleted if changes are made to the DebugMessage, DebugMessageExchange or
DebugSession object structures that are defined in agent.py. A skew between these data structures in Python code vs.
the ones in the database can cause instability in the Message Debugger Agent, perhaps causing it to fail. If a failure of
this kind prevents use of the Message Viewer’s delete_database command, the database can be deleted directly
from the filesystem. By default, it is located in $VOLTTRON_HOME'’s run directory.

Implementation Details

Router ipcii$VOLTTRON_HOME/runimessagedebug (PUBISUB)

Lo

VOLTTRON Control

MessageDebuggerAgent
(started with —msgdebug)
Streamed messages: SQL Alchemy
Ipc:MFVOLTTROM_HOME/run/messageviewer (PUB/SUB) / | ORM

sqlite/MEVOLTTRON_HOME/data/messagedebugger. sglite

VOLTTRON RPC

Queries and commands
Python class methods /
MessageViewer _
SQLite Database
Command-line Ul | 1 DebugMessage,
DebughessageExchange,

DebugSession

Router changes: MessageDebuggerAgent reads and stores all messages that pass through the VIP router. This is ac-
complished by subscribing to the messages on a new socket published by the platform’s Router. issue () method.

The “‘direction‘‘ property: Most agent interactions result in at least two messages, an incoming request and an
outgoing response. Router.issue () has a topic parameter with values INCOMING, OUTGOING, ERROR
and UNROUTABLE. The publication on the socket that happens in issue() includes this “issue topic” (not to be
confused with a message’s t opic) along with each message. MessageDebuggerAgent records it as a DebugMessage
property called direction, since its value for almost all messages is either INCOMING or OUTGOING.

SQLite Database and SQL Alchemy: MessageDebuggerAgent records each messsage as a DebugMessage row in a
relational database. SQLite is used since it’s packaged with Python and is already being used by other VOLTTRON
agents. Database semantics are kept simple through the use of a SQL Alchemy object-relational mapping framework.
Python’s “SQLAIlchemy” plug-in must be loaded in order for MessageDebuggerAgent to run.

Calling MessageViewer Directly: The viewer.py module that starts the Message Viewer command line also contains
a MessageViewer class. It exposes class methods which can be used to make direct Python calls that, in turn, make
Message Debugger Agent’s RPC calls. The MessageViewer class-method API includes the following calls:

¢ delete_debugging_db()

¢ delete_debugging_session(session_id)

3.4. Developing VOLTTRON 147

VOLTTRON Documentation, Release 6.0

* disable_message_debugging()

* display_db_objects(db_object_name, filters=None)
* display_message_stream()

* enable_message_debugging()

* message_exchange_details(message_id)
* session_details_by_agent(session_id)

* session_details_by_topic(session_id)

« set_filters(filters)

* set_verbosity(verbosity_level)

* start_streaming(filters=None)

* stop_streaming()

The command-line Ul’'s display_messages and display_exchanges commands are implemented here as
display_db_objects ('DebugMessage') and display_db_objects (DebugMessageExchange).
These calls return json-encoded representations of DebugMessages and DebugMessageExchanges, which are for-
matted for display by MessageViewerCmd.

MessageViewer connection: MessageViewer is not actually a VOLTTRON agent. In order for it make MessageDe-
buggerAgent RPC calls, which are agent-agent interactions, it builds a “connection” that manages a temporary agent.
This is a standard VOLTTRON pattern that is also used, for instance, by Volttron Central.

TestAgent Source Code

Full code of agent detailed in AgentDevelopment:

mn

Agent documentation goes here.

mwn

__docformat___ = 'reStructuredText'

import logging

import sys

from volttron.platform.agent import utils

from volttron.platform.vip.agent import Agent, Core, RPC

_log = logging.getLogger (_name)
utils.setup_logging()
__version__ = "0.5"

def tester (config_path, *+kwargs):
"""Parses the Agent configuration and returns an instance of
the agent created using that configuration.

:param config_path: Path to a configuration file.

:type config_path: str
:returns: Tester
:rtype: Tester

mmon

(continues on next page)

148 Chapter 3. License

VOLTTRON Documentation, Release 6.0

(continued from previous page)

try:

config = utils.load_config(config_path)
except StandardError:

config = {}

if not config:
_log.info("Using Agent defaults for starting configuration.")

settingl = int (config.get ('settingl', 1))
setting2 = config.get ('setting2', "some/random/topic™)

return Tester (settingl,
setting2,
*xkwargs)

class Tester (Agent) :

mmn

Document agent constructor here.

mmn

def _ init__ (self, settingl=1, setting2="some/random/topic",
*xkwargs) :
super (Tester, self).__init__ (*+kwargs)
_log.debug ("vip_identity: " + self.core.identity)

self.settingl = settingl
self.setting2 = setting2

self.default_config = {"settingl": settingl,
"setting2": setting2}

#Set a default configuration to ensure that self.configure is called_
—Iimmediately to setup

#the agent.

self.vip.config.set_default ("config", self.default_config)

#Hook self.configure up to changes to the configuration file "config".

self.vip.config.subscribe (self.configure, actions=["NEW", "UPDATE"], pattern=
—"config")

def configure(self, config_name, action, contents):
mmamn
Called after the Agent has connected to the message bus. If a configuration,,
—exists at startup
this will be called before onstart.

Is called every time the configuration in the store changes.

mon

config = self.default_config.copy ()
config.update (contents)

_log.debug ("Configuring Agent")
try:

settingl = int (config["settingl"])
setting2 = str(config["setting2"])

(continues on next page)

3.4. Developing VOLTTRON 149

VOLTTRON Documentation, Release 6.0

(continued from previous page)

except ValueError as e:
_log.error ("ERROR PROCESSING CONFIGURATION: {/}".format (e))
return

self.settingl = settingl
self.setting2 setting2

self._create_subscriptions(self.setting2)

def _create_subscriptions(self, topic):
#Unsubscribe from everything.
self.vip.pubsub.unsubscribe ("pubsub", None, None)

self.vip.pubsub.subscribe (peer="pubsub',
prefix=topic,
callback=self._handle_publish)

def _handle_publish(self, peer, sender, bus, topic, headers,
message) :
pass

@Core.receiver ("onstart")
def onstart (self, sender, =*xkwargs):
mmmn
This is method is called once the Agent has successfully connected to the,
—platform.
This is a good place to setup subscriptions i1f they are not dynamic or
do any other startup activities that require a connection to the message bus.
Called after any configurations methods that are called at startup.

Usually not needed if using the configuration store.
#Example publish to pubsub
#self.vip.pubsub.publish ('pubsub', "some/random/topic", message="HI!")

#Exmaple RPC call
#self.vip.rpc.call ("some_agent", "some_method", argl, argZ2)

@Core.receiver ("onstop")
def onstop(self, sender, +**kwargs):
wnn
This method is called when the Agent is about to shutdown, but before it
—disconnects from
the message bus.

moon

pass

@RPC.export
def rpc_method(self, argl, arg2, kwargl=None, kwarg2=None) :

mmn

RPC method

May be called from another agent via self.core.rpc.call """
return self.settingl + argl - arg2

def main () :
"""Main method called to start the agent."""

(continues on next page)

150 Chapter 3. License

VOLTTRON Documentation, Release 6.0

(continued from previous page)

utils.vip_main (tester,
version=__ version_)

if _ name_ == '_ main_ ':
Entry point for script
try:
sys.exit (main())
except KeyboardInterrupt:
pass

Contents of setup.py for TestAgent:

from setuptools import setup, find_packages
MAIN_MODULE = 'agent'

Find the agent package that contains the main module
packages = find_packages('.")

agent_package = 'tester'

Find the version number from the main module

agent_module = agent_package + '.' + MAIN_MODULE
_temp = __import__ (agent_module, globals(), locals(), ['__version__'], -1)
__version__ = _temp.__version___
Setup
setup (
name=agent_package + 'agent',
version=__version__ ,

author_email="volttronlpnnl.gov",
url="https://volttron.org/",
description="Agent development tutorial.",
author="VOLTTRON Team",
install_requires=['volttron'],
packages=packages,
entry_points={

'setuptools.installation': [

'eggsecutable = ' + agent_module + ':main',

Contents of config:

{
VOLTTRON config files are JSON with support for python style comments.
"settingl": 2, #Integers

"setting2": "some/random/topic2", #strings
"setting3": true, #Booleans: remember that in JSON true and false are not,
—capitalized.

"setting4": false,

"settingb5": 5.1, #Floating point numbers.

"setting6": [1,2,3,4], # Lists

"setting7": {"setting7a": "a", "setting7b": "b"} #Objects

3.4. Developing VOLTTRON

151

VOLTTRON Documentation, Release 6.0

3.4.2 Deployment Advice
Deployment Options

There are several ways to deploy the VOLTTRON platform in a Linux environment. It is up to the user to determine
which is right for them. The following assumes that the platform has already been bootstrapped and is ready to run.

Simple Command Line

With the VOLTTRON environment activated the platform can be started simply by running VOLTTRON on the com-
mand line.

Svolttron -vv

This will start the platform in the current terminal with very verbose logging turned on. This is most appropriate for
testing Agents or testing a deployment for problems before switching to a more long term solution. This will print all
log messages to the console in real time.

This should not be used for long term deployment. As soon as an SSH session is terminated for whatever reason the
processes attached to that session will be killed. This also will not capture log message to a file.

Running VOLTTRON as a Background Process

A simple, more long term solution, is to run volttron in the background and disown it from the current terminal.

Warning: If you plan on running VOLTTRON in the background and detaching it from the terminal with the
disown command be sure to redirect stderr and stdout to /dev/null. Even if logging to a file is used some
libraries which VOLTTRON relies on output directly to stdout and stderr. This will cause problems if those file
descriptors are not redirected to /dev/null.

Svolttron -vv -1 volttron.log > /dev/null 2>&ls

#If there are other jobs running in your terminal be sure to disown the correct one.

$jobs
[1]1+ Running something else
[2]+ Running volttron -vv -1 volttron.log > /dev/null 2>&l1 &

#Disown VOLTTRON
Sdisown %2

This will run the VOLTTRON platform in the background and turn it into a daemon. The log output will be directed
to a file called volttron. log in the current directory.

To keep the size of the log under control for more longer term deployments us the rotating log configuration file
examples/rotatinglog.py.

Svolttron -vv --log-config examples/rotatinglog.py > /dev/null 2>&l&

This will start a rotate the log file at midnight and limit the total log data to seven days worth.

The main downside to this approach is that the VOLTTRON platform will not automatically resume if the system is
restarted. It will need to be restarted manually after reboot.

152 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Setting up VOLTTRON as a System Service
Systemd

An example service file scripts/admin/volttron.service for systemd cas be used as a starting point for
setting up VOLTTRON as a service. Note that as this will redirect all the output that would be going to stdout - to
the syslog. This can be accessed using journalctl. For systems that run all the time or have a high level of debugging
turned on, we recommend checking the system’s logrotate settings.

[Unit]
Description=VOLTTRON Platform Service
After=network.target

[Service]
Type=simple

#Change this to the user that VOLTTRON will run as.
User=volttron
Group=volttron

#Uncomment and change this to specify a different VOLTTRON_HOME
#Environment="VOLTTRON_HOME=/home/volttron/.volttron"

#Change these to settings to reflect the install location of VOLTTRON
WorkingDirectory=/var/lib/volttron
ExecStart=/var/lib/volttron/env/bin/volttron -vv
ExecStop=/var/lib/volttron/env/bin/volttron-ctl shutdown --platform

[Install]
WantedBy=multi-user.target

After the file has been modified to reflect the setup of the platform you can install it with the following commands.
These need to be run as root or with sudo as appropriate.

#Copy the service file into place
cp scripts/admin/volttron.service /etc/systemd/system/

#Set the correct permissions 1f needed
chmod 644 /etc/systemd/system/volttron.service

#Notify systemd that a new service file exists (this is crucial!)
systemctl daemon-reload

#Start the service
systemctl start volttron.service

Init.d

An example init script scripts/admin/volttron can be used as a starting point for setting up VOLTTRON as
a service on init.d based systems.

Minor changes may be needed for the file to work on the target system. Specifically the USER, VLHOME, and
VOLTTRON_HOME variables may need to be changed.

3.4. Developing VOLTTRON 153

VOLTTRON Documentation, Release 6.0

#Change this to the user VOLTTRON will run as.
USER=volttron

#Change this to the install location of VOLTTRON
VLHOME=/var/lib/volttron

#Uncomment and change this to specify a different VOLTTRON_HOME
#export VOLTTRON_HOME=/home/volttron/.volttron

The script can be installed with the following commands. These need to be run as root or with sudo as appropriate.

#Copy the script into place
cp scripts/admin/volttron /etc/init.d/

#Make the file executable
chmod 755 /etc/init.d/volttron

#Change the owner to root
chown root:root /etc/init.d/volttron

#These will set it to startup automatically at boot
update-rc.d volttron defaults

#Start the service
/etc/init.d/volttron start

Platform Hardening for VOLTTRON

Rev. 011/29/2015 | Initial Document Development
Rev. 112/5/2015 | Integrate comments from extended VOLTTRON team.

Introduction

VOLTTRON is an agent-based application development platform for distributed control systems. VOLTTRON itself is
built with modern security principles in mind [security-wp] and implements many security features for hosted agents.
However, VOLTTRON is built on top of Linux and the underlying Linux platform also needs to be secured in order to
declare the resulting control system as “secure.” Any system is only as secure as its weakest link. The rest of this note
is dedicated to making recommendations for hardening of the underlying Linux platform that VOLTTRON uses. Note
that no system can be 100% secure and the cyber security strategy that is recommended in this document is based on
risk management.

Linux System Hardening

Here are the non-exhaustive recommendations for Linux hardening from the VOLTTRON team:

 Physical Security: Keep the system in locked cabinets or a locked room. Limit physical access to systems and
to the networks to which they are attached. The goal should be to avoid physical access by untrusted personnel.
This could be extended to blocking or locking USB ports, removable media drives, etc. Drive encryption
could be used to avoid access via alternate-media booting (off USB stick or DVD) if physical access can’t be
guaranteed. Downside of drive encryption would be needing to enter a passphrase to start system. Alternately,
the Trusted Platform Module (TPM) may be used, but the drive might still be accessible to those with physical

154 Chapter 3. License

VOLTTRON Documentation, Release 6.0

access. Enable chassis intrusion detection and reporting if supported. If available, use a physical tamper seal
along with or in place of an interior switch.

Low level device Security: Keep firmware of all devices (including BIOS) up-to-date. Password-protect the
BIOS. Disable unneeded/unnecessary devices including serial, parallel, USB, Firewire, etc. ports; optical drives;
wireless devices, such as Wi-Fi and Bluetooth. Leaving a USB port enabled may be helpful if a breach occurs
to allow saving forensic data to an external drive.

Boot security: Disable automounting of external devices. Restrict the boot device. Disable PXE and other
network boot options (unless that is the primary boot method). Disable booting from USB and other removable
drives. Secure the boot loader. Require an administrator password to do anything but start the default kernel. Do
not allow editing of kernel parameters. Disable, remove, or password-protect emergency/recovery boot entries.

Security Updates: First and foremost, configure the system to automatically download security updates. Most
security updates can be installed without rebooting the system, but some updated (e.g. shared libraries, kernel,
etc) require the system to be rebooted. If possible, configure the system to install the security updates automati-
cally and reboot at a particular time. We also recommend reserving the reboot time (e.g. 1:30AM on a Saturday
morning) using the Actuator Agent so that no control actions can happen during that time.

System Access only via Secured Protocols: Disallow all clear text access to VOLTTRON systems. No telnet, no
rsh, no ftp and no exceptions. Use ssh to gain console access, and scp/sftp to get files in and out of the system.
Disconnect excessively idle SSH Sessions.

Disable remote login for “root” users. Do not allow a user to directly access the system as the “root” user from
a remote network location. Root access to privileged operations can be accomplished using “sudo” This adds
an extra level of security by restricting access to privileged operations and tracking those operations through the
system log.

Manage users and usernames. Limit the number of user accounts. Use complex usernames rather than first
names.

Authentication. If possible, use two factor authentication to allow access to the system. Informally, two factor
authentication uses a combination of “something you know” and “something you have” to allow access to the
system. RSA SecurID tokens are commonly used for two factor authentication but other tools are available.
When not using two-factor authentication, use strong passwords and do not share accounts.

Scan for weak passwords. Use password cracking tools such as John the Ripper (http://www.openwall.com/
john/) or nmap with password cracking modules (http://nmap.org) to look for weak passwords.

Utilize Pluggable Authentication Modules (PAM) to strengthen passwords and the login process. We recom-
mend:

pam_abl: Automated blacklisting on repeated failed authentication attempts

pam_captcha: A visual text-based CAPTCHA challenge module for PAM

pam_passwdqc: A password strength checking module for PAM-aware password changing programs

pam_cracklib: PAM module to check the password against dictionary words

pam_pwhistory: PAM module to remember last passwords

Disable unwanted services. Most desktop and server Linux distributions come with many unnecessary services
enabled. Disable all unnecessary services. Refer to your distribution’s documentation to discover how to check
and disable these services.

Just as scanning for weak passwords is a step to more secure systems, regular network scans using Nmap
(www.nmap.org) to find what network services are being offered is another step towards a more secure system.
Note, use nmap or similar tools very carefully on BACnet and modbus environments. These scanning tools are
known to crash/reset BACnet and modbus devices.

3.4.

Developing VOLTTRON 155

http://www.openwall.com/john/
http://www.openwall.com/john/
http://nmap.org

VOLTTRON Documentation, Release 6.0

 Control incoming and outgoing network traffic. Use the built-in host-based firewall to control who/what can

connect to this system. Many iptables frontends offer a set of predefined rules that provide a default deny policy
for incoming connections and provide rules to prevent or limit other well known attacks (i.e. rules that limit
certain responses that might amplify a DDoS attack). ufw (uncomplicated firewall) is a good example. For ex-
ample, if the system administrators for the VOLTTRON device are all located in 10.10.10.0/24 subnetwork, then
allow SSH and SCP logins from only that IP address range. If VOLTTRON system exports data to a historian at
10.20.20.1 using TCP port 443, allow outgoing traffic to that port on that server. The idea here is to limit the at-
tack surface of the system. The smaller the surface, the better we can analyze the communication patterns of the
system and detect anomalies. One word of caution. While some system administrators disable network-based
diagnostic tools such as ICMP ECHO responses, VOLTTRON team believes that this hampers usability. As an
example, monitoring which incoming and outgoing firewall rules are triggering can be accomplished with this
command: watch —--interval=5 'iptables -nvL | grep -v "0 0"'.

Rate limit incoming connections to discourage brute force hacking attempts. Use a tool such as fail2ban
(http://www.fail2ban.org/wiki/index.php/Main_Page) to dynamically manage firewall rules to rate limit incom-
ing connections and discourage brute force hacking attempts. sshguard (http://www.sshguard.net/) is similar to
fail2ban but only used for ssh connections. Further rate limiting can be accomplished at the firewall level. As an
example, you can restrict the number of connections used by a single IP address to your server using iptables.
Only allow 4 ssh connections per client system: iptables —-A INPUT -p tcp —-syn —-dport
22 -m connlimit —--connlimit-above 4 -3j DROP You can limit the number of connections
per minute. The following example will drop incoming connections if an IP address makes more than 10
connection attempts to port 22 within 60 seconds: iptables -A INPUT -p tcp -dport 22 -i
eth0 -m state —-—-state NEW -m recent --set iptables -A INPUT -p tcp -dport
22 —-i ethO0 -m state —--state NEW -m recent —--update —--seconds 60 —--hitcount
10 —3j DROP

Use a file system integrity tool to monitor for unexpected file changes. Tools such as tripwire (http://sourceforge.
net/projects/tripwire/) to monitor filesystem for changed files. Another file integrity checking tool to consider is
AIDE (Advanced Intrusion Detect Environment) (http://aide.sourceforge.net/).

Use filesystem scanning tools periodically to check for exploits. Available tools such as checkrootkit (http:
/lwww.chkrootkit.org), rkhunter (http://rkhunter.sourceforge.net) and others should be used to check for known
exploits on a periodic basis and report their results.

VOLTTRON does not use apache or require it. If Apache is being used, e recommend using mod_security and
mod_evasive modules.

System Monitoring

* Monitor system state and resources. Use a monitoring tool such as Xymon (http://xymon.sourceforge.net) or

big brother (http://www.bb4.org/features.html) to remotely monitor the system resources and state. Set the
monitoring tools to alert the system administrators if anomalous use of resources (e.g. connections, memory,
etc) are detected. An administrator can also use unix commands such as netstat to look for open connections
periodically.

Watch system logs and get logs off the system. Use a utility such as logwatch (http://sourceforge.net/projects/
logwatch/files/) or logcheck (http://logcheck.org) to get daily summary of system activity via email. For Linux
distributions that use systemd, use journalwatch (http://git.the-compiler.org/journalwatch/) to accomplish the
same task. Additionally, use a remote syslog server to collect logs from all VOLTTRON systems in the field
at a centralized location for analysis. A tool such as splunk is ideal for this task and comes with many built-in
analysis applications. Another benefit of sending logs remotely off the platform is the ability to inspect the logs
even when the platform may be compromised.

* An active intrusion sensor such as PSAD (http://cipherdyne.org/psad/) can be used to look for intrusions as well.

156

Chapter 3. License

http://www.fail2ban.org/wiki/index.php/Main_Page
http://www.sshguard.net/
http://sourceforge.net/projects/tripwire/
http://sourceforge.net/projects/tripwire/
http://aide.sourceforge.net/
http://www.chkrootkit.org
http://www.chkrootkit.org
http://rkhunter.sourceforge.net
http://xymon.sourceforge.net
http://www.bb4.org/features.html
http://sourceforge.net/projects/logwatch/files/
http://sourceforge.net/projects/logwatch/files/
http://logcheck.org
http://git.the-compiler.org/journalwatch/
http://cipherdyne.org/psad/

VOLTTRON Documentation, Release 6.0

Security Testing

Every security control discussed in the previous sections must be tested to determine correct operation and impact.
For example, if we inserted a firewall rule to ban connections from an IP address such as 10.10.10.2, then we need to
test that the connections actually fail.

In addition to functional correctness testing, common security testing tools such as Nessus (http://www.tenable.com/
products/nessus) and nmap (http://nmap.org) should be used to perform cyber security testing.

Conclusion

No system is 100% secure unless it is disconnected from the network and is in a physically secure location. VOLT-
TRON team recommends a risk-based cyber security approach that considers each risk, and the impact of an exploit.
Mitigating technologies can then be used to mitigate the most impactful risks first. VOLTTRON is built with security
in mind from the ground up. But it is only as secure as the operating system that it runs on top of. This document is
intended to help VOLTTRON users to secure the underlying Linux operating system to further improve the robustness
of the VOLTTRON platform. Any security questions should be directed to volttron @pnnl.gov.

Platform External Address Configuration

In the configuration file located in $VOLTTRON_HOME/config add vip-address=tcp://ip:port for each address you
want to listen on

Example

vip-address=tcp://127.0.0.102:8182
vip-address=tcp://127.0.0.103:8083
vip-address=tcp://127.0.0.103:8183

Note: The config file is generated after running the vcfg command. The vip-address is for the local platform, NOT
the remote platform.

3.4.3 Walkthroughs

How to authenticate an agent to communicate with VOLTTRON platform:

An administrator can allow an agent to communicate with VOLTTRON platform by creating an authentication record
for that agent. An authentication record is created by using volttron-ctl auth add command and entering
values to asked arguments.

volttron-ctl auth add

domain []:

address []:

user_id []:

capabilities (delimit multiple entries with comma) []:
roles (delimit multiple entries with comma) []:

groups (delimit multiple entries with comma) []:
mechanism [CURVE]:

credentials []:

comments []:

enabled [True]:

3.4. Developing VOLTTRON 157

http://www.tenable.com/products/nessus
http://www.tenable.com/products/nessus
http://nmap.org
mailto:volttron@pnnl.gov

VOLTTRON Documentation, Release 6.0

The listed fields can also be specified on the command line:

volttron-ctl auth add --user_id bob —--credentials ABCD...

If any field is specified on the command line, then the interactive menu will not be used.

The simplest way of creating an authentication record is by entering the user_id and credential values. User_id is a
arbitrary string for VOLTTRON to identify the agent. Credential is the encoded public key string for the agent. Create
a public/private key pair for the agent and enter encoded public key for credential parameter.

volttron-ctl auth add

domain []:

address []:

user_id []: my-test-agent

capabilities (delimit multiple entries with comma) []:
roles (delimit multiple entries with comma) []:

groups (delimit multiple entries with comma) []:
mechanism [CURVE]:

credentials []: encoded-public-key-for-my-test-agent
comments []:

enabled [True]:

In next sections, we will discuss each parameter, its purpose and what all values it can take.

Domain:

Domain is the name assigned to locally bound address. Domain parameter is currently not being used in VOLTTRON
and is placeholder for future implementation.

Address:

By specifying address, administrator can allow an agent to connect with VOLTTRON only if that agent is running on
that address. Address parameter can take a string representing an IP addresses. It can also take a regular expression
representing a range of IP addresses.

address []: 192.168.111.1
address []: /192.168.%/
User_id:

User_id can be any arbitrary string that is used to identify the agent by the platform. If a regular expression is used
for address or credential to combine agents in an authentication record then all those agents will be identified by this
user_id. It is primarily used for identifying agents during logging.

Capabilities:

Capability is an arbitrary string used by an agent to describe its exported RPC method. It is used to limit the access to
that RPC method to only those agents who have that capailbity listed in their authentication record.

If administrator wants to authorize an agent to access an exported RPC method with capability of another agent, he/she
can list that capability string in this parameter. Capability parameter takes an string or an array of strings listing all the

158 Chapter 3. License

VOLTTRON Documentation, Release 6.0

capabilities this agent is authorized to access. Listing capabilities here will allow this agent to access corresponding
exported RPC methods of other agents.

For example, if there is an AgentA with capability enables exported RPC method and AgentB needs to access that
method then AgentA’s code and AgentB’s authentication record would be as follow:

AgentA’s capability enabled exported RPC method:

@RPC.export
@RPC.allow('can_call_bar'")
def bar(self):
return 'If you can see this, then you have the required capabilities'

AgentB’s authentication record to access bar method:

volttron-ctl auth add

domain []:

address []:

user_id []: agent-Db

capabilities (delimit multiple entries with comma) []: can_call_bar

roles (delimit multiple entries with comma) []:
groups (delimit multiple entries with comma) []:
mechanism [NULL]: CURVE

credentials []: encoded-public-key-for-agent-b
comments []:

enabled [True]:

Similarly, capability parameter can take an array of string:

capabilities (delimit multiple entries with comma) []: can_call_bar

capabilities (delimit multiple entries with comma) []: can_call_methodl, can_call__
—method?2

Roles:

A role is a name for a set of capabilities. Roles can be used to grant an agent multiple capabilities without listing each
capability in the in the agent’s authorization entry. Capabilities can be fully utilized without roles. Roles are purely
for organizing sets of capabilities.

Roles can be viewed and edited with the following commands:
e volttron-ctl auth add-role
* volttron-ctl auth list-roles
* volttron-ctl auth remove-role
e volttron-ctl auth updated-role

For example, suppose agents protect certain methods with the following capabilites: READ_BUILDING_A_TEMP,
SET_BUILDING_A_TEMP, READ_BUILDLING_B_TEMP, and SET_BUILDING_B_TEMP.

These capabilities can be organized into various roles:

volttron-ctl auth add-role TEMP_READER READ_BUILDING_A_TEMP READ_BUILDLING_B_TEMP
volttron-ctl auth add-role BUILDING_A_ADMIN READ_BUILDING_A_ TEMP SET_BUILDING_A_TEMP
volttron-ctl auth add-role BUILDING_B_ADMIN READ_BUILDING_B_TEMP SET_BUILDING_B_TEMP

To view these roles run volttron—-ctl auth list-roles:

3.4. Developing VOLTTRON 159

VOLTTRON Documentation, Release 6.0

ROLE CAPABILITIES

BUILDING_A_ADMIN ['READ_BUILDING_A_ TEMP', 'SET_BUILDING_A TEMP']
BUILDING_B_ADMIN ['READ_BUILDING_B_TEMP', 'SET_BUILDING_B_TEMP']
TEMP_READER ['READ_BUILDING_A TEMP', 'READ BUILDLING B TEMP']

With this configuration, adding the BUILDING_A_ ADMIN role to an agent’s authorization entry implicitly grants that
agent the READ_BUILDING_A_TEMP and SET_BUILDING_A_TEMP capabilities.

To add a new capabilities to an existing role:

’volttronfctl auth update-role BUILDING_A_ADMIN CLEAR_ALARM TRIGGER_ALARM

To remove a capability from a role:

’volttronfctl auth update-role BUILDING_A_ADMIN TRIGGER_ALARM —-remove

Groups:

Groups provide one more layer of grouping. A group is a named set of roles. Like roles, groups are optional and are
meant to help with organization.

Groups can be viewed and edited with the following commands:
* volttron-ctl auth add-group
e volttron-ctl auth list-groups
e volttron-ctl auth remove-group
* volttron-ctl auth updated-group

These commands behave the same as the role commands. For example, to further organize the capabilities in the
previous section, one could create create an ALL_BUILDING_ADMIN group:

volttron—-ctl auth add-group ALL_BUILDING_ADMIN BUILDING_A_ADMIN BUILDING_B_ADMIN

With this configuration, agents in the ALIL_BUILDING_ADMIN group would implicity have the
BUILDING_A_ADMIN and BUILDING_B_ADMIN roles. This means such agents would implicity be granted the
following capabilities: READ_BUILDING_A_TEMP, SET_BUILDING_A_TEMP, READ_BUILDLING_B_TEMP,
and SET_BUILDING_B_TEMP.

Mechanism:

Mechanism is the authentication method by which the agent will communicate with VOLTTRON platform. Currently
VOLTTRON uses only CURVE mechanism to authenticate agents.

Credentials:

The credentials field must be an CURVE encoded public key (see volttron.platform.vip.socket.encode_key for method
to encode public key).

credentials []: encoded-public-key-for-agent

160 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Comments:

Comments is arbitrary string to associate with authentication record

Enabled:

TRUE of FALSE value to enable or disable the authentication record. Record will only be used if this value is True

Deployment Walkthrough

This page is meant as an overview of setting up a VOLTTRON deployment which consists of one or more platforms
collecting data and being managed by another platform running the VOLTTRON Central agent. High level instructions
are included but for more details on each step, please follow links to that section of the wiki.

Assumptions:

» “Data Collector” is the box that has the drivers and is collecting data it needs to forward.

¢ “Volttron Central/VC” is the box that has the historian which will save data to the database.

¢ VOLTTRON_HOME is assumed to the default on both boxes which is: /home/<user>/.volttron
Notes/Tips:

* Aside from installing the required packages with apt-get, sudo is not required and should not be used. VOLT-
TRON is designed to be run as a non-root user and running with sudo is not supported.

* The convenience scripts have been developed to simplify many of the repetitive multi-step processes. For
instance, scripts/core/make—listener can be modified for any agent and make it one command to
stop, remove, build, install, configure, tag, start, and (optionally) enable an agent for autostart.

¢ These instructions assume default directories are used (for instance, /home/<user>/volttron for the
project directory and /home/<user>/.volttron for the VOLTTRON Home directory.

* Creating a separate config directory for agent configuration files used in the deployment can prevent them
from being committed back to the repository.

* Double check firewall rules/policies when setting up a multi-node deployment to ensure that platforms can
communicate

On all machines:

On all machines in the deployment, setup the platform, setup encryption, authentication, and authorization. Also, build
the basic agents for the deployment. All platforms will need a PlatformAgent and a Historian. Using scripts will help
simplify this project.

Install required packages

e sudo apt-get install build-essential python-dev openssl libssl-dev
libevent-dev git

Build the project

* Clone the repository and build using python bootstrap.py

3.4. Developing VOLTTRON 161

VOLTTRON Documentation, Release 6.0

Configuring Platform

On VC:

e Run volttron-cfg

* Setup as VOLTTRON Central.

* Set appropriate ip, port, etc for this machine

* Pick to install a platform historian (defaults to sqlite)

« Start up the platform and find the line with the server public key “cat volttron.loglgrep “public key”:
2016-05-19 08:42:58,062 () volttron.platform.main INFO: public key: <KEY>

On the data collector:
Setup drivers

For a simple case, follow instructions to install a Fake Driver for testing purposes. For an actual deployment against
real devices see the following:

 Create a Master Driver Agent to coordinate drivers for the devices controlled by this platform.
» For MODBUS devices, create config files and point configuration files.
* For BACnet devices, create a Proxy Agent for BACnet drivers to communicate through

Now that data is being published to the bus, a Forward Historian can be configured to send this data to
the VC instance for storage.

 Use: volttron-ctl keypair to generate a keypair
* cat VOLTTRON_HOME/keypair to get the public and secret keys
 Create a config directory in the main project directory
* Setup a Forward Historian
— cp services/core/ForwardHistorian/config config/forwarder.config
— Edit forwarder.config using the VC’s VIP address, the public server key, and the keypair
-“destination-vip”: “tcp://<VC_IP>:<VC_PORT>7serverkey=<server_key>&secretkey=<secret_key>&publickey=<public_
— For ease of use, you can create a script to install the historian:
— cp scripts/core/make-listener ./make-forwarder, then edit to look like:

make-forwarder:: export SOURCE=services/core/ForwardHistorian export CONFIG=config/forwarder.config ex-
port TAG=forward

Jscripts/core/make-agent.sh enable
» Execute that script and the forward historian should be installed
To check that things are working: Start a listener agent on VC, you should see data from the data collector appear

In the log for VC, check for credentials success for the ip of data collector.

162 Chapter 3. License

tcp:/

VOLTTRON Documentation, Release 6.0

Registering the collection platform

¢ In a browser, go to the url for your VC instance.
* Click on Register Platforms
* Enter a name for the collection platform and the ip configured http://<ip>:<discovery port>

* Open the tree upper left of the UI and find your platform.

Troubleshooting:

* Check firewall rules registering VC on VC: ipc://@/home/volttron/.volttron/run/vip.socket Change password by
putting pw hash in config file Add remote ip address to config file

MatLab Integration

Overview:

Matlab-VOLTTRON integration allows Matlab applications to receive data from devices and send control commands
to change points on those devices.

DrivenMatlabAgent in VOLTTRON allows this interaction by using ZeroMQ sockets to communicate with the Matlab
application.

Data Flow Architecture:

DrivenAgent

Data Readings MATLAB

Controller

MATLAB
Interface

Control Actions

VOLTTRON Message Bus

Actual Simulated
Device Device

Installation steps for system running Matlab:

1. Install python. Suggested 3.4. Other supported versions are 2.7, 3.3.
2. Install pyzmgq (tested with version 15.2.0) Follow steps at: https://github.com/zeromq/pyzmq

3.4. Developing VOLTTRON 163

http:/
mailto://@/home/volttron/.volttron/run/vip.socket
https://github.com/zeromq/pyzmq

VOLTTRON Documentation, Release 6.0

3. Install Matlab (tested with R2015b)
4. Start Matlab and set the python path. In the Matlab command window set the python path with pyversion:

’>> pyversion python.exe

5. To test that the python path has been set correctly type following in the Matlab command window. Matlab shoud
print the python path with version information.

’>> pyversion

6. To test that the pyzmgq library is installed correctly and is accessible from python inside Matlab, type the follow-
ing in Matlab command window and it should show pyzmgq version installed.

>> py.zmg.pyzmg_version ()

7. Copy example.m from volttron/examples/ExampleMatlabApplication/matlab to your desired folder.

Run and test Matlab VOLTTRON Integration:
Assumptions

* Device driver agent is already developed

Installation:

1. Install VOLTTRON on a VM or different system than the one running Matlab.
Follow link: http://volttron.readthedocs.io/en/develop/install.html

2. Add subtree volttron-applications under volttron/applications by using the following command:

git subtree add --prefix applications https://github.com/VOLTTRON/volttron—
—applications.git develop —--squash

Configuration

1. Copy example configuration file applications/pnnl/DrivenMatlabAgent/config_waterheater to volltron/config.

2. Change config_url and data_url in the new config file to the ipaddress of machine running Matlab. Keep the
same port numbers.

3. Change campus, building and unit (device) name in the config file.

4. Open example.m and change following line:

matlab_result = '{"commands":{"Zonel":[["temperature",27]],"Zone2":[["temperature",
—28]11}1";

Change it to include correct device name and point names in the format:

'{"commands":{"devicel":[["pointl",valuel]], "device2":[["point2",value2]]}}"';

164 Chapter 3. License

http://volttron.readthedocs.io/en/develop/install.html

VOLTTRON Documentation, Release 6.0

Steps to test integration:

1. Start VOLTTRON
Run Actuator
Run device driver agent

Run DrivenMatlabAgent with the new config file

A

Run example.m in Matlab

Now whenever the device driver publishes the state of devices listed in the config file of DrivenMatlabAgent, Driven-
MatlabAgent will send it to Matlab application and receive commands to send to devices.

Resources

http://www.mathworks.com/help/matlab/getting-started_buik_wp-3.html

Forward Historian Deployment
This guide describes a simple setup where one Volttron instance collects data from a fake devices and sends to another
instance . Lets consider the following example.

We are going to create two VOLTTRON instances and send data from one VOLTTRON instance running a fake
driver(subscribing values from a fake device)and sending the values to the second VOLTTRON instance.

VOLTTRON instance 1 forwards data to VOLTTRON instance 2
VOLTTRON instance 1

* Vctl shutdown —platform (if the platform is already working)

* Volttron-cfg (this helps in configuring the volttron instance http://volttron.readthedocs.io/en/releases-4.1/core_
services/control/VOLTTRON-Config.html

— Specify the IP of the machine : tcp://130.20.%.%:22916”
— Specify the port you want to use

— Specify if you want to run VC(Volttron Central) here or this this instance would be controlled by a VC and
the IP and port of the VC

% Then install agents like Master driver Agent with fake driver agent for the instance.
+ Install a listener agent so see the topics that are coming from the diver agent
Then run the volttron instance by : volttron —vv -1 volttron.log&

* Volttron authentication : We need to add the IP of the instance 2 in the auth.config file of the VOLTTRON agent.
This is done as follow :

— Vctl auth-add

— We specify the IP of the instance 2 and the credentials of the agent (http://volttron.readthedocs.io/en/
releases-4.1/devguides/walkthroughs/Agent- Authentication- Walkthrough.html?highlight=auth-add)

— For specifying authentication for all the agents , we specify /.*/ for credentials as shown in http://volttron.
readthedocs.io/en/releases-4.1/devguides/agent_development/index.html

3.4. Developing VOLTTRON 165

http://www.mathworks.com/help/matlab/getting-started_buik_wp-3.html
http://volttron.readthedocs.io/en/releases-4.1/core_services/control/VOLTTRON-Config.html
http://volttron.readthedocs.io/en/releases-4.1/core_services/control/VOLTTRON-Config.html
tcp://130.20.*.*:22916
http://volttron.readthedocs.io/en/releases-4.1/devguides/walkthroughs/Agent-Authentication-Walkthrough.html?highlight=auth-add
http://volttron.readthedocs.io/en/releases-4.1/devguides/walkthroughs/Agent-Authentication-Walkthrough.html?highlight=auth-add
http://volttron.readthedocs.io/en/releases-4.1/devguides/agent_development/index.html
http://volttron.readthedocs.io/en/releases-4.1/devguides/agent_development/index.html

VOLTTRON Documentation, Release 6.0

— This should enable authentication for all the volttron-instance based on the IP you specify here

For this documentation, the topics from the driver agent will be send to the instance 2

* We use the existing agent called the Forward Historian for this purpose which is available in service/core in the
VOLTTRON directory.

* In the config file under the ForwardHistorian directory , we modify the following field : - Destination-vip : the
IP of the volttron instance to which we have to forward the data to along with the port number .

Example : “tcp://130.20.%.%:22916”

— Destination-serverkye: The server key of the VOLTTRON instance to which we need to forward the data
to.

This can be obtained at the VOLTTRON instance by typing vctl auth serverkey
* Serveice_topic_list: specify the topics you want to forward specifically instead of all the values.
* Once the above values are set, your forwarder is all set .

* You can create a script file for the same and execute the agent.

VOLTTRON instance 2

* Vctl shutdown —platform (if the platform is already working)

¢ Volttron-cfg (this helps in configuring the volttron instance) http://volttron.readthedocs.io/en/releases-4.1/core_
services/control/VOLTTRON-Config.html - Specify the IP of the machine : tcp://130.20.%.%:22916 - Specify the
port you want to use. - Install the listener agent (this will show the connection from instance 1 if its successful

and then show all the topics from instance 1.

* Volttron authentication : We need to add the IP of the instance 1 in the auth.config file of the VOLTTRON agent
.This is done as follow : - Vctl auth-add - We specify the IP of the instance 1 and the credentials of the agent

http://volttron.readthedocs.io/en/releases-4.1/devguides/walkthroughs/
Agent- Authentication- Walkthrough.html?highlight=auth-add

— For specifying authentication for all the agents , we specify /.*/ for credentials as shown in http://volttron.
readthedocs.io/en/releases-4.1/devguides/agent_development/index.html

— This should enable authentication for all the volttron-instance based on the IP you specify here

Listener Agent

* Run the listener agent on this instance to see the values being forwarded from instance 1.

Once the above setup is done, you should be able to see the values from instance 1 on the listener agent of instance 2.

Forward Historian Walkthrough
This guide describes a simple setup where one VOLTTRON instance collects data from a fake devices and sends to
another instance . Lets consider the following example.

We are going to create two VOLTTRON instances and send data from one VOLTTRON instance running a fake
driver(subscribing values from a fake device)and sending the values to the second VOLTTRON instance.

166 Chapter 3. License

tcp://130.20.*.*:22916
http://volttron.readthedocs.io/en/releases-4.1/core_services/control/VOLTTRON-Config.html
http://volttron.readthedocs.io/en/releases-4.1/core_services/control/VOLTTRON-Config.html
tcp://130.20.*.*:22916
http://volttron.readthedocs.io/en/releases-4.1/devguides/walkthroughs/Agent-Authentication-Walkthrough.html?highlight=auth-add
http://volttron.readthedocs.io/en/releases-4.1/devguides/walkthroughs/Agent-Authentication-Walkthrough.html?highlight=auth-add
http://volttron.readthedocs.io/en/releases-4.1/devguides/agent_development/index.html
http://volttron.readthedocs.io/en/releases-4.1/devguides/agent_development/index.html

VOLTTRON Documentation, Release 6.0

VOLTTRON instance 1 forwards data to VOLTTRON instance 2
VOLTTRON INSTANCE 1

e volttron-ctl shutdown —--platform (If VOLTTRON is already running it must be shut down before
running volttron-cfg).

e volttron—-cfg - this helps in configuring the VOLTTRON instance(VOLTTRON Config).
— Specify the IP of the machine : tcp://127.0.0.1:22916.
— Specify the port you want to use.

— Specify if you want to run VC (VOLTTRON Central) here or this this instance would be controlled by a
VC and the IP and port of the VC.

* Then start the VOLTTRON instance by : volttron -vv & > volttron.logé.
* Then install agents like Master driver Agent with fake driver agent for the instance.
* Install a listener agent so see the topics that are coming from the diver agent.

* VOLTTRON authentication : We need to add the IP of the instance 1 in the auth.config file of the VOLTTRON
agent .This is done as follow :

— volttron—-ctl auth-add

We specify the IP of the instance 1 and the credentials of the agent.(Agent authentication walkthrough)

For specifying authentication for all the agents , we specify /. «/ for credentials as shown in Agent
Development.

This should enable authentication for all the VOLTTRON instances based on the IP you specify here .

For this documentation, the topics from the driver agent will be sent to the instance 2

* We use the existing agent called the Forward Historian for this purpose which is available in service/core
in the VOLTTRON directory.

¢ In the config file under the ForwardHistorian directory , we modify the following field:

— destination-vip : the IP of the VOLTTRON instance to which we have to forward the data to along with
the port number . Example : tcp://130.20.x.%:22916.

— destination-serverkey: The server key of the VOLTTRON instance to which we need to forward the data
to. This can be obtained at the VOLTTRON instance by typing volttron—-ctl auth serverkey.

— service_topic_list: specify the topics you want to forward specifically instead of all the values.
* Once the above values are set, your forwarder is all set .

* You can create a script file for the same and execute the agent.

VOLTTRON INSTANCE 2

e volttron-ctl shutdown —-platform (If VOLTTRON is already running it must be shut down before
running volttron-cfg).

e volttron-cfg - this helps in configuring the VOLTTRON instance.(VOLTTRON Config) - Specify the IP of
the machine : tcp://127.0.0.1:22916. - Specify the port you want to use. - Install the listener agent
(this will show the connection from instance 1 if its successful and then show all the topics from instance 1.

3.4. Developing VOLTTRON 167

VOLTTRON Documentation, Release 6.0

* Then start the VOLTTRON instance by : volttron -vv & > volttron.logs.

* VOLTTRON authentication : We need to add the IP of the instance 1 in the auth.config file of the VOLTTRON
agent .This is done as follow :

— volttron—-ctl auth-add

We specify the IP of the instance 1 and the credentials of the agent.(Agent authentication walkthrough)

For specifying authentication for all the agents , we specify /. «/ for credentials as shown in Agent
Development.

This should enable authentication for all the VOLTTRON instances based on the IP you specify here .
LISTENER AGENT
* Run the listener agent on this instance to see the values being forwarded from instance 1.

Once the above setup is done, you should be able to see the values from instance 1 on the listener agent of instance 2.

Multi-Platform Connection Walkthrough

Multi-Platform message bus communication alleviates the need for an agent in one platform to connect to another
platform directly in order for it to send/receive messages from the other platform. With multi-platform communication,
connections to external platforms will be maintained by the platforms itself and agents do not have the burden to
manage the connections directly. This guide will show how to connect three VOLTTRON instances with a fake driver
running on VOLTTRON instance 1 publishing to topic with prefix="devices” and listener agents running on other 2
VOLTTRON instances subscribed to topic “devices”.

* Getting Started

* Multi-Platform Configuration

» Configuration and Authentication in Setup Mode

o Setup Configuration and Authentication Manually

e Start Master driver on VOLTTRON instance 1

o Start Listener agents on VOLTTRON instance 2 and 3

* Stopping All the Platforms

Getting Started

Modify the subscribe annotate method parameters in the listener agent (examples/ListenerAgent/listener/agent.py in
the VOLTTRON root directory) to include all_platforms=True parameter to receive messages from external
platforms.

’ @PubSub. subscribe ('pubsub', ''")

to

’ @PubSub.subscribe ('pubsub', 'devices', all_platforms=True)

or add below line in the onstart method

’ self.vip.pubsub.subscribe ('pubsub', 'devices', self.on_match, all_platforms=True)

168 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Note: If using the onstart method remove the @PubSub.subscribe(‘pubsub’, *’) from the top of the method.

After building VOLTTRON, open three shells with the current directory the root of the VOLTTRON repository. Then
activate the VOLTTRON environment and export the VOLTTRON_HOME variable. The home variable needs to be
different for each instance.

$ source env/bin/activate
$ export =~/.volttronl

Run volttron-cfg in all the three shells. This command will ask how the instance should be set up. Many of the options
have defaults and that will be sufficient. Enter a different VIP address for each platform. Configure fake master driver
in the first shell and listener agent in second and third shell.

B /bin/bash 92x52

on)volttron@volttron-VirtualBox ~/g
volttrongvolttron-Vir

Multi-Platform Configuration

For each instance, specify the instance name in platform config file under it’s VOLTTRON_HOME directory. If the
platform supports web server, add the bind-web-address as well.

Here is an example,

Path of the config: $VOLTTRON_HOME/config

[volttron]
vip-address = tcp://127.0.0.1:22916
instance-name = "platforml"

bind-web-address = http://127.0.0.1:8080

Instance name and bind web address entries added into each VOLTTRON platform’s config file is shown below.

B /bin/bash 83x52
tt ttron-VirtualBox

volttron@volttron-VirtualBox

3.4. Developing VOLTTRON 169

../../_images/multiplatform-terminator-setup.png
../../_images/multiplatform-config.png

VOLTTRON Documentation, Release 6.0

Next, each instance needs to know the VIP address, platform name and server keys of the remote platforms that it is
connecting to. In addition, each platform has to authenticate or accept the connecting instances’ public keys. We can
do this step either by running VOLTTRON in setup mode or configure the information manually.

Configuration and Authentication in Setup Mode

Note: It is necessary for each platform to have a web server if running in setup mode

Add list of web addresses of remote platforms in SVOLTTRON_HOME /external_address. json

B /bin/bash 83x52
tt VirtualBox

ttron)volttron@uolttron-Vir

Start VOLTTRON instances in setup mode in the three terminal windows. The “-1”” option in the following command
tells VOLTTRON to log to a file. The file name should be different for each instance.

$ volttron -v -1 11.log —-setup-mode&

Note: Don’t for get the ‘&’ on the end to put the process in the background.

A new auth entry is added for each new platform connection. This can be checked with below command in each
terminal window.

$ volttron-ctl auth list

/on/pasn - x
B /bin/bash 83x52
volttron@volttron-VirtualBox

volttron@volttron-VirtualBox

After all the connections are authenticated, we can start the instances in normal mode.

$ volttron-ctl shutdown —--platform
$ volttron -v -1 1l1.logé

170 Chapter 3. License

../../_images/multiplatform-external-address.png
../../_images/multiplatform-setupmode-auth-screen.png

VOLTTRON Documentation, Release 6.0

Setup Configuration and Authentication Manually

If you do not need web servers in your setup, then you will need to build the platform discovery config file manually.
The config file should contain an entry containing VIP address, instance name and serverkey of each remote platform
connection.

Name of the file: external_platform_discovery.json
Directory path: Each platform’s VOLTTRON_HOME directory.

For example, since VOLTTRON instance 1 is connecting to VOLTTRON instance 2 and 3, contents of
external_platform_discovery. json will be

{

"platform2": {"vip-address":"tcp://127.0.0.2:22916",
"instance—name":"platform2",
"serverkey":"YFyIgXy2H7gIKClx6uPMdDOB_1i91zfAPBlIgbxfXLGc"},

"platform3": {"vip-address":"tcp://127.0.0.3:22916",
"instance—name":"platform3",
"serverkey":"hzU2bnlacAhZSaI0rI8a6XK _bgLSpAO0JRK4jg8ttZxw"}

We can obtain the serverkey of each platform using below command in each terminal window:

$ volttron-ctl auth serverkey

Contents of external_platform_discovery. json of VOLTTRON instance 1, 2, 3 is shown below.

After this, you will need to add the server keys of the connecting platforms using the volttron—-ct1 utility. Type
volttron-ctl auth add command on the command prompt and simply hit Enter to select defaults on all fields except
credentials. Here, we can either add serverkey of connecting platform or type /. */ to allow ALL connections.

Warning: /.*/ allows ALL agent and platform connections without authentication.

$ volttron-ctl auth add

domain []:

address []:

user_id []:

capabilities (delimit multiple entries with comma) []:
roles (delimit multiple entries with comma) []:

groups (delimit multiple entries with comma) []:

(continues on next page)

3.4. Developing VOLTTRON 171

../../_images/multiplatform-discovery-config.png

VOLTTRON Documentation, Release 6.0

(continued from previous page)

mechanism [CURVE]:

credentials []: /.*/

comments []:

enabled [True]:

added entry domain=None, address=None, mechanism='CURVE', credentials=u'/.x/', user_
—id=None

For more information on authentication see authentication.

Once the initial configuration are setup, you can start all the VOLTTRON instances in normal mode.

$ volttron -v -1 11.logé&

Next step is to start agents in each platform to observe the multi-platform PubSub communication behavior.

Start Master driver on VOLTTRON instance 1

If master driver is not configured to auto start when the instance starts up, we can start it explicitly with this command.

$ volttron-ctl start --tag master_driver

Start Listener agents on VOLTTRON instance 2 and 3

If the listener agent is not configured to auto start when the instance starts up, we can start it explicitly with this
command.

$ volttron-ctl start —--tag listener

We should start seeing messages with prefix="devices” in the logs of VOLTTRON instances 2 and 3.

/bin/bash -+ x

B =] /bin/bash 64x25 =] /bin/bash 84x25
tt V. tt Box

/bin/bash 83x25
Box

slttron-VirtualBox

B /bin/bash 83x25 = /bin/bash 64x25 [=2] /bin/bash 84x25

172 Chapter 3. License

../../_images/multiplatform-pubsub.png

VOLTTRON Documentation, Release 6.0

Stopping All the Platforms

We can stop all the VOLTTRON instances by executing below command in each terminal window.

$ volttron-ctl shutdown —--platform

Simple Web Agent Walkthrough

A simple web enabled agent that will hook up with a volttron message bus and allow interaction between it via
http. This example agent shows a simple file serving agent, a json-rpc based call, and a websocket based connection
mechanism.

Starting VOLTTRON Platform

Note: Activate the environment first active the environment

In order to start the simple web agent, we need to bind the VOLTTRON instance to the a web server. We need to
specify the address and the port for the web server. For example, if we want to bind the localhost:8080 as the web
server we start the VOLTTRON platform as follows:

volttron -vv -1 volttron.log —--bind-web-address http://127.0.0.1:8080 &

Once the platform is started, we are ready to run the Simple Web Agent.

Running Simple Web Agent

Note: The following assumes the shell is located at the VOLTTRON_ROOT.

Copy the following into your shell (save it to a file for executing it again later).

python scripts/install-agent.py \
——agent-source examples/SimpleWebAgent \
-—tag simpleWebAgent \
—-vip-identity webagent \
——force \
—-—start

This will create a web server on http://localhost:8080. The index.html file under simpleweb/webroot/
simpleweb/ can be any html page which binds to the VOLTTRON message bus .This provides a simple example
of providing a web endpoint in VOLTTRON.

Path based registration examples

* Files will need to be in webroot/simpleweb in order for them to be browsed
from http://localhost:8080/simpleweb/index.html

* Filename is required as we don’t currently autoredirect to any default pages

3.4. Developing VOLTTRON 173

http://localhost:8080
http://localhost:8080/simpleweb/index.html

VOLTTRON Documentation, Release 6.0

as shownin self.vip.web.register_path("/simpleweb", os.path.join (WEBROOT))

The following two examples show the way to call either a jsonrpc (default) endpoint and one that returns a different
content-type. With the JSON-RPC example from volttron central we only allow post requests, however this is not
required.

* Endpoint will be available at http://localhost:8080/simple/text self.vip.web.register_endpoint ("/
simple/text", self.text)

* Endpoint will be available at http://localhost:8080/simple/jsonrpc self.vip.web.
register_endpoint ("/simpleweb/jsonrpc", self.rpcendpoint)

» Text/html content type specified so the browser can act appropriately like [("Content-Type", "text/
html")]

* The default response is application/json so our endpoint returns appropriately with a json based response.

Single Machine Deployment

The purpose of this demonstration is to show the process of setting up a simple VOLTTRON instance for use on a
single machine.

Install and Build VOLTTRON

First, install and build VOLTTRON:

For a quick reference:

sudo apt-get update

sudo apt-get install build-essential python-dev openssl libssl-dev libevent-dev git
git clone https://github.com/VOLTTRON/volttron/

cd volttron

python2.7 bootstrap.py

Activating the VOLTTRON Environment

After the build is complete, activate the VOLTTRON environment.

source env/bin/activate

Configuring VOLTTRON

The vcfg command allows for an easy configuration of the VOLTTRON environment.

Note: To create a simple instance of VOLTTRON, leave the default response, or select yes (y) if prompted for a yes
or no response [Y/N]. You must choose a username and password for the VOLTTRON Central admin account.

A set of example responses are included here (username is user, localhost is volttron-pc):

174 Chapter 3. License

http://localhost:8080/simple/text
http://localhost:8080/simple/jsonrpc

VOLTTRON Documentation, Release 6.0

(volttron)user@volttron-pc:~/volttron$ vcfg
Your VOLTTRON_HOME currently set to: /home/user/.volttron

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmg/zmg)? [zmg]:

What is the vip address? [tcp://127.0.0.17]:

What is the port for the vip address? [22916]:

Is this instance web enabled? [N]: y

What is the protocol for this instance? [https]:

Web address set to: https://volttron-pc

What is the port for this instance? [8443]:

Would you like to generate a new web certificate? [Y]:
WARNING! CA certificate does not exist.

Create new root CA? [Y]:

Please enter the following details for web server certificate:
Country: [US]:
State: WA
Location: Richland
Organization: PNNL
Organization Unit: VOLTTRON
Created CA cert
Creating new web server certificate.
Is this an instance of volttron central? [N]: vy
Configuring /home/user/volttron/services/core/VolttronCentral.
Enter volttron central admin user name: <your volttron central admin username here>
Enter volttron central admin password: <your volttron central admin password here>
Retype password: <retype your volttron central admin password here>
Installing volttron central.
Should the agent autostart? [N]: y
Will this instance be controlled by volttron central? [Y]: vy
Configuring /home/user/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [volttronl]:
Volttron central address set to https://volttron-pc:8443
Should the agent autostart? [N]: y
Would you like to install a platform historian? [N]: y
Configuring /home/user/volttron/services/core/SQLHistorian.
Should the agent autostart? [N]: y
Would you like to install a master driver? [N]: y
Configuring /home/user/volttron/services/core/MasterDriverAgent.
Would you like to install a fake device on the master driver? [N]: y
Should the agent autostart? [N]: vy
Would you like to install a listener agent? [N]: y
Configuring examples/ListenerAgent.
Should the agent autostart? [N]: vy
Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/user/.volttron/config

(volttron)user@volttron-pc:~/volttron$

Once this is finished, run VOLTTRON and test the new configuration.

3.4. Developing VOLTTRON 175

VOLTTRON Documentation, Release 6.0

Testing VOLTTRON

To test that the configuration was successful, start an instance of VOLTTRON in the background:

./start-volttron

Note: This command must be run from the root volttron directory.

Command Line

If the example vcfg responses were used, the listener, master_driver, platform_historian, vcp, and vc agents should
have all started automatically. This can be checked using vet1l status.

The output should look similar to this:

(volttron)user@volttron-pc:~/volttron$ vctl status

AGENT IDENTITY TAG STATUS .
—HEALTH
8 listeneragent-3.2 listeneragent-3.2_1 listener running [2810] GOOD
0 master_driveragent-3.2 platform.driver master_driver running [2813] GOOD
3 sglhistorianagent-3.7.0 platform.historian platform _historian running [2811] GOOD
2 vcplatformagent-4.8 platform.agent vcp running [2812] GOOD
9 volttroncentralagent-5.0 volttron.central ve running [2808] GOOD

You can further verify that the agents are functioning correctly with tail —-f volttron.log

VOLTTRON Central

Open a web browser and navigate to https://volttron-pc:8443/vc/index.html

There may be a message warning about a potential security risk. Check to see if the certificate that was created in vcfg
is being used. The process below is for firefox.

Note: Chrome does not allow one to accept certificate errors. You will need to use a different browser. Firefox is
recommended.

176 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Warning: Potential Security Risk Ahead

Firefox detected a potential security threat and did not continue to volttron-pc . If you visit this
site, attackers could try to steal information like your passwords, emails, or credit card details.

What can you do about it?
The issue is most likely with the website, and there is nothing you can do to resolve it.

If you are on a corporate network or using anti-virus software, you can reach out to the support teams
for assistance. You can also notify the website’'s administrator about the problem.

Go Back (Recommended) Advanced...
[| Report errors like this to help Mozilla identify and block malicious sites f

Learn more...

Someone could be trying to impersonate the site and you should not continue.
Websites prove their identity via certificates. Firefox does not trust ~ volttron-pc :8443

because its certificate issuer is unknown, the certificate is self-signed, or the server is not
sending the correct intermediate certificates.

Error code: SEC ERROR_UNKNOWN_ISSUER
View Certiﬁcate-l

Go Back (Recommended) Accept the Risk and Continue

3.4. Developing VOLTTRON 177

VOLTTRON Documentation, Release 6.0

Certificate Viewer:"volttron-pc"

General Details

Could not verify this certificate because the issuer is unknown.

Issued To

Common Name (CN) volttron-pc
Organization (0) PNNL
Organizational Unit

(oU) VOLTTRON
Serial Number 5D:15:01:7F
Issued By

Common Name (CN) volttronl-root-ca
Organization (O) PMNNL
Organizational Unit

(ou) VOLTTRON
Period of Validity

Begins On June 27, 2019
Expires On June 26, 2020

Fingerprints
SHA-256 Fingerprint BF:A4:D7:41:67:61:10:B0:0A:C6:24:91:DA:5B:46:6C:
59:D5:B9:BC:19:88:41:A8:78:27:FF:6C:72:B8:FE: 66

SHA1 Fingerprint C4:DF:B1:84:91:D0:03:20:FD:3E:2A:DE:6E:12:5F:49:3F:F0:C1:D3

Close

178 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Someone could be trying to impersonate the site and you should not continue.

Websites prove their identity via certificates. Firefox does not trust ~ volttron-pc :8443
because its certificate issuer is unknown, the certificate is self-signed, or the server is not
sending the correct intermediate certificates.

Error code: SEC ERROR_UNKNOWN _ISSUER

View Certificate ‘
Go Back (Recommended) I Accept the Risk and Continue I

Log in using the username and password you created during the vct 1 prompt.

VOLTTRON "Central

Funded by DOE EERE BTO

Username

Password

Once you have logged in, click on the Platforms tab in the upper right corner of the window.

3.4. Developing VOLTTRON 179

VOLTTRON Documentation, Release 6.0

Dashboard § Platforms J Charts Log out

Once in the Platforms screen, click on the name of the platform.

Platforms

nBsYX¥Rmb3JtLmFnZwWs0 | Agents: @ running, 5 stopped, 5 installed

You will now see a list of agents. They should all be running.

180 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Platforms / volttronl (dm9sdHRyb24xLnBsYXRmb3JtLmFnZW50)

Agents

Name Identity uuID Status Action
listeneragent-3.2 listeneragent-3.2_1 ff8b93d0-b499-4d66-8304-94ac9fd5d9bd Running (PID 3842)
master_driveragent-3.2 platform.driver 30bf6384-3bde-de28-8b7-6605448f7bTd Running (PID 3847)
sqlhistorianagent-3.7.0 platform historian 769d570d-29b5-4263-8d07-31416ccecsc8 Running (PID 3845)
veplatformagent-4.8 platform.agent fo3boade-d161-addb-946b-30e129725584 Running (PID 3844)

volttroncentralagent-5.0 volttron.central 63f67dd6-a273-4064-949f7¢6649c43f73 Running (PID 3846)

Install agents

Browse... | No files selected.

For more information on VOLTTRON Central, please see:
e VOLTTRON Central Management
e VOLTTRON Central Demo

Device Configuration in VOLTTRON Central

Devices in your network can be detected and configured through the VOLTTRON Central Ul. The current version
of VOLTTRON enables device detection and configuration for BACnet devices. The following sections describe the
processes involved with performing scans to detect physical devices and get their points, and configuring them as
virtual devices installed on VOLTTRON instances.

* Launching Device Configuration

Scanning for Devices

Scanning for Points

Registry Configuration File

Additional Attributes

Quick Edit Features

Keyboard Commands

Registry Preview

Registry Configuration Options

Reloading Device Points

Device Configuration Form

Configuring Subdevices

* Reconfiguring Devices

Exporting Registry Configuration Files

Launching Device Configuration

To begin device configuration in VOLTTRON Central, extend the side panel on the left and find the cogs button next
to the platform instance you want to add a device to. Click the cogs button to launch the device configuration feature.

3.4. Developing VOLTTRON 181

VOLTTRON Documentation, Release 6.0

€F tcp#127.0.0.1:22916
Performance

Agents

VOLTTRON"™ Central

PIEEE)

Funded by DOE EERE BTO

Dashboard

Dashboard Platiorms Charts Log out

VOLTTRON" Central

EoEg

ﬁ] tcpi/127.0.0.1:22016
Performance

Agents

Funded by DOE EERE BTO

Install Devices

Platform: tcp#/127.0.0.1:22916

Dashboard Platfforms Charts Log out

Method: Scan for Devices

BACNet Proxy Agent | bacnet_proxyagent-0.2 c ‘
Device ID Range Min: | ‘ Max: | |
Advanced Options

Console &

Currently the only method of adding devices is to conduct a scan to detect BACnet devices. A BACnet Proxy Agent
must be running in order to do the scan. If more than one BACnet Proxy is installed on the platform, choose the one
that will be used for the scan.

The scan can be conducted using default settings that will search for all physical devices on the network. However,
optional settings can be used to focus on specific devices or change the duration of the scan. Entering a range of device
IDs will limit the scan to return only devices with IDs in that range. Advanced options include the ability to specify
the IP address of a device to detect as well as the ability to change the duration of the scan from the default of five

seconds.

182

Chapter 3. License

VOLTTRON Documentation, Release 6.0

Scanning for Devices

To start the scan, click the large cog button to the right of the scan settings.

VOLTTRON" Central Funded by DOE EERE BTO Dashboard Platforms ~ Charts

Install Devices
Platform: tcp:#/127.0.0.1:22916

Log out

a [»e]-]e]

. ~
Method: Iw‘ BACNet Proxy Agent | bacnet_proxyagent-0.2 s | ﬁ
€ 1ep/I127.0.0.1:22016 Device ID Range Min: ‘ | Max: ‘ \
Performance
Advanced Options
Agents

Devices that are detected will appear in the space below the scan settings

. Scanning can be repeated at any time by
clicking the large cog button again.

VOLTTRON™ Central Funded by DOE EERE BTO ErEiimm Falvms e e
Install Devices
Platform: tcp://127.0.0.1:22916
Q D@D Method: | Scan for Devices ‘b
g hd BACNet Proxy Agent ‘ bacnet_proxyagent-0.2 C |
€ tcp/127.0.0.1:22916 Device ID Range Min: | ‘ Max | ‘
Performance
Advanced Options
Agents
Address Name Description Device ID Vendor ID Vendor Type
> 10.0.2.4 Betelgeuse 70 15 Cormnell University bacnet |
> 10.0.26 MacGyver 1000 19 TAC AB bacnet E X
Console & b v

3.4. Developing VOLTTRON 183

VOLTTRON Documentation, Release 6.0

Scanning for Points

Another scan can be performed on each physical device to retrieve its available points. This scan is initiated by clicking
the triangle next to the device in the list. The first time the arrow is clicked, it initiates the scan. After the points are
retrieved, the arrow becomes a hide-and-show toggle button and won’t reinitiate scanning the device.

VOLTTRON™ Central Funded by DOE EERE BTO DEmieInG REEmE GEEE Ao
Install Devices
|7 ‘7 |7|7 Platform: tcp:#/127.0.0.1:22916
a le]=]lel s
- Method: Scan for Devices BACNet Proxy Agent ‘ bacnet_proxyagent-0.2 o | g
2 tcp:/1127.0.0.1:22016 Device I Range i ‘ | o ‘ ‘
Performance
Advanced Options
Agents
TS Name Description Device ID Vendor ID Vendor Type
E] 10.02.4 Betelgeuse 70 15 Cornell University bacnet E L
> 10.026 MacGyver 1000 19 TAC AB bacnet E X
-
:

After the points have been retrieved once, the only way to scan the same device for points again is to relaunch the
device configuration process from the start by clicking on the small cogs button next to the platform instance in the
panel tree.

Registry Configuration File

The registry configuration determines which points on the physical device will be associated with the virtual device that
uses that particular registry configuration. The registry configuration determines which points’ data will be published
to the message bus and recorded by the historian, and it determines how the data will be presented.

When all the points on the device have been retrieved, the points are loaded into the registry configuration editor.
There, the points can be modified and selected to go into the registry configuration file for a device.

Each row in the registry configuration editor represents a point, and each cell in the row represents an attribute of the
point.

Only points that have been selected will be included in the registry configuration file. To select a point, check the box
next to the point in the editor.

184 Chapter 3. License

VOLTTRON Documentation, Release 6.0

VOLTTRON™" Central Funded by DOE EERE BTO EasioERnHERN

Install Devices

Platform: tcp://127.0.0.1:22916

@
2 DE'DI: Method: | Scan for Devices § BACNet Proxy Agent ‘ bacnet_proxyagent-0.2 o] | ¢

f tcp//127.0.0.1:22916

Device ID Range Min: | | Max: | ‘
Advanced Options
Address Name Description Device ID Vendor ID Vendor Type
v 10.02.4 Betelgeuse 70 15 Cornell University bacnet | £ O
) volttron Point Name T +— Writable # Units o+
[m] ReturnAirTemperature FALSE UNKNOWN UNITS - =
% ReturnAirHumidity FALSE UNKNOWN UNITS =
] CoolingValveOQutputCommand FALSE UNKNOWN UNITS -
O MixedAirTemperature FALSE UNKNOWN UNITS -
O outdoorAirHumidity FALSE UNKNOWN UNITS -
O PreheatTemperature FALSE UNKNOWN UNITS -
[J DischargeAirTemperature FALSE UNKNOWN UNITS -
[] DischargeAirStaticPressure FALSE UNKNOWN UNITS -
-
VOLTTRON™" Central Funded by DOE EERE BTO EasioERnHERN

Install Devices

Platform: tcp://127.0.0.1:22916

@
2 DE'DI: Method: | Scan for Devices § BACNet Proxy Agent ‘ bacnet_proxyagent-0.2 o] | ¢

o tcp//127.0.0.1:22916

Device ID Range Min: | | Max: | ‘
Advanced Options
Address Name Description Device ID Vendor ID Vendor Type
v 10.0.2.4 Betelgeuse 70 15 Cornell University bacnet Eio

) volttron Point Name T +— Writable # Units o+
[m] ReturnAirTemperature FALSE UNKNOWN UNITS - =
& ReturnAirHumidity FALSE UNKNOWN UNITS =
O CoolingValveQutputCommand FALSE UNKNOWN UNITS -
O MixedAirTemperature FALSE UNKNOWN UNITS -
O outdoorAirHumidity FALSE UNKNOWN UNITS -
(] PreheatTemperature FALSE UNKNOWN UNITS -
[J DischargeAirTemperature FALSE UNKNOWN UNITS -
[] DischargeAirStaticPressure FALSE UNKNOWN UNITS -

3.4. Developing VOLTTRON 185

VOLTTRON Documentation, Release 6.0

VOLTTRON" Central Funded by DOE EERE BTO Bt Erimre O e

Install Devices

Platform: tcp://127.0.0.1:22916

@
Q D@DE Method: | ScanforDevices G| | gaciet proxy Agent | bacnt_proxyagent-.2 I ‘ =]

€ tcpi127.0.0.1:22918

Device ID Range Min: | | Max: | |

Advanced Options

Address Name Description Device ID Vendor ID Vendor Type
\J 10.0.2.4 Betelgeuse 70 15 Cornell University bacnet § £ 9

[volitron Point Name T += .+ Writable # Units o+

] ReturnAirTemperature FALSE UNKNOWN UNITS -
] ReturnAirHumidity FALSE UNKNOWN UNITS -

O CoolingValveQutputCommand FALSE UNKNOWN UNITS -

O MixedAirTemperature FALSE UNKNOWN UNITS -

(] outdoorAirHumidity FALSE UNKNOWN UNITS -

[PreheatTemperature FALSE UNKNOWN UNITS -

O DischargeAirTemperature FALSE UNKNOWN UNITS -

O DischargeAirStaticPressure FALSE UNKNOWN UNITS -

Type directly in a cell to change an attribute value for a point.

VOLTTRON" Central Funded by DOE EERE BTO Dl FriEms @md legen

Install Devices

Platform: tcp://127.0.0.1:22916

1]
Q DEID Method: Scan for Devices C BACNet Pr -~ o
oxy Agent bacnet_proxyagent-0.2]
€ tcpf/127.0.0.1:22916 Device ID Range Min: ‘ ‘ Max: | ‘
Performance
Advanced Options
Agents

Address Name Description Device ID Vendor ID Vendor Type
v 10.0.2.4 Betelgeuse 70 15 Comell University bacnet K L O

' volttron Point Name T +— # Writable + Units #

] ReturnAirTemperature FALSE UNKNOWN UNITS - =

[ReturnAirHumidity FALSE UNKNOWN UNITS -

[CoolingvalveOutputCommand | FALSE UNKNOWN UNITS -

O MixedAirTemperature FALSE UNKNOWN UNITS -

] OutdoorAirHumidity FALSE UNKNOWN UNITS -

O PreheafTemperature FALSE UNKNOWN UNITS -

[DischargeAirTemperature FALSE UNKNOWN UNITS -

[m] DischargeAirStaticPressure FALSE UNKNOWN UNITS -

Console & T

Additional Attributes

The editor’s default view shows the attributes that are most likely to be changed during configuration: the VOLTTRON
point name, the writable setting, and the units. Other attributes are present but not shown in the default view. To see
the entire set of attributes for a point, click the Edit Point button (the three dots) at the end of the point row.

186 Chapter 3. License

VOLTTRON Documentation, Release 6.0

VOLTTRON" Central Funded by DOE EERE BTO TN REEmE CimE o Lo

Install Devices

Platform: tcp#/127.0.0.1:22916

Q D@D Method: | Scan for Devices BACNet Proxy Agent | bacnet_proxyagent-0.2 < ‘ a

N
tcpi127.0.0.1:22916
% lop Device ID Range Min: | ‘ Max: | |
Performance
Advanced Options
Agents

Address Name Description Device ID Vendor ID Vendor Type
v 10024 Betelgeuse 70 15 Cornell University bacnet [L O
O volttron Point Name T +— # Writable # Units
O ReturnAirTemperature FALSE UNKNOWN UNITS - =]
| ReturnAirHumidity FALSE UNKNOWN UNITS IE']
] CoolingValveOutputCommand FALSE UNKNOWN UNITS -
] MixedWaterTemperature FALSE UNKNOWN UNITS -
) outdoorAirHumidity FALSE UNKNOWN UNITS -
] PreheatTemperature FALSE UNKNOWN UNITS -
[J DischargeairTemperature FALSE UNKNOWN UNITS -
] DischargeAirStaticPressure FALSE UNKNOWN UNITS -
Console & T

In the window that opens, point attributes can be changed by typing in the fields and clicking the Apply button.

Point Value Show in Table

Index 3000124 O

Reference Point Name ReturnAirHumidity O .
Voltiron Point Name ReturnAirHumidity [m]

Unit Details No limits O

BACnet Object Type analoginput [m]

Notes O

Wiitable FALSE [}

Units UNKNOWN UNITS]

Property presentValue [}

cos [0

Checking or unchecking the “Show in Table” box for an attribute will add or remove it as a column in the registry
configuration editor.

Quick Edit Features

Several quick-edit features are available in the registry configuration editor.

The list of points can be filtered based on values in the first column by clicking the filter button in the first column’s
header and entering a filter term.

3.4. Developing VOLTTRON 187

VOLTTRON Documentation, Release 6.0

VOLTTRON" Central Funded by DOE EERE BTO Dashboard Platforms Charts Leg out
Install Devices
Platform: tcp://127.0.0.1:22916
Q DEID Method: Scan for Devices o 'ﬂ'
- hd BACNet Proxy Agent ‘ bacnet_proxyagent-0.2 v |
45 tcp#127.0.0.1:22916 Device ID Range Min: | | Max | ‘
Performance
Advanced Options
Agents
Address Description Device ID Vendor ID Vendor Type
v 10024 70 15 Cornell University bacnet | L O
" voittron point Name&i‘ - Writable & Units #
(] ReturnAirTemperature FALSE UNKNOWN UNITS - =
O ReturnAirHumidity FALSE UNKNOWN UNITS -
[CoolingValveOutputCommand FALSE UNKNOWN UNITS Ll
[m] MixedAirTemperature FALSE UNKNOWN UNITS -
O OutdoorAirHumidity FALSE UNKNOWN UNITS -
[l PreheatTemperature FALSE UNKNOWN UNITS Ll
[m] DischargeAirTemperature FALSE UNKNOWN UNITS -
O DischargeAirStaticPressure FALSE UNKNOWN UNITS Ll
Caonsole & b 7
VOLTTRON" Central Funded by DOE EERE BTO Pashboard - Plafforms - Charts - Log ot
Install Devices
Platform: tcp:#/127.0.0.1:22916
Q D@D Method: Scan for Devices ¢
- v BACNet Proxy Agent ‘ bacnet_proxyagent-0.2 C |
£ tepfi127.0.0.1:22916 Min: ‘ | Max ‘ ‘
Performance Filter Points
Advanced Options
Agents

Address I Device ID Vendor ID Vendor Type
T Discharge

v 10.0.24 70 15 Cormnell University bacnet g £ O

C1 volttron Point Name ¥+~ # Writable # Units #

O DischargeAirTemperature FALSE UNKNOWN UNITS - =

[J DischargeairStaticPressure FALSE UNKNOWN UNITS -

6
» 10.0.26 MacGyver 1000 19 TAC AB bacnet g &
Console & 7

The filter feature allows points to be edited, selected, or deselected more quickly by narrowing down potentially large
lists of points. However, the filter doesn’t select points, and if the registry configuration is saved while a filter is
applied, any selected points not included in the filter will still be included in the registry file.

To clear the filter, click on the Clear Filter button in the filter popup.

188 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Q

[>]e]5)

of tcp#/127.0.0.1:22916
Performance

Agenis

VOLTTRON" Central

Funded by DOE EERE BTO Dashboard Platforms Charts Log out
Install Devices
Platform: tcp://127.0.0.1:22916
Method: | Scan for Devices $ BACNet Proxy Agent ‘ bacnet_proxyagent-0.2 o | ﬁ
Min: | | max | |
Filter Points
Advanced Options
Address M Device ID Vendor ID Vendor Type
v 10.0.2.4 70 15 Cornell University bacnet | L O
) volttron Point Name T +— # Writable # Units #*
] ReturnAirTemperature FALSE UNKNOWN UNITS - R
O ReturnAirHumidity FALSE UNKMNOWN UNITS -
O CoolingValveOutputCommand FALSE UNKMNOWN UNITS -
[MixedAirTemperature FALSE UNKNOWN UNITS -
O OutdoorAirHumidity FALSE UNKMNOWN UNITS -
[PreheatTemperature FALSE UNKNOWN UNITS -
O DischargeAirTemperature FALSE UNKMNOWN UNITS -
[J DischargeairStaticPressure FALSE UNKMOWN UNITS -
Consale & o m

To add a new point to the points listed in the registry configuration editor, click on the Add Point button in the header

of the first column.

VOLTTRON" Central

Q

[>]e]-]e]

& tcpi/127.0.0.1:22016
Performance

Agents

Funded by DOE EERE BTO Dashboard Platforms ~ Charis Log out
Install Devices
Platform: tcp:/127.0.0.1:22916
Method: | Scan for Devices BACNet Proxy Agent ‘ bacnet_proxyagent-0.2 s | ﬁ
Device ID Range Min: | | Max | |
Advanced Options
Address Description Device ID Vendor ID Vendor Type
v 10.0.2.4 70 15 Cornell University bacnet [L O
1 volttron Point Name‘r&— £ Writable # Units #
O ReturnAirTemperature FALSE UNKMOWN UNITS - &
O ReturnAirHumidity FALSE UNKMNOWN UNITS -
O CoolingValveOutputCommand FALSE UNKMOWN UNITS -
O MixedAirTemperature FALSE UNKMNOWN UNITS -
O OutdoorAirHumidity FALSE UNKMOWN UNITS -
O PreheatTemperature FALSE UNKMNOWN UNITS -
O DischargeAirTemperature FALSE UNKMNOWN UNITS -
[J DischargeairStaticPressure FALSE UNKNOWN UNITS -
Consale & o m

3.4. Developing VOLTTRON

189

VOLTTRON Documentation, Release 6.0

Point Value Show in Table

[m]

Index

Reference Point Name
Volttron Point Name
Unit Details

BACnet Object Type
Notes

Wiritable

Units

Oo0oo0o0ooooao

Property

e

Provide attribute values, and click the Apply button to add the new point, which will be appended to the bottom of the
list.

To remove points from the list, select the points and click the Remove Points button in the header of the first column.
VOLTTRON™ Central Funded by DOE EERE BTO Dashboard Platiorms Charts. Log out

Install Devices

Platform: tcp://127.0.0.1:22916

Q D@D Method: Scan for Devices § BACNet Proxy Agent ‘ bacnet_proxyagent-0.2 fo] | o

hd
tcpi/127.0.0.1:22916
 top Device ID Range Min: | ‘ Max: | ‘
Performance
Advanced Options
Agents

Address Description Device ID Vendor ID Vendor Type
Remove Points
10024 70 15 Cornell University bacnet | X O

v

L) volttron Point Name T +IE 4 Writable # Units #

[} ReturnAirTemperature FALSE UNKNOWN UNITS - =
[ReturnAirHumidity FALSE UNKNOWN UNITS -

(] CoolingValveOutputCommand FALSE UNKMNOWN UNITS -

[MixedAirTemperature FALSE UNKMOWN UNITS -

O OutdoorAirHumidity FALSE UNKMNOWN UNITS -

O PreheatTemperature FALSE UNKMOWN UNITS -

O DischargeAirTemperature FALSE UNKMNOWN UNITS -

O DischargeAirStaticPressure FALSE UNKMOWN UNITS -

Consale & T

190 Chapter 3. License

VOLTTRON Documentation, Release 6.0

o
Remove Points
Are you sure you want to delete these points? CoolingValveOutputCommand
Console & N
Each column has an Edit Column button in its header.
VOLTTRON™ Central Funded by DOE EERE BTO Eefifiere) FIms Emn Ly

Install Devices

Platform: tcp:#/127.0.0.1:22916

Q
D@D Method: Scan for Devices BACNet Proxy Agent | bacnet_proxyagent-0.2 Fo] ‘ ﬁ

e
1cp:/i127.0.0.1:22916
& top Device ID Range Min: | | Max: ‘ |
Performance
Advanced Options
Agents

Address Name Description Vendor ID Vendor Type
n
10.0.2.4 Betelgeuse 15 Comell University bacnet g £ O

v

1 volttron Point Name T+~ # Writable & Units

O ReturnAirTemperature FALSE UNKNOWN UNITS - B
O ReturnAirHumidity FALSE UNKNOWN UNITS -

[coolingValveQutputCommand FALSE UNKNOWN UNITS -

O MixedAirTemperature FALSE UNKNOWN UNITS -

O OutdoorAirHumidity FALSE UNKNOWN UNITS -

O PreheatTemperature FALSE UNKNOWN UNITS -

O DischargeAirTemperature FALSE UNKNOWN UNITS -

[J DischargeairStaticPressure FALSE UNKNOWN UNITS -

-
Console &

Click on the button to display a popup menu of operations to perform on the column. The options include inserting a
blank new column, duplicating an existing column, removing a column, or searching for a value within a column.

3.4. Developing VOLTTRON 191

VOLTTRON Documentation, Release 6.0

VOLTTRON" Central Funded by DOE EERE BTO TN REEmE CimE o Lo

Install Devices

Platform: tcp#/127.0.0.1:22916

Q D@D Method: | Scan for Devices £ a
- had BACNet Proxy Agent | bacnet_proxyagent-0.2 c ‘
€ tcp#/127.0.0.1:22916 Device ID e Min: | ‘ Ma | |
Performance
Advanced Options
Agents
Find and Replace
- Duplicate
Address Name Description ks Vendor ID Vendor Type
Add™—
v 10.0.2.4 Betelgeuse Remove 15 Cornell University bacnet | L O
) volttron Point Name T +— # Writable Units #
O ReturnAirTemperature FALSE UNKNOWN UNITS L= |
] ReturnAirHumidity FALSE UNKMNOWN UNITS -
] CoolingValveOutputCommand FALSE UNKMOWN UNITS -
] MixedAirTemperature FALSE UNKMNOWN UNITS -
) outdoorAirHumidity FALSE UNKNOWN UNITS -
] PreheatTemperature FALSE UNKMOWN UNITS -
[J DischargeairTemperature FALSE UNKMNOWN UNITS -
] DischargeAirStaticPressure FALSE UNKMOWN UNITS -
Console & 7

A duplicate or new column has to be given a unique name.

New Column
Column Name
Readable

Console &

192 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Install Devices
Platform: tcp#/127.0.0.1:22916
a D@D Method: Scan for Devices ﬁ
= . hd BACNet Proxy Agent | bacnet_proxyagent-0.2 c ‘
%€ tcp#/127.0.0.1:22916 Device ID Range Min: | ‘ Ma | |
Performance
Advanced Options
Agents
Address Name Description Device ID Vendor ID Vendor Type
v 10024 Betelgeuse 70 15 Cornell University bacnet [L O
) volttron Point Name T +— # \iritable # Readable # Units +
O ReturnAirTemperature FALSE FALSE UNKNOWN UNITS [=]
O ReturnAirHumidity FALSE FALSE UNKNOWN UNITS
O CoolingValveQutputComman ~ FALSE FALSE UNKNOWN UNITS
O MixedAirTemperature FALSE FALSE UNKNOWN UNITS
[outdoorairHumidity FALSE FALSE UNKNOWN UNITS
O PreheatTemperature FALSE FALSE UNKNOWN UNITS
[J DischargeAirTemperature FALSE FALSE UNKNOWN UNITS
O DischargeAirStaticPressure FALSE FALSE UNKNOWN UNITS
Console & b
To search for values in a column, choose the Find and Replace option in the popup menu.
VOLTTRON™ Central Funded by DOE EERE BTO LEEfiIING RAEME NS Lipis
Install Devices
Platform: tcp://127.0.0.1:22916
Q D@D Method: | Scan for Devices £ o ¢
. > BACNet Proxy Agent ‘ bacnet_proxyagent-0.2 o |
€5 tcp/127.0.0.1:22916 Device ID Range Min: | | Max | ‘
Performance
Advanced Options
Agents
Find and HEE jace
Address. Duplicate Description Device ID Vendor ID Vendor Type
Add
v 10.0.24 Remove 70 15 Comell University bacnet J§ £ 9O
[volttron Point Name T +— & Writable #* Units #
] ReturnAirTemperature FALSE UNKNOWN UNITS - =]
[ReturnAirHumidity FALSE UNKNOWN UNITS -
[m] CoolingValveOutputCommand FALSE UNKNOWN UNITS -
O MixedAirTemperature FALSE UNKNOWN UNITS -
] QutdoorAirHumidity FALSE UNKNOWN UNITS -
0 pre heatTemperature FALSE UNKNOWN UNITS -
[DischargeairTemperature FALSE UNKNOWN UNITS -
] DischargeAirStaticPressure FALSE UNKNOWN UNITS -
-
Console 4 »

Type the term to search for, and click the Find Next button to highlight all the matched fields in the column.

3.4. Developing VOLTTRON 193

VOLTTRON Documentation, Release 6.0

Q

€ tcp#127.0.0.1:22916
Performance

Agents

VOLTTRON™ Central

[>]e]-Ie]

Funded by DOE

Install Devices

Platform: tcp:/127.0.0.1:22916

EERE BTO

Dashboard ~ Platforms

Method: | scanorDevces 3

BACNet Proxy Agent ‘ bacnet_proxyagent-0.2

hd |

| x| |

Advanced Options

Search Column
Find in Column
Address
v 10.02.4 fpir I E

1 volttron Poin| Replace With
] RetunAirTen| m@
' RetumAirHum=" =
O CoolingValveOutputCommand FALSE
[MixedAirTemperature FALSE
[QutdocrAirHumidity FALSE
[J PpreneatTem, perature FALSE
[l DischargeairTemperature FALSE
[] DischargeAirStaticPressure FALSE

Console 4

Device ID

70

Vendor ID Vendor

15 Cornell University
Units #
UNKNOWN UNITS -
UNKNOWN UNITS -
UNKNOWN UNITS -
UNKNOWN UNITS -

UNKNOWN UNITS -

UNKNOWN UNITS -

UNKNOWN UNITS -

UNKNOWN UNITS -

Charts

Type

bacnet

Log out

x>

Click the Find Next button again to advance the focus down the list of matched terms.

To quickly replace the matched term in the cell with focus, type a replacement term, and click on the Replace button.

VOLTTRON" Central

a [>el=e]

€5 tcp/i127.0.0.1:22916
Performance

Agents

Funded by DOE EERE BTO

Install Devices

Platform: tcp://127.0.0.1:22916

Dashboard Platforms

Method: Scan for Devices

BACNet Proxy Agent ‘ bacnet_proxyagent-0.2

¢

Search Column

| v | |

Advanced Options

Find in Column
Address
Air L
v 10024 ’j
Replace
' voittron Poin| Replace With
O RetumAirTem| ~ Water @@
[RetumAirHumi= ot
O CoolingValveOutputCommand FALSE
[MixedWaterTemperature FALSE
Tl DutdoorAirHumidity FALSE
] PreheatTemperature FALSE
1 DischargeAirTemperature FALSE
[l DischargeairStaticPressure FALSE
Console &

Device ID

70

Vendor ID Vendor

15 Carnell University
Units #
UNKNOWN UNITS -
UNKNOWN UNITS -
UNKNOWN UNITS -
UNKNOWN UNITS -
UNKNOWN UNITS -
UNKNOWN UNITS -
UNKNOWN UNITS -

UNKNOWN UNITS -

Charts

Type

bacnet

Log out

E Lo

To replace all the matched terms in the column, click on the Replace All button. Click the Clear Search button to end

the search.

Keyboard Commands

Some keyboard commands are available to expedite the selection or de-selection of points. To initiate use of the
keyboard commands, strike the Control key on the keyboard. For keyboard commands to be activated, the registry

194

Chapter 3. License

VOLTTRON Documentation, Release 6.0

configuration editor has to have focus, which comes from interacting with it. But the commands won’t be activated if

the cursor is in a typable field.

If the keyboard commands have been successfully activated, a faint highlight will appear over the first row in the

registry configuration editor.

VOLTTRON™ Central

Install Devices

a [»e]-]e]

of tcpi/127.0.0.1:22816
Performance

Agents

4

O0O0oooood

Funded by DOE EERE BTO =
Platform: tcp:/127.0.0.1:22916
Method: | Scan for Devices BACNet Proxy Agent | bacnet_proxyagent-0.2] |
Device ID Range Min: ‘ ‘ Max: | ‘
Advanced Options
Address Name Description Device ID Vendor ID Vendor
10.0.24 Betelgeuse 70 15
Volttron Point Name T +— Writable # Units +
ReturnAirTemperature FALSE UNKNOWN UNITS
ReturnAirHumidity FALSE UNKNOWN UNITS
CoolingValveOutputCommand FALSE UNKNOWN UNITS
MixedWaterTemperature FALSE UNKNOWN UNITS
QutdoorAirHumidity FALSE UNKNOWN UNITS
PreheaiTemperature FALSE UNKNOWN UNITS
DischargeAirTemperature FALSE UNKNOWN UNITS
DischargeAirStaticPressure FALSE UNKNOWN UNITS

Platforms

Cornell University

Charts Log out
Type
bacnet | £ O
- [=:]

Keyboard commands are deactivated when the mouse cursor moves over the configuration editor.

deactivation occurs, strike the Control key again to reactivate the commands.

If unintentional

With keyboard commands activated, the highlighted row can be advanced up or down by striking the up or down arrow
on the keyboard. A group of rows can be highlighted by striking the up or down arrow while holding down the Shift

key.

3.4. Developing VOLTTRON

195

VOLTTRON Documentation, Release 6.0

S &) [=]@] =
/ [4 VOLTTRON™ Central BE X '\,
€« # £ [localhost:8080/index.html#/configure-devices? k=e5jdc5 v H =
VOLTTRON" Central Funded by DOE EERE BTO Dashboard Platforms - Charts Lo out
Install Devices
Platform: tcp://127.0.0.1:22916
a D@D Method: Scan for Devices 2 ¢
g ~ BACNet Proxy Agent ‘ bacnet_proxyagent-0.2 C |
&5 1cp#127.0.0.1:22916 Device ID e Min: | | Max | ‘
Performance
Advanced Options
Agents
Address Name Description Device ID Vendor ID Vendor Type
v 10.02.4 Betelgeuse 70 15 Cornell University bacnet g £ 9
I volttron Point Name T +— Writable + Units #
O ReturnAirTemperature FALSE UNKNOWN UNITS - [=]
O ReturnAirHumidity FALSE UNKNOWN UNITS =
O CoolingValveOutputCommand FALSE UNKNOWN UNITS -
[l MixedwaterTem perature FALSE UNKNOWN UNITS =
O ‘QutdoorAirHumidity FALSE UNKNOWN UNITS -
[PreheatTemperature FALSE UNKNOWN UNITS -
[DischargeAirTemperature FALSE UNKNOWN UNITS -
[DischargeairStaticPressure FALSE UNKNOWN UNITS -
Console 4 b v
To select the highlighted rows, strike the Enter key.
VOLTTRON" Central Funded by DOE EERE BTO Dashboard Platforms Chats Log out
Install Devices [
Platform: tcp:#/127.0.0.1:22916
a D@D Method: Scan for Devices {3 ~ ¢
: C] | BACNet Proxy Agent | bacnet proxyagent0.2 s ‘
6 tcp:/1127.0.0.1:22016 Pam—— . - | | o ‘ |
Performance
Advanced Options
Agents
Address Name Description Device ID Vendor ID Vendor Type
A\ J 10.02.4 Betelgeuse 70 15 Cornell University bacnet J§ £ O
1 volttron Point Name T+~ # Writable + Units #
(] ReturnAirTemperature FALSE UNKNOWN UNITS - =
= ReturnAirHumidity FALSE UNKNOWN UNITS =
O coolingvalveQutputCommand FALSE UNKNOWN UNITS =
O MixedwaterTem perature FALSE UNKNOWN UNITS =
O OutdoorAirHumidity FALSE UNKNOWN UNITS - -
O PreheatTemperature FALSE UNKNOWN UNITS -
O DischargeAirTemperature FALSE UNKNOWN UNITS -
O DischargeAirStaticPressure FALSE UNKNOWN UNITS -
-
Console &

Striking the Enter key with rows highlighted will also deselect any rows that were already selected.

Click on the Keyboard Shortcuts button to show a popup list of the available keyboard commands.

196

Chapter 3. License

VOLTTRON Documentation, Release 6.0

VOLTTRON™ Central

Q

goED

o tcpif/127.0.0.1:22016
Performance

Agents

VOLTTRON" Central

e]=e]

Q

6§ tcp//127.0.0.1:22916
Performance

Agents

Funded by DOE EERE BTO Dashboard Platforms Charts Log out
Install Devices
Platform: tcp:/127.0.0.1:22916
o ~
Method: Seanfor Devices & BACNet Proxy Agent | bacnet_proxyagent-0.2 ko | ﬁ
Device ID Range Min: ‘ ‘ Max: | ‘
Advanced Options
Address Name Description Device ID Vendor ID Vendor pe
Keyhoard
v 10024 Betelgeuse 70 15 Cornell Universi net k3
2 Y Shortcuts Lo
I volttron Point Name T +— Writable # Units #
] RetumnAirTemperature FALSE UNKNOWN UNITS - E
O ReturnAirHumidity FALSE UNKNOWN UNITS -
[l CoolingValveOutputCommand FALSE UNKNOWN UNITS Ll
O MixedwaterTem perature FALSE UNKNOWN UNITS -
O QOutdoorAirHumidity FALSE UNKNOWN UNITS Ll
] PreheaiTemperature FALSE UNKNOWN UNITS -
O DischargeAirTemperature FALSE UNKNOWN UNITS -
[DischargeairStaticPressure FALSE UNKNOWN UNITS Ll
Console & >
Funded by DOE EERE BTO Dashboard Platforms Charts Log out
Install Devices
Platform: tcp://127.0.0.1:22916
o o} I .3
Method: Scan for Devices BACNet Proxy|
Keyboard Shortcuts
Device ID Ran:
Cirl Activate keyboard commands for device table that has focus.
ESC Deactivate keyboard commands.
Up Move keyboard selection up one row.
Down | Space Move keyboard selection down one row.
Address Name Shift+Up Extend keyboard selection up one row.
Shift+Down Extend keyboard selection down one row.
v 10024 Betelgeuse Enter Lock in keyboard selections.]
) volttron Point Name T +— »# Writable units &~
O RetumAirTemperature FALSE UNKNOWN UNITS - E
O ReturnAirHumidity FALSE UNKNOWN UNITS -
[J CoolingValveOutputCommand FALSE UNKNOWN UNITS -
[0 MixedwaterTem perature FALSE UNKNOWN UNITS -
[outdoerAirHumidity FALSE UNKNOWN UNITS -
O PreheatTemperature FALSE UNKNOWN UNITS -
[] DischargeAirTemperature FALSE UNKNOWN UNITS -
O DischargeAirStaticPressure FALSE UNKNOWN UNITS -
-
Console & »

Registry Preview

To save the registry configuration, click the Save button at the bottom of the registry configuration editor.

3.4. Developing VOLTTRON

197

VOLTTRON Documentation, Release 6.0

Q

/[VOLTTRON™ Central B X | &) -
€« # £ [localhost:8080/index.html#/configure-devices? k=e5jdc5 v H =
Platform: tcp:/127.0.0.1:22916
D@D Method: Scan for Devices BACNet Proxy Agent ‘ bacnet_proxyagent-0.2 o | o
€ tcp#127.0.0.1:22916 Device ID Range Min: | | Max | ‘
Performance
Advanced Options
Agents
Address Name Description Device ID Vendor ID Vendor Type

v 10024 Betelgeuse 70 15 Comell University bacret J§ £ 9
[J volttron Point Name T 4 — Writable + Units #
] ReturnAirTemperature FALSE UNKNOWN UNITS -
[m] ReturnAirHumidity FALSE UNKNOWN UNITS -
] CoolingValveOutputCommand FALSE UNKNOWN UNITS -
[0 MixedWaterTemperature FALSE UNKNOWN UNITS -
[m] QutdoorAirHumidity FALSE UNKNOWN UNITS -
] PreheatTemperature FALSE UNKNOWN UNITS -
m} DischargeAirTemperature FALSE UNKNOWN UNITS -
[0 DischargeairStaticPressure FALSE UNKNOWN UNITS -

(=g
> 10.0.26 MacGyver 1000 19 TAC AB bacnet | &
Console & T

A preview will appear to let you confirm that the configuration is what you intended.

Save this registry configuration?

Betelgeuse /10.0.2.4/ 70

table / csv

CSV File Name:

Index

3000124

3000107

3000116

3000119

Reference Point Name

ReturmnAirHumidity

CoolingValveOutputCommand

MixedAirTemperature

PreheatTemperature

Volttron Point Name

ReturnAirHumidity

MixedWaterTemperature

PreheatTemperature

CoolingValveOutputCommand

Unit

Details

No limits.

No limits.

No limits.

No limits.

Console &

BACnet

Object Type

analoginput

analoginput

analoginput

analoginput

Cancel
Notes Writable Units Property

UNKNOWN

FALSE presentValue
UNITS
UNKNOWN

FALSE presentValue
UNITS
UNKNOWN

FALSE presentValue
UNITS
UNKNOWN

FALSE presentValue
UNITS

LIMRIAL AL

The configuration also can be inspected in the comma-separated format of the actual registry configuration file.

198

Chapter 3. License

VOLTTRON Documentation, Release 6.0

Save this registry configuration?

Betelgeuse / 10.0.2.4 | 70
table / csv

CSV File Name: Cancel

Index,Reference Point Name,Volttron Point Name,Unit Details, BACnet Object Type, Notes,Writable Units Property

3000124, ReturnAirHumidity, ReturnAirHumidity, No limits. analoginput, FALSE UNKNOWN UNITS, presentValue

3000107 ,CoolingValveOutputCommand, CoolingValveOutputCommand No limits. analoginput, FALSE,UNKNOWN UNITS, presentValue
3000116, MixedAirTemperature, MixedWater Temperature,No limits. analoginput, FALSE, UNKNOWN UNITS, presentvalue

3000119, PreheatTemperature, PreheatTemperature, No limits. analoglnput, FALSE UNKNOWN UNITS. presentValue

3000108, DischargeAirStaticPressure, DischargeAirStaticPressure No limits. .analoginput, FALSE.UNKNOWN UNITS, preseniValue

Provide a name for the registry configuration file, and click the Save button to save the file.

Save this registry configuration?

Betelgeuse / 10.0.2.41 70
table / csv

CSV File Name: |devicel.csv Cancel m

Index,Reference Point Name, Volitron Point Name, Unit Details, BACnet Object Type Notes, Writable, Units, Property

3000124, ReturnAirHumidity, ReturnAirHumidity, Mo limits. analoginput, FALSE UNKNOWN UNITS, presentValue

3000107 ,CoolingValveOutputCommand, CoolingValveOutputCommand, No limits. analoginput, FALSE,UNKNOWN UNITS presentValue
3000116, MixedAirTemperature, MixedWaterTemperature, No limits. analoginput, FALSE, UNKNOWN UNITS, presentValue
30001189,PreheatTemperature PreheatTemperature No limits. analoginput, FALSE UNKNOWN UNITS, presentValue

3000108, DischargeAirStaticPressure, DischargeAirStaticPressure, No limits. analoginput, FALSE. UNKNOWN UNITS presentValue

3.4. Developing VOLTTRON

199

VOLTTRON Documentation, Release 6.0

R N The regisiry file devicel.csv was successiully saved.
Device Config o

Betelgeuse 1 10.0.2.4 1 70

*Campus

*Building

“Unit

Path

Driver Type bacnet
Interval (seconds)

Timezone

Heartbeat Point

Minimum Priority 8
Maximum Objects per Request
Maximum Objects per Read

Publish Breadth-First [}

Pkt Pam e s AT [l

Registry Configuration Options

Different subsets of configured points can be saved from the same physical device and used to create separate registry
files for multiple virtual devices and subdevices. Likewise, a single registry file can be reused by multiple virtual
devices and subdevices.

To reuse a previously saved registry file, click on the Select Registry File (CSV) button at the end of the physical
device’s listing.

Install Devices
Platfiorm: tcp://127.0.0.1:22916
Q DE'DIE Method: | Scan for Devices ﬁ
g hd BACNet Proxy Agent bacnet_proxyagent-0.2 c ‘
tcp/i127.0.0.1:22916
& top Device ID Range Min: | | Max: ‘ |
Performance
Advanced Options
Buildings
o TR Select Registry
Campusl: Buildingl
s 3 File (CSV)
Devices Address Name Description Device ID Vendor ID Vendor Type
F Unitl v 10.0.24 Betelgeuse 70 15 Comnell University bacnet & k)
Points [volttron Point Name T +— Writable # Units
[CoolingValve [] RetunAirTemperature FALSE UNKNOWN UNITS - =
Ipi
[] DischargeAil O FALSE -
] MixedWater” D FALSE -
0] Preneatrem O | MixeawaterTemperature FALSE -
[0 outdoorAirHumidity FALSE -
[] ReturnAirHu
O | PreheatTemperature FALSE -
Agents
O DischargeAirTemperature FALSE UNKNOWN UNITS -
O | Disct FALSE UNKNOWN UNITS -
G
» 10.0.2.6 MacGvver = s 1000 19 TAC AB bacret &t hd

The Previously Configured Registry Files window will appear, and a file can be selected to load it into the registry
configuration editor.

200 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Previously Configured Registry Files

i

devicel.csv

Another option is to import a registry configuration file from the computer running the VOLTTRON Central web
application, if one has been saved to local storage connected to the computer. To import a registry configuration file
from local storage, click on the Import Registry File (CSV) button at the end of the physical device’s listing, and use
the file selector window to locate and load the file.

Devices
& Unitl
Points

m]

o o o o

Agents

a ooED
4§ 1cpii127.0.0.1:22916

Performance

Buildings

Campusl: Buildingl

CoalingValve
DischargeAil
MixedWater
PreheatTem

ReturnAirHu

Install Devices
Platform: tcpi/127.0.0.1:22916
Method: | Scan for Devices BACNet Proxy Agent | bacnet_proxyagent-0.2 o) ‘ ‘b
Device ID Range Min: | ‘ Max: ‘ |
Advanced Options
Import Registry
File (CSV)
Address Name Description Device ID Vendor ID Vendor Type
v 10.0.2.4 Betelgeuse 70 15 Cornell University bacnet g E b
) volttron Point Name T 4~ # Writable # Units #
O ReturnAirTemperature FALSE UNKNOWN UNITS (=]
0O = FALSE
O FALSE
O FALSE
O FALSE
O FALSE
O FALSE
O FALSE KNOWN UNIT:
[*]
> 10.0.2.6 MacGwver 1000 19 TAC AB bacnet E + e

Reloading Device Points

Once a physical device has been scanned, the original points from the scan can be reloaded at any point during device
configuration by clicking on the Reload Points From Device button at the end of the device’s listing.

3.4. Developing VOLTTRON

201

VOLTTRON Documentation, Release 6.0

Install Devices
Platform: icp:/f127.0.0.1:22916
Q D@DE Method: | Scan for Devices ¢
" > BACNet Proxy Agent ‘ bacnet_proxyagent-0.2 C |
1cp://127.0.0.1:22916
* top Device ID Range Min: ‘ ‘ Max: ‘ ‘
Performance
Advanced Options
Buildings
. Reload Points
Ci 1: Buildingl
e o
Devices Address Name Description Device ID Vendor ID Vendor Type
& Unitl v 10.02.4 Betelgeuse 70 15 Cornell University bacnet g & [g
Points [volttron Point Name T += # Writable # Units &
[] CoolingValvs [RetumAirTemperature UNKNOWN UNITS - =
P
[] Dischargeil O -
[] MixedWater 0 FALSE -
[} FALSE -
[] PreheatTem o=
O outdoorAirHumidity FALSE UNKNOWN UNITS -
[J ReturnAirHu
O | preheatTemperature FALSE UNKNOWN UNITS -
Agents
[J DischargeirTemperature FALSE UNKNOWN UNITS ol
O | DischargeAirStaticPressure FALSE -
O
> 10.0.2.6 MacGwver @ 1000 19 TAC AB bacnet B + e

Device Configuration Form

After the registry configuration file has been saved, the device configuration form appears. Creating the device con-
figuration results in the virtual device being installed in the platform and determines the device’s position in the side
panel tree. It also contains some settings that determine how data is collected from the device.

Device Configuration o

Betelgeuse [10.0.2.4/ 70

*Campus %
*Building

“Unit

Path

Driver Type bacnet
Interval (seconds)

Timezone

Heartbeat Point

Minimum Priority 8
Maximum Objects per Request

Maximum Objects per Read

Publish Breadth-First (]

After the device configuration settings have been entered, click the Save button to save the configuration and add the
device to the platform.

202 Chapter 3. License

VOLTTRON Documentation, Release 6.0

LTI IYCUSS | AV 1Y

Maximum Objects pef Request |

*Campus ‘Campusl | .
s *Building ‘Buidingl | _

. *Unit Unitt |
- Path ‘ |
Driver Type ‘hamet |

Interval (seconds) 60 | — -
s | |
Heartbeat Point \ |
Minimum Priority B |
|
|

Maximum Objects per Read ‘

Publish Breadth-First o

Publish Breadth-First All [}

Cancel Save

Platform: tcpi/1:

l:lm@m The device configuration was successfully created for
Method: Scan Campus1/BuildingL/Unit1 ﬁ

02 o
& tep/127.0.0.1:22016 Device ID Range Win: —‘ Max ,—‘
Performance
Advanced Options
Agents
Address Name Description Device ID Vendor ID Vendor Type
v 10.0.2.4 Betelgeuse 70 15 Cornell University bacnet § £ 9
Tl volttron Point Name T +— # Writable #* Units +
O ReturnAirTemperature FALSE UNKNOWN UNITS - g
O | RetunAirHumidi ty FALSE UNKNOWN UNITS -
O | coolin gValveOutputCommand FALSE UNKNOWN UNITS -
O | Mixeawal ter Temperalture FALSE UNKNOWN UNITS -
O OutdoorAirHumidity FALSE UNKNOWN UNITS -
O PreheatTemperature FALSE UNKNOWN UNITS -
[J DischargeAirTemperature FALSE UNKNOWN UNITS -
O | bis chargeAirStaticPressure FALSE UNKNOWN UNITS -
> 10026 MacGyver 1000 19 TAC AB bacnet [&

Configuring Subdevices

After a device has been configured, subdevices can be configured by pointing to their position in the Path attribute of
the device configuration form. But a subdevice can’t be configured until its parent device has been configured first.

3.4. Developing VOLTTRON 203

VOLTTRON Documentation, Release 6.0

‘I:ampusl
Building1

unin

|subdevice

bacnet

50

‘t:anlwsl
Buiding1

Unit

|subdevicelsubdevicez

bagnet

As devices are configured, they’re inserted into position in the side panel tree, along with their configured points.

204 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Install Devices
Platform: tcp://127.0.0.1:22916
Q D@D Method: | Scan for Devices £ o a
- hd BACNet Proxy Agent ‘ bacnet_proxyagent-0.2 o |
tcpi/127.0.0.1:22916
 tep Device ID Range Min: ‘ ‘ Max: | |
Performance
Advanced Options
Buildings
Campusl: Buildingl
Devices Address Name Description Device ID Vendor ID Vendor Type
Unitl v 10.0.24 Betelgeuse 70 15 Comnell University bacnet g £ O
Points [voltron Point Name ¥ +~ Writable + Units #
[[] CoolingValveQul [J ReturnAirTemperature FALSE UNKNOWN UNITS - =
[] DischargeAirStal O 1AirHumidity FALSE UNKNOWN UNITS -
O] MixedwaterTem O mand FALSE UNKNOWN UNITS -
[PreheatTempera 0 | MixedWaterTemperature FALSE UNKNOWN UNITS -
O OutdoorAirHumidity FALSE UNKNOWN UNITS -
[] ReturnAirHumidi
O | preheatTemperature FALSE UNKNOW -
Agents
O DischargeAirTemperature FALSE UNKNOWN UNITS -
O FALSE UNKNOWN UNITS -
Console & » v

Reconfiguring Devices

A device that’s been added to a VOLTTRON instance can be reconfigured by changing its registry configuration or its
device configuration. To launch reconfiguration, click on the wrench button next to the device in the side panel tree.

VOLTTRON™ Central Funded by DOE EERE BTO Eiven Erems HEE Legor

Dashboard

a [>)e)=]le

& tcp//127.0.0.1:22916

Performance
Buildings
Unitl
Points
[CoolingValve
[] DischargeAil
[] MixedWater
[] PreheatTem
[] ReturnAirHu
Agents

Reconfiguration reloads the registry configuration editor and the device configuration form for the virtual device. The
editor and the form work the same way in reconfiguration as during initial device configuration.

3.4. Developing VOLTTRON 205

VOLTTRON Documentation, Release 6.0

VOLTTRON™ Central

¢ {cp#/127.0.0.1:22916
Performance

Buildings

[}
C|
Reconfigure Device]
]
rEuml
i]
Points
]
[] CoolingValve
]
[[] DischargeAil
[J MixedWater”
[J PreheatTem
[] ReturnAirHu

Agents

Funded by DOE EERE BTO

Reconfigure Device

Physical Device: Betelgeuse /10.0.2.4/70
Qa D@DE Registry Config: devicelcsv Jj £ um

Device Config:

Volttron Point Name ¥ +— #
ReturnAirHumidity
CoolingValveQutputCommand
MixedWaterTemperature
PreheatTemperature

DischargeAirStaticPressure

Campus1/Building1/Unit1

File to Edit: Registry Config

Writable #
FALSE
FALSE
FALSE
FALSE

FALSE

Units #

UNKNOWN UNITS
UNKNOWN UNITS
UNKNOWN UNITS
UNKNOWN UNITS

UNKNOWN UNITS

Dashboard Platforms

Charts

Log out

The reconfiguration view shows the name, address, and ID of the physical device that the virtual device was configured
from. It also shows the name of the registry configuration file associated with the virtual device as well as its configured

path.

A different registry configuration file can be associated with the device by clicking on the Select Registry File (CSV)
button or the Import Registry File (CSV) button.

The registry configuration can be edited by making changes to the configuration in the editor and clicking the Save

button.

To make changes to the device configuration form, click on the File to Edit selector and choose Device Config.

VOLTTRON™" Central

4 tcp/127.0.0.1:22016

Performance
Buildings o

Campus1: Buildingl
[m]

Devices
[m]
& Unitl
) [m]
Points

[J CoolingValve =
[m]

[_] DischargeAi
[] MixedWater
[] PreheatTem
[J ReturnAirHu

Agents

Funded by DOE EERE BTO

Reconfigure Device

Physical Device: Betelgeuse /10.0.2.4/70
Q DEID@ Registry Config: devicelcsv iy £ um

Device Config: Campus1/Building L/Unitl

File to Edit: Registry Config C

Registry Config
Volttron Poi . Writable #
Device Config

ReturnAirHumidity
CoolingValveQutputCommand
MixedWaterTemperature
PreheaiTemperature

DischargeAirStaticPressure

FALSE

FALSE

FALSE

FALSE

FALSE

Units #

UNKNOWN UNITS
UNKNOWN UNITS
UNKNOWN UNITS
UNKNOWN UNITS

UNKNOWN UNITS

Dashboard Platforms

Charts

Log out

206

Chapter 3.

License

VOLTTRON Documentation, Release 6.0

VOLTTRON™" Central Funded by DOE EERE BTO EasioERnHERN

Reconfigure Device

Physical Device: Betelgeuse /10.0.2.4/70
Q DE'DIE Registry Config: devicelcsv Jlj £ um

€8 1cp/127.0.0.1:22916 Device Config: CampusL/Building1/Unitl

D File to Edit: Device Config <
Buildings
Campus1: Buildingl “Campus Campusl
Devices *Building Buildingl
Unitk “Unit unitl
Points Path
LIRESaVa Driver Type bacnet
[DischargeAil Interval (seconds) 60
[] MixedWater” Timezone
[] PreheatTem Heartbeat Point
[RetumAirHu Minimum Priority 8
Agents Maximum Objects per Request 10000

Maximum Objects per Read

Publish Breadth-First [m]

Exporting Registry Configuration Files

The registry configuration file associated with a virtual device can be exported from the web browser to the computer’s
local storage by clicking on the File Export Button in the device reconfiguration view.

VOLTTRON™ Central Funded by DOE EERE BTO Dashboard Platforms ~ Charts Log out

Reconfigure Device
Export devicel.csv

Physical Device: Betelgeuse /10.0.2.4/70
Q DEIDE Registry Config: devicelecsv g £

y
o tcp127.0.0.1:22916 Device Config: Campus]lBuwlﬂingl}é%ll
Performance File to Edit Registry Config

Buildings

O volttron Point Name T +— # Writable # Units #
Campusl: Buildingl
(] ReturnAirHumidity FALSE UNKNOWN UNITS - =R
Devices
(] CoolingValveQutputCommand FALSE UNKNOWN UNITS -
& Unitl
~ [m} MixedWaterTemperature FALSE UNKNOWN UNITS -
Points

O Coolingvaive [0 PreheatTemperature FALSE UNKNOWN UNITS -
[0 DischargeAirStaticPressure FALSE UNKNOWN UNITS Ll

[] DischargeAil

[] MixedWater’

[] PreheatTem

[ReturnAirHu

Agents

VOLTTRON Central Demo

VOLTTRON Central is a platform management web application that allows platforms to communicate and to be
managed from a centralized server. This agent alleviates the need to ssh into independent nodes in order to manage

3.4. Developing VOLTTRON 207

VOLTTRON Documentation, Release 6.0

them. The demo will start up three different instances of VOLTTRON with three historians and different agents on
each host. The following entries will help to navigate around the VOLTTRON Central interface.

* Getting Started
* Remote Platform Configuration

» Starting the Demo

Stopping the Demo

Log In

Log Out

Platforms Tree

Loading the Tree

Health Status

Filter the Tree

Platforms Screen

Register New Platform

Deregister Platform

Platform View

e Add Charts

Dashboard Charts

Remove Charts

Getting Started

After building VOLTTRON, open three shells with the current directory the root of the VOLTTRON repository. Then
activate the VOLTTRON environment and export the VOLTTRON_HOME variable. The home variable needs to be

different for each instance.

If you are using Terminator you can right click and select “Split Vertically”. This helps us keep from losing terminal

windows or duplicating work.

$ source env/bin/activate
$ export VOL TTRON HOME=~/.volttronl

208

Chapter 3. License

VOLTTRON Documentation, Release 6.0

/bin/bash =%
/bin/bash 75%59 /bin/bash 79%59

Ibin/bash 77359

lttronl

One of our instances will have a VOLTTRON Central agent. We will install a platform agent and a historian on all
three platforms.

Run vcfg in the first shell. This command will ask how the instance should be set up. Many of the options have defaults
that will be sufficient. When asked if this instance is a VOLTTRON Central enter y. Read through the options and
use the enter key to accept default options. There are no default credentials for VOLTTRON Central. You can have
it install the agents at this time. Below is an example configuration. In this case, username is user and localhost is
volttron-pc.

(volttron)user@volttron-pc:~/volttron$ vcfg
Your VOLTTRON_HOME currently set to: /home/user/.volttronl

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmg/zmqg)? [zmg]:

What is the vip address? [tcp://127.0.0.17:

What is the port for the vip address? [22916]:

Is this instance web enabled? [N]: y

What is the protocol for this instance? [https]:

Web address set to: https://volttron-pc

What is the port for this instance? [8443]:

Would you like to generate a new web certificate? [Y]:
WARNING! CA certificate does not exist.

Create new root CA? [Y]:

Please enter the following details for web server certificate:
Country: [US]:
State: WA
Location: Richland
Organization: PNNL
Organization Unit: VOLTTRON
Created CA cert
Creating new web server certificate.
Is this an instance of volttron central? [N]: y

(continues on next page)

3.4. Developing VOLTTRON 209

../../_images/terminator-setup.png

VOLTTRON Documentation, Release 6.0

(continued from previous page)

Configuring /home/user/volttron/services/core/VolttronCentral.

Enter volttron central admin user name: <your volttron central admin_
—username here>

Enter volttron central admin password: <your volttron central admin password,
—here>

Retype password: <retype your volttron central admin password here>
Installing volttron central.

Should the agent autostart? [N]: y

Will this instance be controlled by volttron central? [Y]: y
Configuring /home/user/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [volttronl]:

Volttron central address set to https://volttron-pc:8443

Should the agent autostart? [N]: y

Would you like to install a platform historian? [N]: vy

Configuring /home/user/volttron/services/core/SQLHistorian.

Should the agent autostart? [N]: vy

Would you like to install a master driver? [N]: y

Configuring /home/user/volttron/services/core/MasterDriverAgent.
Would you like to install a fake device on the master driver? [N]: y
Should the agent autostart? [N]: y

Would you like to install a listener agent? [N]: y

Configuring examples/ListenerAgent.

Should the agent autostart? [N]: y

Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/user/.volttronl/config

(volttron)user@volttron-pc:~/volttron$

VOLTTRON Central needs to accept the connecting instances’ public keys. For this example we’ll allow any CURVE
credentials to be accepted. After starting, the command vetl auth add will prompt the user for information about how
the credentials should be used. We can simply hit Enter to select defaults on all fields except credentials, where we
will type /. %/

$ vctl auth add —--credentials "/.x/"
added entry domain=None, address=None, mechanism='CURVE', credentials=u'/.x/', user_
—1d='63bl126a7-2941-4ebe-8588-711dle6c70d1l"

For more information on authorization see authentication.

Remote Platform Configuration

The next step is to configure the instances that will connect to VOLTTRON Central. In the second and third terminal
windows run vcfg. Like the VOLTTRON_HOME variable, these instances need to have unique addresses.

Install a platform agent and a historian as before. Since we used the default options when configuring VOLTTRON
Central, we can use the default options when configuring these platform agents as well. The configuration will be a
little different.

(volttron)user@volttron-pc:~/volttron$ vcfg

Your VOLTTRON_HOME currently set to: /home/user/.volttron2

(continues on next page)

210 Chapter 3. License

VOLTTRON Documentation, Release 6.0

(continued from previous page)

Is this the volttron you are attempting to setup? [Y]:

What type of message bus (rmg/zmqg)? [zmg]:

What is the vip address? [tcp://127.0.0.1]1: tcp://127.0.0.2

What is the port for the vip address? [22916]:

Is this instance web enabled? [N]:

Is this an instance of volttron central? [N]:

Will this instance be controlled by volttron central? [Y]: y
Configuring /home/user/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [volttronl]:

What is the hostname for volttron central? [https://volttron-pc]:
What is the port for volttron central? [8443]:

Should the agent autostart? [N]: y

Would you like to install a platform historian? [N]: vy
Configuring /home/user/volttron/services/core/SQLHistorian.
Should the agent autostart? [N]: y

Would you like to install a master driver? [N]:

Would you like to install a listener agent? [N]:

Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/user/.volttron2/config

(volttron)user@volttron-pc:~/volttron$

Starting the Demo

Start each Volttron instance after configuration. The “-1” option in the following command tells volttron to log to a
file. The file name should be different for each instance.

$ volttron -1 logls

Note: If you choose to not start your agents with their platforms they will need to be started by hand.

List the installed agents with

’$ vetl status

A portion of each agent’s uuid makes up the leftmost column of the status output. This is all that is needed to start or
stop the agent. If any installed agents share a common prefix then more of the uuid will be needed to identify it.

’s vcetl start uuid

or

’$ vctl start --tag tag

Note: In each of the above examples one could use * suffix to match more than one agent.

3.4. Developing VOLTTRON 211

VOLTTRON Documentation, Release 6.0

Open your browser to localhost:8443/vc/index.hmtl and and log in with the credentials you provided. The platform
agents should be automatically register with VOLTTRON central.

Note: localhost is the local host of your machine. In the above examples, this was volttron-pc.

Stopping the Demo

Once you have completed your walk through of the different elements of the VOLTTRON Central demo you can stop
the demos by executing the following command in each terminal window.

$ vctl shutdown --platform

Once the demo is complete you may wish to see the VOLTTRON Central Management Agent page for more details on
how to configure the agent for your specific use case.

Log In

To log in to VOLTTRON Central, navigate in a browser to localhost:8443/vc/index.html, and enter the user name and
password on the login screen.

VOLTTRON"Central

Funded by DOE EERE BTO

Log Out

To log out of VOLTTRON Central, click the link at the top right of the screen.

212 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Platforms

FUI'IdE'd by DﬂE EERE BTD :]a.l_"ﬂ_:.a.lf 1 ;:l',1|[_'_ .."JE out

Platforms Tree

The side panel on the left of the screen can be extended to reveal the tree view of registered platforms.

3.4. Developing VOLTTRON 213

VOLTTRON Documentation, Release 6.0

VOLTTRON Central Funded by DOE EERE BTO

s
Dashboard

214 Chapter 3. License

VOLTTRON Documentation, Release 6.0

VOLTTRON" Central

«

[>]e]=]le]

Platform 1
Performance
Agents
Platform 2
Performance
Buildings
BUILDING3
Devices
AC3
Points
BUILDING4
Agents
forwarderagent-3.5

veplatformagent-3.5.1

Funded by DOE EERE BTO

Dashboard

Top-level nodes in the tree are platforms. Platforms can be expanded in the tree to reveal installed agents, devices on
buildings, and performance statistics about the platform instances.

Loading the Tree

The initial state of the tree is not loaded. The first time a top-level node is expanded is when the items for that platform

are loaded.

3.4. Developing VOLTTRON

215

VOLTTRON Documentation, Release 6.0

VOLTTRON" Central Funded by DOE EERE BTO

=1

Dashboard

After a platform has been loaded in the tree, all the items under a node can be quickly expanded by double-clicking
on the node.

Health Status

The health status of an item in the tree is indicated by the color and shape next to it. A green triangle means healthy, a
red circle means there’s a problem, and a gray rectangle means the status can’t be determined.

Information about the health status also may be found by hovering the cursor over the item.

216 Chapter 3. License

VOLTTRON Documentation, Release 6.0

VOLTTRON Central

-«

Platform 1: Platform Unreachable. | —

Qe 'f}

Platform 2
Performance
Buildings
Agents
forwarderagent-3.5

veplatformagent-3.5.1

Filter the Tree

Funded by DOE EERE BTO

Dashboard

The tree can be filtered by typing in the search field at the top or clicking on a status button next to the search field.

3.4. Developing VOLTTRON

217

VOLTTRON Documentation, Release 6.0

VOLTTRON" Central Funded by DOE EERE BTO

«

Dashboard

0, outside| |:||E||:|

Platform 2
Buildings
BUILDING3
Devices
AC-3
Points
OutsideAirTemg
OutsideAirTemg
OutsideAirTemg
BUILDING4
Devices
HEATER4
Points
OutsideAirTemg
OutsideAirTemy
OutsideAirTemp
VOLTTRON" Central Funded by DOE EERE BTO
«

Dashboard
a Felge
Platform 1

Agents
bacnet_proxyagent-0.1

listeneragent-3.0

Meta terms such as “status” can also be used as filter keys. Type the keyword “status” followed by a colon, and then

218 Chapter 3. License

VOLTTRON Documentation, Release 6.0

the word “good,” “bad,” or “unknown.”

VOLTTRON" Central Funded by DOE EERE BTO

4

Dashboard

Q, status: bad| |:||E||:|

0 Platform 1

0 Performance

-] times_percent / irq

cpu / percent
times_percent / guest_nice
times_percent / idle
times_percent / iowait
times_percent / guest
times_percent / nice
times_percent / softirg
times_percent / steal

times_percent / system

o 0 0 0 0 0 O 0 0 O

times_percent / user

Platforms Screen

This screen lists the registered VOLTTRON platforms and allows new platforms to be registered by clicking the
Register Platform button. Each platform is listed with its unique ID and the number and status of its agents. The
platform’s name is a link that can be clicked on to go to the platform management view.

VOLTTRON" Central Funded by DOE EERE BTO Ptz (himms @Es pan

Platform 1
33e27d82-d66b-4c72-9899-be6166a44b5f | Agents: 3 running, ® stopped, 5 installed

Platform 2
7859e705-d604-4b5b-8f2b-4018780a28b8 | Agents: 2 running, © stopped, 2 installed

3.4. Developing VOLTTRON 219

VOLTTRON Documentation, Release 6.0

Platform View

From the platforms screen, click on the name link of a platform to manage it. Managing a platform includes installing,
starting, stopping, and removing its agents.

VOLTTRON" Central Funded by DOE EERE BTO PEie HhiEmE @ERs e

Platforms / Platform 1 (aae27d82-d66b-4c72-9899-be6166a44b5f)

Agents
Name uuiD Status
bacnet_proxyagent-0.1 6a3be214-27a7-476d-a1d3-f3aabc66dbbe Never started
listeneragent-3.0 0385b12e-2a5a-4dBa-abbf-6c3b6bab1ach Never started
sglhistorianagent-3.5.0 1fcb2c10-ch8e-4715-b248-69b4ad5d62b2 Running (PID 14296)
veplatformagent-3.5.1 dc720b22-4033-4961-b316-74a964e52038 Running (PID 14263)
volttroncentralagent-3.5.3 f321f0b1-2473-4763-933b-d03cfcd81500 Running (PID 12933)

Install agents
Choose Files | No file chosen

To install a new agent, all you need is the agent’s wheel file. Click on the button and choose the file to upload it and
install the agent.

To start, stop, or remove an agent, click on the button next to the agent in the list. Buttons may be disabled if the user
lacks the correct permission to perform the action or if the action can’t be performed on a specific type of agent. For
instance, platform agents and VOLTTRON Central agents can’t be removed or stopped, but they can be restarted if
they’ve been interrupted.

Add Charts

Performance statistics and device points can be added to charts either from the Charts page or from the platforms tree
in the side panel.

Click the Charts link at the top-right corner of the screen to go to the Charts page.

220 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Funded by DOE EERE BTO Dashboard atforms CE Log oul
Dashboard
From the Charts page, click the Add Chart button to open the Add Chart window.
Funded by DOE EERE BTO D rd Platfor Char Log out

Charts m

3.4. Developing VOLTTRON 221

VOLTTRON Documentation, Release 6.0

Add Chart

TOPICS

|type here to see topics

DASHBOARD
I Pin to dashboard

REFRESH INTERVAL (MS)
|1 5000 | Omit to disable

|-Selecttype- v

- Load Chart

Click in the topics input field to make the list of available chart topics appear.

222 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Add Chart

TOPICS

times_percent/nice (Platform 2)

times_percent/softirg (Platform 1)

EKG (CAMPUS2 > BUILDING3 > AC-3)

fampleLong3 (CAMPUS2 > BUILDING4 > HEATER4 > HEATER-SUB2)
SampleLong2 (CAMPUS2 > BUILDING4 > HEATER4 > HEATER-SUB2)
BampleLong1 (CAMPUS2 > BUILDING4 > HEATER4 > HEATER-SUB2)
times_percent/guest_nice (Platform 2)

GampleLong3 (CAMPUS2 > BUILDING3 > AC-3)

KampleLong2 (CAMPUS2 > BUILDING3 > AC-3)
times_percent/guest_nice (Platform 1)

kpu/percent (Platform 2)

times_percent/fiowait (Platform 2)

SampleBool1 (CAMPUS2 > BUILDING4 > HEATER4) =

Scroll and select from the list, or type in the field to filter the list, and then select.

3.4. Developing VOLTTRON 223

VOLTTRON Documentation, Release 6.0

Select a chart type and click the Load Chart button to close the window and load the chart.

224 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Add Chart

TOPICS

times_percent/system (Platform 1)

DASHBOARD
Pin to dashboard

REFRESH INTERVAL (MS)
15000

CHART TYPE

| Line v

¥-AXIS RANGE
Min: Max:

To add charts from the side panel, check boxes next to items in the tree.

VOLTTRON" Central

«

a [e)=]e)

Platform 1
Platform 2
Performance
times_percent / irq
cpu / percent

times_percent / guest_nice

<

times_percent / idle
times_percent / lowait

times_percent / guest

<

times_percent / nice
times_percent / softirg
times_percent / steal
times_percent / system
times_percent / user
Buildings

Agents

Funded by DOE EERE BTO

Charts

times_percent / idle

0.0
10 minutes ago

[*]]x]

times_percent / nice

19

0.0
10 minutes ago

[*]]x]

Dashboard Platforms ~ Charts Log oul

Add Chart

Platform 2

afew seconds ago

Platform 2

afew seconds ago

Choose points with the same name from multiple platforms or devices to plot more than one line in a chart.

3.4. Developing VOLTTRON

225

VOLTTRON Documentation, Release 6.0

VOLTTRON" Central Funded by DOE EERE BTO Dashboard Platforms Charts Log ot

<5

charss
l:l times_percent/ idle
D@D @Piatiorm 1 @ Platform 2

Platform 1 e

Performance

() times_percent / irq

() cpu / percent

() times_percent / guest_nice

¥ times_percent / idle
(7] times_percent / iowait
(] times_percent / guest
[times_percent / nice
(7] times_percent / softirg
() times_percent / steal
(] times_percent / system
[times_percent / user
Agents
Platform 2

Performance

(7] times_percent /irg

(] cpu / percent

[times_percent / guest_nice
@ times_percent / idle

() times_percent / iowait

Move the cursor arrow over the chart to inspect the graphs.

charts

times_percent / idle

@ Platform 1 @ Platform 2

16.6 ;
7 minutes ago = P
x
N 7
h’ B Platioml 2.3 == =
0.0
10 minutes ago B Plattorm 2 afew seconds ago

[#]i]x]

To change the chart’s type, click on the Chart Type button and choose a different option.

charts

times_percent / idle

@Stacked OStream O Expanded @ Platform 1 @ Platform 2
A ’
10 minutes ago afew seconds ago

~g

226 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Dashboard Charts

To pin a chart to the Dashboard, click the Pin Chart button to toggle it. When the pin image is black and upright, the
chart is pinned; when the pin image is gray and diagonal, the chart is not pinned and won’t appear on the Dashboard.

Charts Add Chart
@Stacked OStream QO Expanded Platform 1 @ Platform 2
29.7
x
10 minutes ago a few seconds ago

| x)

Charts that have been pinned to the Dashboard are saved to the database and will automatically load when the user
logs in to VOLTTRON Central. Different users can save their own configurations of dashboard charts.

Remove Charts

To remove a chart, uncheck the box next to the item in the tree or click the X button next to the chart on the Charts
page. Removing a chart removes it from the Charts page and the Dashboard.

3.4.4 Eclipse IDE Setup

The only thing that is necessary to create a VOLTTRON agent is a text editor and the shell. However, we have found
the Eclipse Development Environment (IDE) to be a valuable tool for helping to develop VOLTTRON agents. You
can obtain the latest (MARS as fo 10/7/15) from http://www.eclipse.org/. Once downloaded the PyDev Plugin is a
valuable tool for executing the platform as well as debugging agent code.

e [nstall PyDev Plugin

* Clone the VOLTTRON Source

* Build VOLTTRON

* Link Eclipse to VOLTTRON Python Environment
* Make Project a PyDev Project

e Testing the Installation

» Execute VOLTTRON Through Shell

* Execute VOLTTRON Through Eclipse

» Start a ListenerAgent

PyDev Plugin

Installing the PyDev plugin from the Eclipse Market place There is a python plugin for eclipse that makes development
much easier. Install it from the eclipse marketplace.

3.4. Developing VOLTTRON 227

http://www.eclipse.org/

VOLTTRON Documentation, Release 6.0

Help

27

[@ @& & & &

Welcome

Help Contents
Search

Dynamic Help

Key Assist...
Tips and Tricks...
Report Bug or Enhancement...

Cheat Sheets...
Perform Setup Tasks...

Check for Updates
Install Mew Software...
Installation Details

Eclipse Marketplace...

About Eclipse

Ctrl+5hift+L

228

Chapter 3. License

VOLTTRON Documentation, Release 6.0

f®) Eclipse Marketplace R T | o S

Eclipse Marketplace

Select solutions to install. Press Finish to proceed with installation.
Press the information button to see a detailed overview and a link to more information.

Search | Recent | Popular | Installed.l . August Newsletter|
Find: | pydey Q7] (Al Markets « | [All Categories -

PyDev - Python IDE for Eclipse 4.4.0 -

PyDev is a plugin that enables Eclipse to be used as a Pythen IDE (supporting
EPYDEV also Jython and IronPython). It uses advanced type inference techniques to

provide... more info

m

by Brainwy Software, EPL
IDE Python Aptana Pydev Dhango

Installs: 422K (13,057 last month)

Marketplaces

Eo

@ <Back || Install Now » Finish

Cloning the Source Code

The VOLTTRON code is stored in a git repository. Eclipse (Luna and Mars) come with a git plugin out of the box.
For other versions the plugin is available for Eclipse that makes development more convenient (note: you must have
Git already installed on the system and have built VOLTTRON):

If your version of Eclipse does not have the marketplace follow these instructions.
The project can now be checked out from the repository into Eclipse.

1. Open the Git view

3.4. Developing VOLTTRON 229

VOLTTRON Documentation, Release 6.0

5e

‘1}! Open Perspective + X . @ |
&z CVS Repository Exploring o 59

35 Debug

i) Git)

&’ Java (default)

2J Java Browsing

t2d java Type Hierarchy
«J= Plug-in Development
& PyDev

(5 Resource

&% Team Synchronizing

e is not ava

Cancel oK

2. Clone a Git Repository

230 Chapter 3. License

VOLTTRON Documentation, Release 6.0

17) Git Repositories 53 = = - o

Select one of the following to add a repository to this view:

L% ‘Add an existing local Git repository

mmf 5 Cione a Git repository

¥ Create a new local Git repository

3. Fill out the URI: https://github.com/VOLTTRON/volttron

3.4. Developing VOLTTRON 231

https://github.com/VOLTTRON/volttron

VOLTTRON Documentation, Release 6.0

Source Git Repository

Enter the location of the source repository

4. Select master for latest stable version

232 Chapter 3. License

VOLTTRON Documentation, Release 6.0

i Clone Git Repository + X E
Branch Selection
GIT | 1
Select branches to clone from remote repository. Remote tracking branches d
will be created to track updates for these branches in the remote repository.
Branches of https://github.com/VOLTTRON/volttron: u
't;.rpe filter text a |
g 2x
[] &5 3x i
(] &= 4.0-patch
(] &2 develop :
(] & fix-bacnet-grab-hardcode R
0
[] 2% releases/3.5rc1 s
[] 2% releases/4.0.1 <
(] releasesfvolttron-3rd-tech-meeting in
m
C

|' select Al | | Deselect All |

® < Back || Next > Cancel | | Finish

5. Import the cloned repository as a general project

3.4. Developing VOLTTRON 233

VOLTTRON Documentation, Release 6.0

Git Repositories 3

= ST ¥ = O

volttron [2.x] - /home/volttron/aitivolttron/.ait

&5 Switch To e
r) Commit... Ctrl+#
[Clean...

4= Stash Changes...

=] Push to Upstream

4] Fetch from Upstream
=] Push Branch...

=] Pull

Remaote B

T Merge...
H Rebase...

= Reset...

Import Projects...

Show In Shift+Alt+W »

I collect Garbage
// Remove Repository from View
Delete Repository...

Add Submodule...

Copy Path to Clipboard Ctrl+C
Paste Repository Path or URI Ctrl+V
Properties Alt+Enter

6. Pick a project name (default volttron) and hit Finish

234

Chapter 3. License

VOLTTRON Documentation, Release 6.0

Import Projects from Git Repository /home/volttron/git/volttron/.git + X

Import Projects

Import projects from a Git repository

Project name |volttron

Directory

< Back | Next = . Cancel | . Finish

7. Switch to the PyDev perspective

Build VOLTTRON

Continue the setup process by opening a command shell. Make the current directory the root of your cloned VOLT-
TRON directory. Follow the instructions in our Building VOLTTRON section of the wiki and then continue below.

Linking Eclipse and the VOLTTRON Python Environment
From the Eclipse IDE right click on the project name and select Refresh so eclipse will be aware of the file system
changes. The next step will define the python version that PyDev will use for VOLTTRON
1. Choose Window - > Preferences
2. Expand the PyDev tree
3. Select Interpreters - > Python Interpreter
4. Click New
5. Click Browse and browse to the pydev-python file located in scripts directory off of the volttron source
6

. Click Ok

3.4. Developing VOLTTRON 235

VOLTTRON Documentation, Release 6.0

Select interpreter X

Enter the name and executable of your interpreter

Interpreter Name: ‘ Agent Python ’

Interpreter Executable:

/home/brandon/devel/volttror}/scripts/pydev-python Browse... ’

Cancel ’ ‘ OK

7. Select All, then uncheck the VOLTTRON root like the picture below

Selection needed X

Select the folders to be added to the SYSTEM pythonpath!
IMPORTANT: The folders for your PROJECTS should NOT be added here, but in your project configuration.

Check:http://pydev.org/manual_101_interpreter.html for more details.

® A /home/brandon/devel/volttron

(¥ % /home/brandon/devel/voltt ron/env/lib/python2.7

v/ & /home/brandon/devel/voltt ron/env/lib/python2.7/lib-dynload
V& Jusr/lib64/python2.7

M & /usr/lib/python2.7

(¥ & /usr/lib/python2.7/plat-linux2

V& Jusr/lib64/python2.7/lib-tk

¥ & /usr/lib/python2.7/lib-tk

¥/ % /home/brandon/devel/voltt ron/env/lib/python2.7/site-packages

V& /home/brandon/.eclipse/org.eclipse.platform_4.5.0_155965261 _linux_gtk_x86_64/plugins/org.py

Select All not in Workspace

‘ Select All H Deselect All

@ ‘ Cancel ’ ‘ oK

8. Click Ok

236 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Note: You may need redo this stage after platform updates

Make Project a PyDev Project

1. In the Project/PackageExplorer view on the left, right-click on the project, PyDev-> Set as PyDev Project

2. Switch to the PyDev perspective (if it has not already switched), Window -> Open Perspective -> PyDev

0= e 2|

#5: volttron [volttron 2.1

New
Go Into

Copy

[T Paste

i Delete
Move...
Rename...

Remove from Context

Ex1 Import...
[Export...

2| Refresh

Clese Project

Debug As

Run As

Team
Compare With
Replace With

Configure

Properties

Close Unrelated Projects

Restore from Local History..

Alt+Enter

F5

Remove error markers

» 4— Organize Imports ...

Source format python files

= volttron

Remove *.pyc, *.pyo and *$py.class Files
[Set as Source Folder (add to PYTHONPATH)
EA set as Django Project

Eclipse should now be configured to use the project’s environment.

Testing the Installation

*. Set as PyDev Project

In order to test the installation the VOLTTRON platform must be running. You can do this either through /e shell or

through Eclipse.

Execute VOLTTRON Through Shell

1. Open a console and cd into the root of the volttron repository.

2. Execute source env/bin/activate

3.4. Developing VOLTTRON

237

VOLTTRON Documentation, Release 6.0

3. Execute volttron -vv

o Terminal
G cd git/volttron

. env/bin/activate
volttron -vv --developer-mode

2015-10-07 22:51:81,937 () volttron.platform
t increased from 1024 to 4096
2015-10-07 22:51:81,937 () volttron.platform

.main DEBUG: open file resource limi

.main WARNING: developer mode enable

d; authentication and encryption are disabled!

2015-10-07 22:51:01,939 () volttron.platform.

uthentication enabled

2015-10-07 22:51:01,939 () volttron.platform.

vdev/.volttron/auth.json

2015-10-07 22:51:01,939 () volttron.platform.

lttron/auth.json loaded

2015-10-07 22:51:01,944 () volttron.platform.

ound to inproc://vip
2015-10-07 22:51:81,944 () volttron.platform

auth WARNING: insecure permissive a
auth INFO: loading auth file /home/
auth INFO: auth file /home/vdev/.vo
main DEBUG: In-process VIP router b

.main DEBUG: Local VIP router bound

to ipc://@/home/vdev/.volttron/run/vip.socket?domain=vip#c8950b21-d618-4e37-bdfa

-CBeb755c034a

You now have a running VOLTTRON logging to standard out. The next step to verifying the installation is to start a
listeneragent.

Execute VOLTTRON Through Eclipse

Click the New Launch Configuration button

L
i
b
|
ik
<

& Jython unittest

m2 Maven Build

& 05Gi Framework

EAryDev Django

43 PyDev Google App Run
~ @ Python Run

R)
& economizer_rtu3

. Click Run -> Run Configuration from the Eclipse Main Menu

Change the name and select the main module volttron/platform/main.py

238

Chapter 3. License

VOLTTRON Documentation, Release 6.0

CyLrcw - nunpIc

Run Configurations + X

Create, manage, and run configurations @
iC

BERT | 3 v Name: [volttrun volttren l
K [type filter text P (@ Main “_bd= Arguments\l = Interpreteﬂ o Ihfreshw -] En\rironmenﬂ = gommon) N
: & Eclipse Application Project B
; @' IronPython Run [volttrun l Browse...
2 & IronPython unittest Main Module
q| E2tavaapplet [E Cworkspace Toc:volttron/env/binvolttron || Browse..
o 51 Java Application
i Ju JUnit PYTHOMNPATH that will be used in the run: _
A Jii JUnit Plug-in Test fhomefvolttron/Desktop/eclipse/plugins/org.python.pydev_3.8.0.201409251235/pysrc/py!
i & Jython run fhomefvolttron/git/volttron/env/local/lib/python2.7/site-packages/BACpypes-0.10.3-py2.7.
A & Jython unittest fhome/volttron/git/volttron/libfjsonrpc
! & 05Gi Framework fhome/fvolttron/git/volttron/lib/clock
! B pyDev Django fhomefvolttron/git/volttron
i £5 PyDev Google App Run|| | | /home/volttron/git/volttron/envylib/python2.7/site-packages/BACpypes-0.10.3-py2.7.eqg |~
| R & Python Run fhome/volttron/gitfvolttron/env/lib/python2.7
! fhome/volttron/git/volttron/env/lib/python2.7/lib-dynload
] & Python unittest possiit=adbo—as 5

;iher matched 15 of 15 itejrln | aah | | S |
| @ l Close J l Run l
is T

4. Click the Arguments Tab add ‘-vv’ to the arguments and change the working directory to default

3.4. Developing VOLTTRON 239

VOLTTRON Documentation, Release 6.0

v Run Configurations X
Create, manage, and run configurations @
OB X F 2 - Name: |.volttr0nmain.py |
| a | @ Main | = Arguments . & Imerpreter} o RefreshwEEmrironmemWr_:lgommonw
& Jython unitest
-Program arguments:
m2 Maven Build -
VY
4 0SGi Framework { |
B rypev Django
48 PyDev Google App Run Variables... |
3
¥ @ Python Run VM arguments (for python.exe or java.exe):
&' economizer_rtu3 =
&' listener agent { |
& mysql platform.historian -
. Variables... |
& platform L —
& sqlite historian ‘Working directory:
© Default: .${project_loc:.fselected project name} |
& Python unittest -
JuyTask Context Test () Other: ${workspace_loc:velttron/volttron/platform}
4 5L
) Revert Appl
Filter matched 29 of 29 items o -
® | Close Run
5. Click Run. The following image displays the output of a successfully started platform
" Search & Console % |5 Debug [/ History X % W Fm B BE E N = A
—developer-mode
2015-10-87 22:26:01,812 () main.py WARNING: developer mode enabled; authentication and encryption are disabled!
2015-10-87 22:26:01,817 () volttron.platform.auth WARNING: insecure permissive authentication enabled
2015-10-87 22:26:01,817 () volttron.platform.auth INFO: loading auth file /home/vdev/.volttron/auth.json
2015-10-87 22:26:01,818 () volttron.platform.auth INFO: auth file /home/vdev/.volttron/auth.json loaded
2015-10-87 22:26:01,819 () main.py DEBUG: In-process VIP router bound to inproc://vip
2015-10-87 22:26:01,823 () main.py DEBUG: Local VIP router bound to ipc://@/home/vdev/.volttron/run/vip.socket?dom

ref _Start-Listener-Eclipse:

Start a ListenerAgent

Warning: Before attempting to run an agent in Eclipse, please see the note in: AgentDevelopment

The listener agent will listen to the message bus for any published messages. It will also publish a heartbeat message
ever 10 seconds (by default).

Create a new run configuration entry for the listener agent.

1. In the Package Explorer view, open examples -> ListenerAgent —> listener

2. Righ-click on agent.py and select Run As -> Python Run (this will create a run configuration but fail)
3. On the menu bar, pick Run -> Run Configurations. . .
4. Under Python Run pick “volttron agent.py”
5. Click on the Arguments tab and Change Working Directory to Default
240 Chapter 3. License

VOLTTRON Documentation, Release 6.0

6. In the Environment tab, click new set the variable to AGENT_CONFIG with the value of
/home/git/volttron/examples/ListenerAgent/config

N Debug Configurations x

Create, manage, and run configurations

% = Name:|\rolttronagent.py |

L

i)
| type filter text L x| | @ Main | 9= Arguments ‘r’ Interpreter | = Refresh | B Environment .] Commen
JPyDev Ljango
Environment variables to set:
ev Google un
LaPyDev Google App R
- EF Python Run Variable Value |. New... .|
i @ i i
& economizer_rtu3 AGENT_CONFIG fhome/vdevigitivolttron/examples/Listene | Select. |
& mysql platform.histor :
EP platform e
& sqlite historian Remove

& volttron main.py
&' Python unittest
[Z Remote Java Applicatior
% Remote JavaScript

(@ Append environment to native environment

4] Rhino JavaScript

JuyTask Context Test () Replace native environment with specified environment

3 XSL
- - Revert Apply
Filter matched 32 of 32 items

® | Close | Debug

7. Click Run, this launches the agent

You should see the agent start to publish and receive its own heartbeat message in the console.

3.4.5 Pycharm Development Environment

Pycharm is an IDE dedicated to developing python projects. It provides coding assistance and easy access to debugging
tools as well as integration with py.test. It is a popular tool for working with VOLTTRON. Jetbrains provides a free
community version that can be downloaded from https://www.jetbrains.com/pycharm/

Open Pycharm and Load VOLTTRON

When launching Pycharm for the first time we have to tell it where to find the VOLTTRON source code. If you
have already cloned the repo then point Pycharm to the cloned project. Pycharm also has options to access remote
repositories.

Subsequent instances of Pycharm will automatically load the VOLTTRON project.

Note: When getting started make sure to search for gevent in the settings and ensure that support for it is enabled.

3.4. Developing VOLTTRON 241

https://www.jetbrains.com/pycharm/

VOLTTRON Documentation, Release 6.0

Welcome to PyCharm Community Edition

=

PyCharm Community Edition

Version 2017.2

3 Create New Project

= Open

¥ Checkout from Version Control ~

Configure + GetHelp +

U B8 B @ e oncemeom.) ' ' 40N

volttron - [~/volttron] - PyCharm Community Edition 2017.2 -+ ox

Fle Edit View Navigate Code Refactor Run Tools VCS Window Help

1% volttron) [bootstrap.py Ly &P s m|qQ
o Project - LIRS
v B volttron ~/volttron
» B cache
» B chintegration
» bs config
» b= configs
» B docs
> menv
» B examples
» B scripts
> I services
» b= volttron
» B volttron.egg-info
» Ex volttrontesting
& giignore
& gitmodules
& project
& pydevproject
] travis.yml

{4 conftest py
& COPYRIGHT
i optional requirements son
& pylintre
& pytestini
2 READMEmd
& RELEASE NOTES.md
& remove allpl
2 requirements.txt
i setup.py
& startvoltron
2 stop-volttron
& TERMS.Md
Il External Libraries

Git.develop: & & ()

O S8 8 [E e e] PR LT

Set the Project Interpreter

This step should be completed after running the bootstrap script in the VOLTTRON source directory. Pycharm needs
to know which python environment it should use when running and debugging code. This also tells Pycharm where to
find python dependencies. Settings menu can be found under the File option in Pycharm.

242 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Settings + X
@) Project: volttron » Project Interpreter = For current project Reset
iz Project Interpreter: [/home/mikevolttron/env/bin/python n @
Code Style [=
Inspections B Package Version Latest +
File and Code Templates B Babel 20 20
) linjaz 2596 296
File Encodings e MarkupSafe 1.0 1.0
Live Templates Pygments 2.2.0 2.2.0
File Types Sphinx 1.63 1.63
Twisted 16.4.1 = 17.5.0
Bt alabaster 0.7.10 07.10
Images argparse 1.21 = 140
Intentions bacpypes 0.15.0
- e = docutils 0.13.1 = 0.14rc2
nguage Injections enum34 116 116
Spelling E funcsigs 1.0.2 1.0.2
TODO gevent IRIE » 122
Plugins greenlet 0.4.10 =» 0412
9 imagesize 0.7.1 0.7.1
Version Control = mock 2.0.0 2.0.0
Project: volttron E monotonic 1.2 » 13
. bi 1.10.0 =» 3141
Project Interpreter p. "
pip 9.0.1 9.0.1
Project Structure B ply 3.9 » 3.10
Build, Execution, Deployment psutil 431 ® 522
Debugger Py 14.34 1.4.34
pymodbus 1.2.0 » 131
Python Debugger E pyserial ERR = 34
Buildout Support = pytest 313 » 320
rasthan Ad-ataotil nED L W |
Console [
“ I Cancel | I Apply | I Help ‘

Running the VOLTTRON Process

If you are not interested in running the VOLTTRON process itself in Pycharm then this step can be skipped.

In Run > Edit Configurations create a configuration that has <your source dir>/env/bin/volttron in the script field,
-vv in the script parameters field (to turn on verbose logging), and set the working directory to the top level source
directory.

VOLTTRON can then be run from the Run menu.

3.4. Developing VOLTTRON 243

VOLTTRON Documentation, Release 6.0

Name: ‘vulttru-n | ("] share] Single instance cnly

Configuration | Logs |

Script: | /home/mikefvolttron/env/bindvolttron |E]

Script parameters: |-w |

+ Environment

Environment variables: | PYTHONUNBUFFERED=1 ||:]
Python interpreter: | Project Default (Python 2.7.6 virtualenv at ~/volttron/env) n
Interpreter options: | |
Working directory: | thome/mikefvolttron ”:]

Add content roots to PYTHONPATH

Add source roots to PYTHOMPATH

[Emulate terminal in output console

[] show command line afterwards

= Before launch: Activate tool window

-

Running an Agent

Running an agent is configured similarly to running VOLTTRON proper. In Run > Edit Configurations add a
configuration and give it the same name as your agent. The script should be the path to scripts/pycharm-launch.py and
and the script parameter must be the path to your agent’s agent.py file.

In the Environment Variables field add the variable AGENT_CONFIG that has the path to the agent’s configuration file
as its value, as well as AGENT_VIP_IDENTITY, which must be unique on the platform.

A good place to keep configuration files is in a directory called config in top level source directory; git will ignore
changes to these files.

Note: There is an issue with imports in Pycharm when there is a secondary file (i.e. not agent.py but another module
within the same package). When that happens right click on the directory in the file tree and select Mark Directory
As -> Source Root

244 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Name: | listener [[] share [_] Single instance only
Configuration | | ogs

Script: fhome/mike/volttron/scripts/pycharm-launch.py

Script parameters: fhome/mike/volttron/examples/ListenerAgent/listener/agent.py

][]

* Environment

Environment variables: | P_IDENTITY=listener;,PYTHONUNBUFFERED=1,AGENT_CONFIG=examples/ListenerAgent/config

Python interpreter: Python 2.7.6 virtualenv at ~/volttron/env

Interpreter options:

(][

Working directory: fhome/mike/voltron
Add content roots to PYTHONPATH Environment Variables
Add source roots to PYTHONPATH Name Value
L AGENT_VIP_IDENTITY listener
(] Emulate terminal in output console
PYTHONUNBUFFERED 1
[C] show command line afterwards .
AGENT_CONFIG examples/ListenerAgent/config
v Before launch: Activate tool window Include parent environment variables Show
+ S
o =
volttron - [~/volttron] - ./examples/ListenerAgent/listener/agent.py - PyCharm Community Edition 2017.2 B
File Edit View Navigate Code Refactor Run Tools VCS Window Help
wolttron examples ListenerAgent listener agent.py Llistener - | b, ¥ ¥ V¥ " Q

£ Project - © % | #- 1| iaagentpy

Alerter
AlertMonitor fron _future__ absolute_inport
Cagent
ConfigActuation
configurations
CsvHistorian
DataPublisher

DDsAgent volttron. platform.me:

volttron.platform.vip.ag Core, PubSub, compat
deprecated-remove-5.0 volttron.platform.agent t
ExampleDrivenControlAgent
ExampleMatlabApplication ing()

Examplesubscriber
ListenerAgent
listener DEFAULT_AGENTID
_init_py DEFAULT_HEARTBEAT_PERTOD
agentpy
settings py
tests
nfig
nfig temp
ecreqsjson
s listeneragent aunch,son
setuppy
MobilityExample
MultiNodeExample
NodeRed
Processagent
QueryForwarder
Schedulerexample

, listener

main
main g Bus: ', Topic: 'heartbeat/ Headers: {'Date

Headers: {'Date’

=]

Gits develop ¢

L
volttron - [~Avolttron] - ./exa... | B /bin/bash & /binvbash 7 1) @ Oy 1559
) # 9%

Testing an Agent

Agent tests written in py.test can be run simply by right-clicking the tests directory and selecting Run ‘py.test in tests,
so long as the root directory is set as the VOLTTRON source root.

3.4. Developing VOLTTRON 245

VOLTTRON Documentation, Release 6.0

CrateHistorian
DataMom

New
Emailer
External)
. Copy
Failover
] Copy Path
FileWatc ,
Copy Relative Path
Forward .-,
. [t Paste
LogStati _
MasterD and _QSE ges
mad FmdlnE%zth...
tesl Replace in Path...

fake. Inspect Code..

IDEn Refactor

= sefup Add to Favorites

Messagé ShowImage Thumbnails

Mongod pgjete..

M d ,
onge Run 'py.test in tests (3)...'

MOQTTHI™,
MultiBui
OpenEIS
sMAPHic Local History

SQLAggr Git

SQLHist 42 Synchronize 'tests'

3.4.6 Scalability Experiments

Scalability Setup

Core Platform

Repeat but with multiple agents

Inject faults to test impact of error handling

How many can be started on a single platform?

How does it affect memory?

How is CPU affected?

mast Clean Python Compiled Files

#k Debug 'py.test in tests (3)...

L, Select 'py.testin tests (3)...

74 __version Slo%

75 DEFAULT MESSAGE L1 1er Messac

Ctri+X

Ctri+C
Ctri+Shift+C
Ctri+Alt+Shift+C
Ctri+V

Alt+F7
Ctri+Shift+F
Ctri+Shift+R

Ctri+Shift+T

Delete

VIP router - how many messages per second can the router pass

\ULT AGENTID - "listener
\ULT HEARTBEAT PERIOD - 5

55 ListenerAgent (Agent)

| config path
super(ListenerAgent
.config = utils.load
._agent id C
. _message .confi
._heartbeat period

._heartbeat period

_log.warn('Invalid hea
._heartbeat period
log level .config.ge
if log level ERROR
. logfn = log.err
elif log level WARN
. logfn = log.war
=1if log level DEBUG
. logfn = log.deb

. _logfn

A single agent can connect and send messages to itself as quickly as possible

Maybe just increase the number of connected but inactive agents to test lookup times

246

Chapter 3. License

VOLTTRON Documentation, Release 6.0

Socket types

inproc - lockless, copy-free, fast
ipc - local, reliable, fast
tcp - remote, less reliable, possibly much slower

test with different

latency

throughput

jitter (packet delay variation)

error rate

Subsystems

ping - simple protocol which can provide baseline for other subsystems
RPC - requests per second
Pub/Sub - messages per second

How does it scale as subscribers are added

Core Services

historian
How many records can be processed per second?
drivers

BACnet drivers use a virtual BACnet device as a proxy to do device communication. Currently there is no
known upper limit to the number of devices that can be handled at once. The BACnet proxy opens a single UDP
port to do all communication. In theory the upper limit is the point when UDP packets begin to be lost due to
network congestion. In practice we have communicated with ~190 devices at once without issue.

ModBUS opens up a TCP connection for each communication with a device and then closes it when finished.
This has the potential to hit the limit for open file descriptors available to the master driver process. (Before,
each driver would run in a separate process, but that quickly uses up sockets available to the platform.) To
protect from this the master driver process raises the total allowed open sockets to the hard limit. The number
of concurrently open sockets is throttled at 80% of the max sockets. On most Linux systems this is about 3200.
Once that limit is hit additional device communications will have to wait in line for a socket to become available.

Tweaking tests

Configure message size
Perform with/without encryption

Perform with/without authentication

3.4. Developing VOLTTRON 247

VOLTTRON Documentation, Release 6.0

Hardware profiling

Perform tests on hardware of varying resources: Raspberry Pi, NUC, Desktop, etc.

Scenarios

One platform controlling large numbers of devices
One platform managing large numbers of platforms

Peer communication (Hardware demo type setup)

Impact on Platform

What is the impact of a large number of devices being scraped on a platform (and how does it scale with the hardware)?

Historians

At what point are historians unable to keep up with the traffic being generated?

Is the bottleneck the sqlite cache or the specific implementation (SQLite, MySQL, sMAP)

Do historian queues grow so large we have a memory problem?

Large number of devices with small number of points vs small number of devices with large number of points
How does a large message flow affect the router?

Examine effects of the watermark (does increasing help)

Response time for volttron-ctl commands (for instance: status)

Affect on round trip times (Agent A sends message, Agent B replies, Agent A receives reply)

Do messages get lost at some point (EAgain error)?

What impact does security have? Are things significantly faster in developer-mode? (Option to turn off encryp-
tion, no longer available)

Regulation Agent
Every 10 minutes there is an action the master node determines.

Duty cycle cannot be faster than that but is set to 2 seconds for simulation. | Some clients miss duty cycle signal |
Mathematically each node solves ODE. | Model notes accept switch on/off from master. | Bad to lose connection
to clients in the field

Chaos router to introduce delays and dropped packets.

MasterNode needs to have vip address of clients.

Experiment capture historian - not listening to devices, just capturing results

Go straight to db to see how far behind other historians

Improvements Based on Results

Here is the list of scalability improvements so far:

Reduced the overhead of the base historian by removing unneeded writes to the backup db. Significantly improved
performance on low end devices.

248

Chapter 3. License

VOLTTRON Documentation, Release 6.0

Added options to reduce the number of publishes per device per scrape. Common cases where per point publishes and
breadth first topics are not needed the driver can be configured only publish the depth first “all” or any combination
per device the operator needs. This dramatically decreases the platform hardware requirements while increasing the
number of devices that can be scraped.

Added support for staggering device scrapes to reduce CPU load during a scrape.

Further ideas:

Determine if how we use ZMQ is reducing its efficiency.
Remove an unneeded index in historian backup db.
Increase backup db page count.

Scalability Planning

Goals

 Determine the limits of the number of devices that can be interacted with via a single Volttron platform.

* Determine how scaling out affects the rate at which devices are scraped. i.e. How long from the first device
scrape to the last?

* Determine the effects of socket throttling in the master driver on the performance of Modbus device scraping.
* Measure total memory consumption of the Master Driver Agent at scale.
* Measure how well the base history agent and one or more of the concrete agents handle a large amount of data.

* Determine the volume of messages that can be achieved on the pubsub before the platform starts rejecting them.

Test framework
Test Devices

Simple, command line configured virtual devices to test against in both Modbus and BACnet flavors. Devices should
create 10 points to read that generate either random or easily predictable (but not necessarily constant) data. Process
should be completely self contained.

Test devices will be run on remote hosts from the Volttron test deployment.

Launcher Script

* The script will be configurable as to the number and type of devices to launch.
* The script will be configurable as to the hosts to launch virtual devices on.

* The script (probably a fabric script) will push out code for and launch one or more test devices on one or more
machines for the platform to scrape.

* The script will generate all of the master driver configuration files to launch the master driver.
* The script may launch the master driver.

* The script may launch any other agents used to measure performance.

3.4. Developing VOLTTRON 249

VOLTTRON Documentation, Release 6.0

Shutdown Script

* The script (probably the same fabric script run with different options) will shutdown all virtual drivers on the
network.

* The script may shutdown the master driver.

* The script may shutdown any related agents.

Performance Metrics Agent

This agent will track the publishes by the different drivers and generate data in some form to indicate:
* Total time for all devices to be scraped
¢ Any devices that were not successfully scraped.

 Performance of the message bus.

Additional Benefits

Most parts of a test bed run should be configurable. If a user wanted to verify that the Master Driver worked, for
instance, they could run the test bed with only a few virtual device to confirm that the platform is working correctly.

Running a simple test

You will need 2 open terminals to run this test. (3 if you want to run

the platform in it’s own terminal) | Checkout the feature/scalability branch.
Start the platform.
Go to the volttron/scripts/scalability-testing directory in two different terminals. (Both with the environment activated)

In one terminal run:

python config builder.py —--count=1500 --scalability-test --scalability-test-
—literations=6 fake fakel8.csv localhost

Change the path to fake.csv as needed.

(Optional) After it finishes run:

’./launch_fake_historian.sh

to start the null historian.

In a separate terminal run:

’./launch_scalability_drivers.sh

to start the scalability test.
This will emulate the scraping of 1500 devices with 18 points each 6 times, log the timing, and quit.

Redirecting the driver log output to a file can help improve performance. Testing should be done with and without the
null historian.

250 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Currently only the depth first all is published by drivers in this branch. Uncomment the other publishes in driver.py to
test out full publishing. fake.csv has 18 points.

Optionally you can run two listener agents from the volttron/scripts directory in two more terminals with the command:

./launch_listener.sh

and rerun the test to see the how it changes the performance.

Real Driver Benchmarking

Scalability testing using actual MODBUS or BACnet drivers can be done using the virtual device applications in
the scripts/scalability-testing/virtual-drivers/ directory. The configuration of the master driver and launching of these
virtual devices on a target machine can be done automatically with fabric.

Setup

This requires two computers to run: One for the VOLTTRON platform to run the tests on (“the platform™) and a target
machine to host the virtual devices (“the target”).

Target setup

The target machine must have the VOLTTRON source with the feature/scalability branch checked out and boot-
strapped. Make a note of the directory of the VOLTTRON code.

Platform setup

With the VOLTTRON environment activated install fabric.

pip install fabric

Edit the file scripts/scalability-testing/test_settings.py as needed.

* virtual_device_host (string) - Login name and IP address of the target machine. This is used to remotely start
and stop virtual devices via ssh. “volttron@10.0.0.1”

* device_types - map of driver types to tuple of the device count and registry config to use for the virtual devices.
Valid device types are “bacnet” and “modbus”.

* volttron_install - location of volttron code on the target.

To configure the driver on the platform and launch the virtual devices on the target run

fab deploy_virtual_devices

When prompted enter the password for the target machine. Upon completion virtual devices will be running on the
target and configuration files written for the master driver.

Launch Test

If your test includes virtual BACnet devices be sure to configure and launch the BACnet Proxy before launching the
scalability driver test.

3.4. Developing VOLTTRON 251

mailto:"volttron@10.0.0.1

VOLTTRON Documentation, Release 6.0

(Optional)

’./launch_fake_historian.sh

to start the null historian.

In a separate terminal run:

’./launch_scalability_drivers.sh

to start the scalability test.

To stop the virtual devices run

’fab stop_virtual_devices

and enter the user password when prompted.

3.4.7 Examples/Samples
Agents

CAgent

The C Agent uses the ctypes module to load a shared object into memory so its functions can be called from python.

There are two versions of the C Agent. The first is a standard agent that can be installed with the make agent script.
The other is a driver interface for the master driver.

Building the Shared Object

The shared object library must be built before installing C Agent examples. Running make in the C Agent source
directory will compile the provided C code using the position independent flag; a requirement for creating shared
objects.

Files created by make can be removed by running make clean.

Agent Installation

After building the shared object library the standard agent can be installed with the make-agent script.

The driver interface example must be copied or moved to the master driver’s interface directory. The C Driver config-
uration tells the interface where to find the shared object. An example is available in the C Agent’s driver directory.

CSVHistorian

The CSV Historian Agent is an example historian agent that writes device data to the CSV file specified in the config-
uration file.

This is the code created during Kyle Monson’s presentation on VOLTTRON Historians at the 2017 VOLTTRON
Technical Meeting.

252 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Explanation of CSVHistorian

Setup logging for later.

utils.setup_logging()
_log = logging.getLogger (__name__)

The historian method is called by utils.vip_main when the agents is started (see below). utils.vip_main expects a
callable object that returns an instance of an Agent. This method of dealing with a configuration file and instantiating
an Agent is common practice.

def historian(config_path, *xkwargs):
if isinstance(config_path, dict):
config_dict = config_path
else:
config_dict = utils.load_config(config_path)

output_path = config_dict.get ("output", "~/historian_output.csv")

return CSVHistorian (output_path = output_path, *xkwargs)

All historians must inherit from BaseHistorian. The BaseHistorian class handles the capturing and caching of all
device, logging, analysis, and record data published to the message bus.

class CSVHistorian (BaseHistorian) :

The Base Historian creates a separate thread to handle publishing data to the data store. In this thread the Base
Historian calls two methods on the created historian, historian_setup and publish_to_historian.

The Base Historian created the new thread in it’s __init__ method. This means that any instance variables must
assigned in __init__ before calling the Base Historian’s __init__ method.

def __init__ (self, output_path="", xxkwargs):
self.output_path = output_path
self.csv_dict = None
super (CSVHistorian, self).__init__ (xxkwargs)

Historian setup is called shortly after the new thread starts. This is where a Historian sets up a connect the first time.
In our example we create the Dictwriter object that we will use to create and add lines to the CSV file.

We keep a reference to the file object so that we may flush its contents to disk after writing the header and after we
have written new data to the file.

The CSV file we create will have 4 columns: timestamp, source, topic, and value.

def historian_setup(self):
self.f = open(self.output_path, "wb")
self.csv_dict = csv.DictWriter(self.f, ["timestamp", "source", "topic", "value"])
self.csv_dict.writeheader ()
self.f.flush{()

publish_to_historian is called when data is ready to be published. It is passed a list of dictionaries. Each dictionary
contains a record of a single value that was published to the message bus.

The dictionary takes the form:

(continues on next page)

3.4. Developing VOLTTRON 253

VOLTTRON Documentation, Release 6.0

(continued from previous page)

'timestamp': timestampl.replace (tzinfo=pytz.UTC), #Timestamp in UTC

'source': 'scrape', #Source of the data point.

'topic': "pnnl/isbl/hvacl/thermostat", #Topic that published to without prefix.
'value': 73.0, #Value that was published

'meta': {"units": "F", "tz": "UTC", "type": "float"} #Meta data published with,_,

—~the topic
}

Once the data is written to the historian we call self.report_all_handled() to inform the BaseHistorian that all data we
received was successfully published and can be removed from the cache. Then we can flush the file to ensure that the
data is written to disk.

def publish_ to_historian(self, to_publish_list):
for record in to_publish_list:

row = {}

row["timestamp"] = record["timestamp"]
row["source"] = record["source"]
row["topic"] = record["topic"]
row["value"] = record["value"]

self.csv_dict.writerow (row)

self.report_all_handled()
self.f.flush{()

This agent does not support the Historian Query interface.

Agent Testing

The CSV Historian can be tested by running the included launch_my_historian.sh script.

Agent Installation

This Agent may be installed on the platform using the standard method.

Example Agents Overview

Some example agents are included with the platform to help explore its features.
e DataPublisher
* ListenerAgent

* Process Agent

SchedulerExampleAgent
* CAgent

* DDSAgent

* CSVHistorian

More complex agents contributed by other researchers can also be found in the examples directory. It is recommended
that developers new to VOLTTRON understand the example agents first before diving into the other agents.

254 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Example Agent Conventions

Some of the example agent classes are defined inside a method, for instance:

def ScheduleExampleAgent (config_path, =x*kwargs):
config = utils.load_config(config_path)
campus= config['campus']

This allows configuration information to be extracted from an agent config file for use in topics.

@Pubsub.subscribe ('pubsub', DEVICES_VALUE (campus=campus))
def actuate(self, peer, sender, bus, topic, headers, message):

Fake Driver

The FakeDriver is included as a way to quickly see data published to the message bus in a format that mimics what a
true Driver would produce. This is an extremely simple implementation of the VOLTTRON driver framework

Make a script to build and deploy the fake driver.
* Create a config directory (if one doesn’t already exist). All local config files will be worked on here.
 cp examples/configurations/drivers/fake.config config/

« Edit registry_config for the paths on your system

fake.config:

{
"driver_config": {},
"registry_config":"config://fake.csv",
"interval": 5,
"timezone": "US/Pacific",
"heart_beat_point": "Heartbeat",
"driver_type": "fakedriver",

"publish_breadth_first_all": false,
"publish depth_first": false,
"publish_breadth_first": false

}

* cp examples/configurations/drivers/master-driver.agent config/fake-master-driver.config
* Add fake.csv and fake.config to the configuration store.
 Edit fake-master-driver.config to reflect paths on your system

fake-master-driver.config:

{

"driver_scrape_interval": 0.05

* Create a script to simplify installation. The following will stop and remove any existing instances of agents
create with the script, then package, install, and start the new instance. You will need to make the file executable:
chmod +x make-fakedriver

make-fakedriver:

3.4. Developing VOLTTRON 255

VOLTTRON Documentation, Release 6.0

export SOURCE=services/core/MasterDriverAgent
export CONFIG=config/fake-master-driver.config
export TAG=fake-driver
./scripts/core/make-agent.sh

* If you have a Listener Agent already installed, you should start seeing data being published to the bus.

ListenerAgent

The ListenerAgent subscribes to all topics and is useful for testing that agents being developed are publishing correctly.
It also provides a template for building other agents as it expresses the requirements of a platform agent.

Explanation of ListenerAgent

Use utils to setup logging which we’ll use later.

utils.setup_logging ()
log = logging.getLogger(name)

The Listener agent extends (inherits from) the Agent class for its default functionality such as responding to platform
commands:

class ListenerAgent (Agent):
""'Listens to everything and publishes a heartbeat according to the
heartbeat period specified in the settings module.

rrr

After the class definition, the Listener agent reads the configuration file, extracts the configuration parameters, and
initializes any Listener agent instance variable. This is done the agents init method:

def _ init__ (self, config_path, xxkwargs):
super (ListenerAgent, self).__init___ (xxkwargs)
self.config = utils.load_config(config_path)
self._agent_id = self.config.get ('agentid', DEFAULT_AGENTID)
log_level = self.config.get('log-level', '"INFO')

if log_level == 'ERROR':
self._logfn = _log.error
elif log_level == '"WARN':
self._logfn = _log.warn
elif log_level == 'DEBUG':
self._logfn = _log.debug
else:
self._logfn = _log.info

Next, the Listener agent will run its setup method. This method is tagged to run after the agent is initialized by the
decorator @Core.receiver ('onsetup'). This method accesses the configuration parameters, logs a message
to the platform log, and sets the agent ID.

@Core.receiver ('onsetup')

def onsetup(self, sender, =*xkwargs):
Demonstrate accessing a value from the config file
_log.info(self.config.get ('message', DEFAULT_MESSAGE))
self._agent_id = self.config.get ('agentid')

256 Chapter 3. License

VOLTTRON Documentation, Release 6.0

The Listener agent subscribes to all topics published on the message bus. Subscribe/publish interactions with the
message bus are handled by the PubSub module located at:

~/volttron/volttron/platform/vip/agent/subsystems/pubsub.py

The Listener agent uses an empty string to subscribe to all messages published. This is done in a decorator for
simplifying subscriptions.

It also checks for the sender being pubsub . compat in case there are any VOLTTRON 2.0 agents running on the
platform.

@PubSub. subscribe ('pubsub', '")

def on_match(self, peer, sender, bus, topic, headers, message):
""'"Use match_all to receive all messages and print them out.'''
if sender == 'pubsub.compat':

message = compat.unpack_legacy_message (headers, message)

self._logfn(
"Peer: , Sender: :, Bus: , Topic: , Headers: , "
"Message: ", peer, sender, bus, topic, headers, message)

Node Red Example

Node Red is a visual programming wherein users connect small units of functionality “nodes” to create “flows”.

There are two example nodes that allow communication between Node Red and VOLTTRON. One node reads sub-
scribes to messages on the VOLTTRON message bus and the other publishes to it.

Dependencies

The example nodes depend on python-shell to be installed and available to the Node Red environment.

Installation

Copy all files from volttron/examples/NodeRed to your ~/.node-red/nodes directory. ~/.node-red is the default direc-
tory for Node Red files. If you have set a different directory use that instead.

Set the variables at the beginning of the volttron.js file to be a valid VOLTTRON environment, VOLTTRON home,
and python path.

Valid CURVE keys need to be added to the settings.py file. If they are generated with the volttron-ctl auth keypair
command then the public key should be added to VOLTTRON’s authorization file with the following:

’$ volttron-ctl auth add

The serverkey can be found with

’$ volttron—-ctl auth serverkey

Usage

Start VOLTTRON and Node Red.

3.4. Developing VOLTTRON 257

http://en.wikipedia.org/wiki/Python_syntax_and_semantics#Decorators

VOLTTRON Documentation, Release 6.0

$ node-red

Welcome to Node-RED

11 Jan 15:26:49 - [info] Node-RED version: v0.14.4

11 Jan 15:26:49 - [info] Node.js version: v0.10.25

11 Jan 15:26:49 - [info] Linux 3.16.0-38-generic x64 LE

11 Jan 15:26:49 - [info] Loading palette nodes

11 Jan 15:26:49 - [warn] ——f———————————"—"—"—"—"—"—"—"—"—————————————————————————————— ——
11 Jan 15:26:49 - [warn] [rpi-gpio] Info : Ignoring Raspberry Pi specific node
11 Jan 15:26:49 - [warn] ———————————
11 Jan 15:26:49 - [info] Settings file : /home/volttron/.node-red/settings.js
11 Jan 15:26:49 - [info] User directory : /home/volttron/.node-red

11 Jan 15:26:49 - [info] Flows file : /home/volttron/.node-red/flows_volttron. json
11 Jan 15:26:49 - [info] Server now running at http://127.0.0.1:1880/

11 Jan 15:26:49 - [info] Starting flows

11 Jan 15:26:49 - [info] Started flows

The output from the Node Red command indicates the address of its web interface. Nodes available for use are in the
left sidebar.

Node-RED - Mozilla Firefox -+ x

& NodeRED x\ +
€ 127004 c e w8 4+ & =
[MostVisited > G Linux Mint @ Community © Forums G Blog | [E]News~

a Flow1 info debug

inject
cateh
status
link
matt
nttp
websocket
tcp
udp
Voltron input
~ output
debug
tink
matt
nitp response
websocket
tep
udp

volttron

‘We can now use the VOLTTRON nodes to read from and write to VOLTTRON.

258 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Node-RED - Mozilla Firefox -+ X
& NodeRED x|+
€)® 127001 e 5 e 9 & & =
[MostVisited > G Linux Mint @ Community © Forums G Blog | [E]News~

a Flow1 info debug
~ input

NeAters": { "Date” "Z0L/-UL-L12

inject 00:26:05.201190Z",
"max_compatible_version’:

catch “min_compatible_versiof . “Content-
Type": "textplain’ }, ‘message"

status "2017-01-12 00:26:05.201190Z" }

link

voltiron-input ~ ——————— msg.payload

at { "topic": *heartbeatllisteneragent-3.2_1",
“headers' { "Date"

http "2017-01-12T00:26:08.538388+00:00",
"max_compatible_version”: ",

P “min_compatible_version": "3.0"},

"message": { "status": "GOOD",

- “last_updated"
"2017-01-11T23:54:53.535175+00:00",

W “context’: "hello” } }

volttron input

{ "topic": *heartbeatisteneragent-3.2_1",
~ output "headers { "Date”

"2017-01-12T00:26:13.541004+00:00",
"max_compatible_version”: ™,
debug "min_compatible_versiof :
% "message": { "status": "GOOD",

“last_updated"
"2017-01-11T23:54:53.535175+00:00",
“context’: "hello” } }

matt
hutp response.

websocket { "topic": "heartbeat/NodeRedSubscriber”,

"headers": { "Date": "2017-01-12
top 00:26:15.2005352",
“max_compatible_version®: ,
“min_compatible_versiof
Type": "textplain’ }, ‘message
"2017-01-12 00:26:15.200535Z" }

udp

, "Content-

volttron

SchedulerExampleAgent

The SchedulerExampleAgent demonstrates how to use the scheduling feature of the [[ActuatorAgent]] as well as how
to send a command. This agent publishes a request for a reservation on a (fake) device then takes an action when it’s
scheduled time appears. The ActuatorAgent must be running to exercise this example.

Note: Since there is no actual device, an error is produced when the agent attempts to take its action.

def publish_schedule (self) :
""'Periodically publish a schedule request'''
headers = {
'AgentID': agent_id,
'type': 'NEW_SCHEDULE',
'requesterID': agent_id, #The name of the requesting agent.
'taskID': agent_id + "-ExampleTask", #The desired task ID for this task. It
—must be unique among all other scheduled tasks.
'priority': 'LOW', #The desired task priority, must be 'HIGH', 'LOW', or 'LOW_
—PREEMPT'

}
start = str(datetime.datetime.now())
end str (datetime.datetime.now() + datetime.timedelta (minutes=1))
msg [

['campus/building/unit', start, end]
]
self.vip.pubsub.publish (
'pubsub', topics.ACTUATOR_SCHEDULE_REQUEST, headers, msqg)

The agent listens to schedule announcements from the actuator and then issues a command

3.4. Developing VOLTTRON 259

VOLTTRON Documentation, Release 6.0

@PubSub. subscribe ('pubsub', topics.ACTUATOR_SCHEDULE_ANNOUNCE (campus='campus',
building="building',unit="unit"'))
def actuate(self, peer, sender, bus, topic, headers, message):

print ("response:",topic,headers,message)
if headers[headers_mod.REQUESTER_ID] != agent_id:
return

"'"'"Match the announce for our fake device with our ID

Then take an action. Note, this command will fail since there is no

actual device'''

headers = {

'requesterID': agent_id,
}

self.vip.pubsub.publish (

'pubsub', topics.ACTUATOR_SET (campus="'campus',
building='building',unit="'unit"',
point='point"),
headers, 0.0)

Utilities
BaseAgent

The BaseAgent class subscribes to required topics, responds to platform messages, and provides hooks for application-
specific logic. While it is not required, it is recommended that agents extend this class to ease development.

DataPublisher

This is a simple agent that plays back data either from the config store or a CSV to the configured topic. It can also
provide basic emulation of the actuator agent for testing agents that expect to be able to set points on a device in
response to device publishes.

Installation notes

In order to simulate the actuator you must install the agent with the VIP identity of platform.actuator.

Configuration

basetopic can be devices, analysis, or custom base topic
"basepath": "devices/PNNL/ISB1",

use_timestamp uses the included in the input_data if present.
Currently the column must be named "Timestamp .

"use_timestamp": true,

Only publish data at most once every max_data_frequency seconds.

Extra data is skipped.

The time windows are normalized from midnight.

ie 900 will publish one value for every 15 minute window starting from
midnight of when the agent was started.

(continues on next page)

260 Chapter 3. License

VOLTTRON Documentation, Release 6.0

(continued from previous page)

Only used if timestamp in input file is used.
"max_data_frequency": 900,

The meta data published with the device data 1s generated
by matching point names to the unittype map.
"unittype_map": {

".xTemperature": "Farenheit",

".*xSetPoint": "Farenheit",

"OutdoorDamperSignal": "On/Off",

"SupplyFanStatus": "On/Off",

"CoolingCall": "On/Off",

"SupplyFanSpeed": "RPM",

"Damperx.": "On/Off",

"Heating*.": "On/Off",

"DuctStaticx.": "On/Off"
}I
Path to input CSV file.
May also be a list of records or reference to a CSV file in the config store.
Large CSV files should be referenced by file name and not
stored in the config store.
"input_data": "econ_test2.csv",
Publish interval in seconds
"publish_interval": 1,

Tell the playback to maintain the location a the file in the config store.
Playback will be resumed from this point

at agent startup even if this setting is changed to false before restarting.
Saves the current line in line_marker in the DataPublishers's config store
as plain text.

default false

"remember_playback": true,

HO¥E Y Y O H

Start playback from 0 even if the line_marker configuration is set a non 0,
—value.

default false

"reset_playback": false,

Repeat data from the start if this flag is true.

Useful for data that does not include a timestamp and is played back in real,,
—time.

"replay_data": false

CSV File Format

The CSV file must have a single header line. The column names are appended to the basepath setting in the configu-
ration file and the resulting topic is normalized to remove extra ‘/‘s. The values are all treated as floating point values
and converted accordingly.

The corresponding device for each point is determined and the values are combined together to create an all topic
publish for each device.

If a Timestamp column is in the input it may be used to set the timestamp in the header of the published data.

3.4. Developing VOLTTRON 261

VOLTTRON Documentation, Release 6.0

Timestamp centrifugal_chiller/OutsideAirTemperature | centrifugal_chiller/DischargeAirTemperatureSetPoint
2012/05/19 05:07:00 | O 56
2012/05/19 05:08:00 | O 56
2012/05/19 05:09:00 | 0 56
2012/05/19 05:10:00 | O 56
2012/05/19 05:11:00 | O 56
2012/05/19 05:12:00 | O 56
2012/05/19 05:13:00 | O 56
2012/05/19 05:14:00 | O 56
2012/05/19 05:15:00 | O 56
2012/05/19 05:16:00 | O 56
2012/05/19 05:17:00 | O 56
2012/05/19 05:18:00 | O 56
2012/05/19 05:19:00 | O 56
2012/05/19 05:20:00 | O 56
2012/05/19 05:21:00 | O 56
2012/05/19 05:22:00 | O 56
2012/05/19 05:23:00 | O 56
2012/05/19 05:24:00 | O 56
2012/05/19 05:25:00 | 48.78 56
2012/05/19 05:26:00 | 48.88 56
2012/05/19 05:27:00 | 48.93 56
2012/05/19 05:28:00 | 48.95 56
2012/05/19 05:29:00 | 48.92 56
2012/05/19 05:30:00 | 48.88 56
2012/05/19 05:31:00 | 48.88 56
2012/05/19 05:32:00 | 48.99 56
2012/05/19 05:33:00 | 49.09 56
2012/05/19 05:34:00 | 49.11 56
2012/05/19 05:35:00 | 49.07 56
2012/05/19 05:36:00 | 49.05 56
2012/05/19 05:37:00 | 49.09 56
2012/05/19 05:38:00 | 49.13 56
2012/05/19 05:39:00 | 49.09 56
2012/05/19 05:40:00 | 49.01 56
2012/05/19 05:41:00 | 48.92 56
2012/05/19 05:42:00 | 48.86 56
2012/05/19 05:43:00 | 48.92 56
2012/05/19 05:44:00 | 48.95 56
2012/05/19 05:45:00 | 48.92 56
2012/05/19 05:46:00 | 48.86 56
2012/05/19 05:47:00 | 48.78 56
2012/05/19 05:48:00 | 48.69 56
2012/05/19 05:49:00 | 48.65 56
2012/05/19 05:50:00 | 48.65 56
2012/05/19 05:51:00 | 48.65 56
2012/05/19 05:52:00 | 48.61 56
2012/05/19 05:53:00 | 48.59 56
2012/05/19 05:54:00 | 48.55 56
2012/05/19 05:55:00 | 48.63 56

262

Chapter 3. License

VOLTTRON Documentation, Release 6.0

Timestamp centrifugal_chiller/OutsideAirTemperature

centrifugal_chiller/DischargeAirTemperatureSetPoint

2012/05/19 05:56:00 | 48.76

56

2012/05/19 05:57:00 | 48.95 56
2012/05/19 05:58:00 | 49.24 56
2012/05/19 05:59:00 | 49.54 56
2012/05/19 06:00:00 | 49.71 56
2012/05/19 06:01:00 | 49.79 56
2012/05/19 06:02:00 | 49.94 56
2012/05/19 06:03:00 | 50.13 56
2012/05/19 06:04:00 | 50.18 56
2012/05/19 06:05:00 | 50.15 56

Driven Agents

Configuration for running openeis applications within volttron.

The configuration of an agent within volttron requires a small modification to the imports of the openeis application

and a couple of configuration parameters.

Import and Extend

from volttron.platform.agent import (AbstractDrivenAgent, Results)

class OpeneisApp (AbstractDrivenAgent) :

Configuration

The two parameters that are necessary in the json configuration file are “application” and “device”. An optional but

recommended argument should also be added “agentid”.

{

"agentid": "drivenloggerl",
"application": "drivenlogger.logdevice.LogDevice",
"device": "pnnl/isbl/oat",

}

Any other keys will be passed on to the openeis application when it is run.

Process Agent

This agent can be used to launch non-Python agents in the VOLTTRON platform. The agent handles keeping track of
the process so that it can be started and stoped with platform commands. Edit the configuration file to specify how to

launch your process.

This agent was originally created for launching SMAP along with the platform, but can be used for any process.

Note: Currently this agent does not respond to a blanket “shutdown” request and must be stopped with the “stop”

command.

3.4. Developing VOLTTRON

263

VOLTTRON Documentation, Release 6.0

Scripts

In order to make repetitive tasks less repetitive the VOLTTRON team has create several scripts in order to help. These
tasks are available in the scripts directory. Before using these scripts you should become familiar with the Agent
Development process.

In addition to the scripts directory, the VOLTTRON team has added the config directory to the .gitignore file. By
convention this is where we store customized scripts and configuration that will not be made public. Please feel free
to use this convention in your own processes.

The scripts/core directory is laid out in such a way that we can build scripts on top of a base core. For example
the scripts in sub-folders such as the historian-scripts and demo-comms use the scripts that are present in the core
directory.

The most widely used script is scripts/core/pack_install.sh. The pack_install.sh script will remove an agent if the tag
is already present, create a new agent package, and install the agent to VOLTTRON_HOME. This script has three
required arguments and has the following signature

Agent to Package must have a setup.py in the root of the directory.
scripts/core/pack_install.sh <Agent to Package> <Config file> <Tag>

The pack_install.sh script will respect the VOLTTRON_HOME specified on the command line or set in the global
environment. An example of setting VOLTTRON_HOME is as follows.

Sets VOLTTRON_HOME to /tmp/vihome
VOLTTRON_HOME=/tmp/vlhome scripts/core/pack_install.sh <Agent to Package> <Config,
—~file> <Tag>

Use the following scripts as examples that can be modified for your own agents.

* scripts/core/make-1listener canbe modified for any agent and make it one command to stop, remove,
build, install, configure, tag, start, and (optionally) enable an agent for autostart. Fill out the script with the
location of the agent source, config file, and tag name. The optional parameter enable can be passed to the
make—-agent script to set the agent to autostart with the platform.

* make-listener-enc-auth is similar to make-listener but uses encryption and authentication.

Applications

These resources summarize the use of the sample applications that are pre-packaged with VOLTTRON. For detailed
information on these applications, refer to the report Transactional Network Platform: Applications available at http:
/lwww.pnl.gov/main/publications/external/technical_reports/PNNL-22941.pdf.

Note, as of VOLTTRON 4.0, applications are now in their own repository at: https://github.com/VOLTTRON/
volttron-applications

Acquiring Third Party Agent Code

Add the volttron-applications repository under the volttron/applications directory by using following command:

git subtree add —prefix applications https://github.com/VOLTTRON/volttron-applications.git develop
—squash

264 Chapter 3. License

http://www.pnl.gov/main/publications/external/technical_reports/PNNL-22941.pdf
http://www.pnl.gov/main/publications/external/technical_reports/PNNL-22941.pdf
https://github.com/VOLTTRON/volttron-applications
https://github.com/VOLTTRON/volttron-applications
https://github.com/VOLTTRON/volttron-applications.git

VOLTTRON Documentation, Release 6.0

Passive Automated Fault Detection and Diagnostic Agent

The Passive Automated Fault Detection and Diagnostic (Passive AFDD) agent is used to identify problems in the
operation and performance of air-handling units (AHUs) or packaged rooftop units (RTUs). Air-side economizers
modulate controllable dampers to use outside air to cool instead of (or to supplement) mechanical cooling, when
outdoor-air conditions are more favorable than the return-air conditions. Unfortunately, economizers often do not
work properly, leading to increased energy use rather than saving energy. Common problems include incorrect control
strategies, diverse types of damper linkage and actuator failures, and out-of-calibration sensors. These problems can
be detected using sensor data that is normally used to control the system.

The Passive AFDD requires the following data fields to perform the fault detection and diagnostics:
* Outside-air temperature
¢ Return-air temperature
* Mixed-air temperature
* Outside-air damper position/signal
* Supply fan status
* Mechanical cooling status
* Heating status.

The AFDD supports both real-time data via a Modbus or BACnet device, or input of data from a csv style text
document.

The following section describes how to configure the Passive AFDD agent, methods for data input (real-time data from
a device or historical data in a comma separated value formatted text file), and launching the Passive AFDD agent.

Note: A proactive version of the Passive AFDD exists as a PNNL application (AFDDAgent). This application requires
active control of the RTU for fault detection and diagnostics to occur. The Passive AFDD was created to allow more
users a chance to run diagnostics on their HVAC equipment without the need to actively modify the controls of the
system.

Configuring the Passive AFDD Agent

Before launching the Passive AFDD agent, several parameters require configuration. The AFDD utilizes the same
JSON style configuration file used by the Actuator, Listener, and Weather agents. The threshold parameters used for
the fault detection algorithms are pre-configured and will work well for most RTUs or AHUs. Figure 1 shows an
example configuration file for the AFDD agent.

The parameters boxed in black (in Figure 1) are the pre-configured fault detection thresholds; these do not require any
modification to run the Passive AFDD agent. The parameters in the example configuration that are boxed in red will
require user input. The following list describes each user configurable parameter and their possible values:

« agentid — This is the ID used when making schedule, set, or get requests to the Actuator agent; usually a string
data type.

e campus — Campus name as configured in the SMAP driver. This parameter builds the device path that allows
the Actuator agent to set and get values on the device; usually a string data type.

¢ building — Building name as configured in the SMAP driver. This parameter builds the device path that allows
the Actuator agent to set and get values on the device; usually a string data type.

* unit — Device name as configured in the SMAP driver. This parameter builds the device path that allows the
Actuator agent to set and get values on the device; usually a string data type. Note: The campus, building,
and unit parameters are used to build the device path (campus/building/unit). The device path is used for
communication on the message bus.

3.4. Developing VOLTTRON 265

VOLTTRON Documentation, Release 6.0

controller point names — When using real-time communication, the Actuator agent identifies what registers or
values to set or get by the point name you specify. This name must match the “Point Name” given in the Modbus
registry file, as specified in VOLTTRON Core Services.

aggregate_data — When using real-time data sampled at an interval of less than 1 hour or when inputting data
via a csv file sampled at less than 1 hour intervals, set this flag to “1.” Value should be an integer or floating-point
number (i.e., 1 or 1.0)

csv_input — Flag to indicate if inputting data from a csv text file. Set to “0” for use with real-time data from a
device or “1” if data is input from a csv text file. It should be an integer or floating point number (i.e., 1 or 1.0)

EER - Energy efficiency ratio for the AHU or RTU. It should be an integer or floating-point number (i.e., 10 or
10.0)

tonnage — Cooling capacity of the AHU or RTU in tons of cooling. It should be an integer or floating-point
number (i.e., 10 or 10.0)

economizer_type — This field indicates what type of economizer control is used. Set to “0” for differential
dry-bulb control or to “1” for high limit dry-bulb control. It should be an integer or floating-point number.

high_limit — If the economizer is using high-limit dry-bulb control, this value indicates what the outside-air
temperature high limit should be. The input should be floating-point number (i.e., 60.0)

matemp_missing — Flag used to indicate if the mixed-air temperature is missing for this system. If utilizing
csv data input, simply set this flag to “1” and replace the mixed-air temperature column with discharge-air
temperature data. If using real-time data input, change the field “mat_point_name” under Point Names section
to the point name indicating the discharge-air temperature. It should be an integer or floating-point number (i.e.,
1or1.0)

OAES6 — This section contains the schedule information for the AHU or RTU. The default is to indicate a 24-
hour schedule for each day of the week. To modify this, change the numbers in the bracketed list next to the
corresponding day with which you are making operation schedule modifications. For example: “Saturday’:
[0,0] (This indicates the system is off on Saturdays).

266

Chapter 3. License

VOLTTRON Documentation, Release 6.0

N

"agent™: {

"exec": "passiveafdd-0.1-py2.7.egg --config \"%c\" --sub \"%s\" --pub \"&p\""

¥,

"agentid"”: "afddl",
"campus": "campusl”,
"building”: "buildingl",
"unit": "devicel",

"smap_path": "datalogger/log/afddl/campusl/buildingl/devicel”

§[Controller point names]

"oat_point _name™: "OutsideAirTemp",

"mat_point name™: "MixedAirTemp"™, $"DischargeRirTemp"”
"dat_peoint_name”: "DischargelAirTemperature"”,
"rat_point_name”: "ReturnAirTemp”,

"damper_ point_name": "Damper",

"cool_calll point_name": "CoolCall",
"cool_cmdl_point_name": "CompressorStatus”,
"fan_status_point_name": "FanStatus",
"heat_commandl_point_name"”: "Heating”,

£ [(Input Variables]
"aggregate_data™: 1,
"esv_input”: 1,
"EER": 10,

"tonnage": 10
"high_limit": 70,
"economizer_type": 0,
"matemp missing": O,

§[ocaf]
"oaf_temp_threshold": 4.0,
£ [OAE1]

"mat_low": S50,

"mat_high": 90,

"rat_low": 50,

"rat_high": 90,

"oat_low": 30,

"ocat_high": 120,

£(0AEZ)
"cae2_damper_threshold": 30.0,
"cae2_caf_thresheld": 0.25,

§#[OAE3]
"damper minimum”™: 20,

£ [OAE4)
"minimum oca": 0.1,
"oaed_oaf_threshold™: 0.25,

£ [ORES)
"caeS_caf_thresheld”: 0.0,

£ [OAES)

"Sunday”: [0,23], #this schedule is 24 hours
"Monday”: [0,b23],

"Tuesday":[0,23],

"Wednesday": [0,23],

"Thursday”": [0,23],

"Friday”: (0,23],

"Saturday”: [0,23],

Figure 1. Example Passive AFDD Agent Configuration File

¢/datalegger/log/your sMAP path here

3.4. Developing VOLTTRON

267

VOLTTRON Documentation, Release 6.0

Launching the Passive AFDD Agent

The Passive AFDD agent performs passive diagnostics on AHUs or RTUs, monitors and utilizes sensor data, but does
not actively control the devices. Therefore, the agent does not require interaction with the Actuator agent. Steps for
launching the agent are provided below.

In a terminal window, enter the following commands:

1. Run pack_install script on Passive AFDD agent:

$. scripts/core/pack_install.sh applications/PassiveAFDD applications/PassiveAFDD/
—passiveafdd.launch. json passive-afdd

Upon successful completion of this command, the terminal output will show the install directory, the agent UUID
(unique identifier for an agent; the UUID shown in red is only an example and each instance of an agent will have a
different UUID), and the agent name (blue text):

Installed /home/volttron-user/.volttron/packaged/passiveafdd-0.l-py2-none—any.whl as_
—5df00517-6a4e-4283-8c70-5£0759713c64 passiveafdd-0.1

2. Start the agent:

$ volttron-ctl start --tag passive-afdd

3. Verify that the agent is running:

$ volttron-ctl status
$ tail -f volttron.log

If changes are made to the Passive AFDD agent’s configuration file after the agent is launched, it is necessary to stop
and reload the agent. In a terminal, enter the following commands:

$ volttron-ctl stop —--tag passive-afdd
$ volttron-ctl remove —--tag passive-afdd

Then re-build and start the updated agent.

When the AFDD agent is monitoring a device via the message bus, the agent relies on the periodic data published
from the SMAP driver. The AFDD agent then aggregates this data each hour and performs the diagnostics on the
average hourly data. The result is written to a csv text file, which is appended if the file already exists. This file
is in a folder titled “Results” under the (<project directory>/applications/pnnl/PassiveAFDD/
passiveafdd) directory. Below is a key that describes how to interpret the diagnostic results:

Diagnostic Code

Code Message

AFDD-1 (Temperature Sensor Fault)

20 No faults detected

21 Temperature sensor fault

22 Conditions not favorable for diagnostic

23 Mixed-air temperature outside of expected range
24 Return-air temperature outside of expected range
25 Outside-air temperature outside of expected range
27 Missing data necessary for fault detection

29 Unit is off (No Fault)

AFDD-2 (RTU Economizing When it Should)

30 | No faults detected

268 Chapter 3. License

Continue

VOLTTRON Documentation, Release 6.0

Table 3 — continued from previous page

Diagnostic Code Code Message

31 Unit is not currently cooling or conditions are not favorable for economizin
32 Insufficient outdoor air when economizing (Fault)

33 Outdoor-air damper is not fully open when the unit should be economizing
36 OAD is open but conditions were not favorable for OAF calculation (No Fa
37 Missing data necessary for fault detection (No Fault)

38 OAD is open when economizing but OAF calculation led to an unexpected
39 Unit is off (No Fault)

AFDD-3 (Unit Economizing When it Should)

40 No faults detected

41 Damper should be at minimum position but is not (Fault)

42 Damper is at minimum for ventilation (No Fault)

43 Conditions favorable for economizing (No Fault)

47 Missing data necessary for fault detection (No Fault)

49 Unit is off (No Fault)

AFDD-4 (Excess Outdoor-air Intake)

50 No faults detected

51 Excessive outdoor-air intake

52 Damper is at minimum but conditions are not favorable for OAF calculatios
53 Damper is not at minimum (Fault)

56 Unit should be economizing (No Fault)

57 Missing data necessary for fault detection (No Fault)

58 Damper is at minimum but OAF calculation led to an unexpected value (Nc
59 Unit is off (No Fault)

AFDD-5 (Insufficient Outdoor-air Ventilation)

60 No faults detected

61 Insufficient outdoor-air intake (Fault)

62 Damper is at minimum but conditions are not favorable for OAF calculatio:
63 Damper is not at minimum when is should not be (Fault)

66 Unit should be economizing (No Fault)

67 Missing data necessary for fault detection (No Fault)

68 Damper is at minimum but conditions are not favorable for OAF calculatios
69 Unit is off (No Fault)

AFDD-6 (Schedule)

70 Unit is operating correctly based on input on/off time (No Fault)

71 Unit is operating at a time designated in schedule as “off” time

77 Missing data

Launching the AFDD for CSV Data Input

When utilizing the AFDD agent and inputting data via a csv text file, set the csv_input parameter, contained in the
AFDD configuration file, to “1.”

* Launch the agent normally.
* A small file input box will appear. Navigate to the csv data file and select the csv file to input for the diagnostic.
* The result will be created for this RTU or AHU in the results folder described.

Figure 2 shows the dialog box that is used to input the csv data file.

3.4. Developing VOLTTRON 269

VOLTTRON Documentation, Release 6.0

choose csv file for AFDD + X
Directory: /homejvolttrondev/workspacefrtunetwork _|| |
7 .hg El AFDDtest.log
(7 _settings E] basic_mercurial_instructions.txt
|1 Agents El bootstrap
'3 bin El bootstrap.py
31 contrib El bootstrap.pyc
1 develop-eggs El buildout.cfg
7 eggs El COPYING
7 lib El dev-config.ini
7 parts El driver.ini
3 wvolttron El example-hgrc
(3 volttronlite.egg-info El example-pylintrc
El .AFDDtest.txt El logger driver.ini
El .hgignore El modbus.ini
El .hgtags El modbus2.ini
El .installed.cfg El README
El .project E] RELEASE NOTES.txt
El .pydevproject El setup.py
El 9dc72c72-259f-49a1-a59d-66642b0f1490 [E] setup.pyc
El activate.in El twistd.pid
El actuator state.pickle El volttron.log
[4] [¥
File name: || Open
J— Cancel

Figure 2 File Selection Dialog Box when Inputting Data in a csv File

If “Cancel” is pushed on the file input dialog box, the AFDD will acknowledge that no file was selected. The Passive
AFDD must be restarted to run the diagnostics. If a non-csv file is selected, the AFDD will acknowledge the file
selected was not a csv file. The AFDD must be restarted to run the diagnostics.

Figure 3 shows a sample input data in a csv format. The header, or name for each column from the data input csv file
used for analysis, should match the name given in the configuration file, as shown in Figure 1, boxed in red.

Timestamp, OutsideRirTemp, ReturnfiirTemp, MixedhirTemp, CompressorStatus, HeatingStatus, FanStatus, Damper
5/1%/2012 6:00,48.902,56.43727273,58.68472222,0,0,0,0

5/1%/2012 7:00,51.12316667,59.47933333,59.58916667,0,0,0,0

5/1%/2012 8:00,54.70866667,61.1625,64.34266667,0,0,0,0

Figure 3 Sample of CSV Data for Passive AFDD Agent

The Demand Response (DR) Agent

Many utilities around the country have or are considering implementing dynamic electrical pricing programs that use
time-of-use (TOU) electrical rates. TOU electrical rates vary based on the demand for electricity. Critical peak pricing
(CPP), also referred to as critical peak days or event days, is an electrical rate where utilities charge an increased price

270 Chapter 3. License

VOLTTRON Documentation, Release 6.0

above normal pricing for peak hours on the CPP day. CPP times coincide with peak demand on the utility; these
CPP events are generally called between 5 to 15 times per year and occur when the electrical demand is high and
the supply is low. Customers on a flat standard rate who enroll in a peak time rebate program receive rebates for
using less electricity when a utility calls for a peak time event. Most CPP events occur during the summer season
on very hot days. The initial implementation of the DR agent addresses CPP events where the RTU would normally
be cooling. This implementation can be extended to handle CPP events for heating during the winter season as well.
This implementation of the DR agent is specific to the CPP, but it can easily be modified to work with other incentive
signals (real-time pricing, day ahead, etc.).

The main goal of the building owner/operator is to minimize the electricity consumption during peak summer periods
on a CPP day. To accomplish that goal, the DR agent performs three distinct functions:

» Step 1 — Pre-Cooling: Prior to the CPP event period, the cooling and heating (to ensure the RTU is not driven
into a heating mode) set points are reset lower to allow for pre-cooling. This step allows the RTU to cool the
building below its normal cooling set point while the electrical rates are still low (compared to CPP events). The
cooling set point is typically lowered between 3 and 5oF below the normal. Rather than change the set point to
a value that is 3 to 50F below the normal all at once, the set point is gradually lowered over a period of time.

e Step 2 — Event: During the CPP event, the cooling set point is raised to a value that is 4 to SoF above the
normal, the damper is commanded to a position that is slightly below the normal minimum (half of the normal
minimum), the fan speed is slightly reduced (by 10% to 20% of the normal speed, if the unit has a variable-
frequency drive (VFD)), and the second stage cooling differential (time delay between stage one and stage two
cooling) is increased (by few degrees, if the unit has multiple stages). The modifications to the normal set points
during the CPP event for the fan speed, minimum damper position, cooling set point, and second stage cooling
differential are user adjustable. These steps will reduce the electrical consumption during the CPP event. The
pre-cooling actions taken in step 1 will allow the temperature to slowly float up to the CPP cooling temperature
set point and reduce occupant discomfort during the attempt to shed load.

* Step 3 — Post-Event: The DR agent will begin to return the RTU to normal operations by changing the cooling
and heating set points to their normal values. Again, rather than changing the set point in one step, the set point
is changed gradually over a period of time to avoid the “rebound” effect (a spike in energy consumption after
the CPP event when RTU operations are returning to normal).

The following section will detail how to configure and launch the DR agent.

Configuring DR Agent

Before launching the DR agent, several parameters require configuration. The DR utilizes the same JSON style
configuration file that the Actuator, Listener, and Weather agent use. A notable limitation of the DR agent is that the
DR agent requires active control of an RTU/AHU. The DR agent modifies set points on the controller or thermostat to
reduce electrical consumption during a CPP event. The DR agent must be able to set certain values on the RTU/AHU
controller or thermostat via the Actuator agent. Figure 4 shows a sample configuration file for the DR agent:

3.4. Developing VOLTTRON 271

VOLTTRON Documentation, Release 6.0

1
"agent”: {
"exec": "DemandResponseagent-0.1-py2.7.eqgg —--config \"%c\" --sub \"%s\" --pub \"%p\""

Y

#Agent Parameters

"agentid"™: "DRAGENT1", #Agent ID used by actuator agent for control of RTU
"campus": "campus", #campus name as known by Volttron

"building": "building", #Building name as known by Volttron

"unit": "device", #RTU/Controller name as known by Volttron

"smap_path": "datalogger/log/testing/campus/device" , #/datalogger/log/your path here

#Catalyst Controller point names
"cooling_stpt": "CoolingTemperatureStPt", # second value in quotes in name from your controller

"heating_stpt": "HeatingTemperatureStPt",
"min_damper_stpt": "MinimumDamperPositionStPt",
"cooling_stage_diff": "CoolingStageDifferential"”,

"cooling fan spl": "CoolSupplyFanSpeedl",

"cooling_fan_sp2": "CoolSupplyFanSpeed2",
"override_command": "VoltronPBStatus",
"occupied_status": "Occupied",
"space_temp": "SpaceTemp"”,

"volttron_ flag": "VoltronFlag",

272 Chapter 3. License

VOLTTRON Documentation, Release 6.0

#DR cooling Set Points
"csp_pre": 65.0, #Pre-cooling zone temperature set point

"csp_cpp”": 80.0, #CPP event zone temperature set point

#Normal set points
"normal_firststage_fanspeed": 90.0,

"normal_secondstage_fanspeed": 90.0,
"normal_damper_stpt": 5.0,
"normal_coolingstpt": 74.0,
"normal_heatingstpt": 67.0,

#DR Parameters
"fan_reduction": 0.1, $fractional reduction 10% = 0.1

"damper_cpp": 0, #minimum damper command during CPP event
"timestep_length": 900, #number of seconds between CSP modifications| in Pre and After event (default 900 sec. = 15 min.)
"max_precool hours": 5, #maximum pre-cocling window in hours
"building thermal_ constant™: 4.0, #Building thermal constant F/hr
"cooling_stage_differential": 1.0,

"schedule": [1,1,1,1,1,1,1] #[Mon, Tue, Wed, Thu, Fri, Sat, Sun)

}

Figure 4 Example Configuration File for the DR Agent

The parameters boxed in black (Figure 4) are the demand response parameters; these may require modification to
ensure the DR agent and corresponding CPP event are executed as one desires. The parameters in the example
configuration that are boxed in red are the controller or thermostat points, as specified in the Modbus or BACnet
(depending on what communication protocol your device uses) registry file, that the DR agent will set via the Actuator
agent. These device points must be writeable, and configured as such, in the registry (Modbus or BACnet) file. The
following list describes each user configurable parameter:

« agentid - This is the ID used when making schedule, set, or get requests to the Actuator agent; usually a string
data type.

* campus - Campus name as configured in the SMAP driver. This parameter builds the device path that allows the
Actuator agent to set and get values on the device; usually a string data type.

¢ building - Building name as configured in the SMAP driver. This parameter builds the device path that allows
the Actuator agent to set and get values on the device; usually a string data type.

* unit - Device name as configured in the SMAP driver. This parameter builds the device path that allows the
Actuator agent to set and get values on the device; usually a string data type. Note: The campus, building,
and unit parameters are used to build the device path (campus/building/unit). The device path is used for
communication on the message bus.

e csp_pre - Pre-cooling space cooling temperature set point.

* csp_cpp - CPP event space cooling temperature set point.

* normal_firststage_fanspeed - Normal operations, first stage fan speed set point.

* normal_secondstage_fanspeed - Normal operations, second stage fan speed set point.
* normal_damper_stpt - Normal operations, minimum outdoor-air damper set point.

* normal_coolingstpt - Normal operations, space cooling temperature set point.

* normal_heatingstpt - Normal operations, space heating temperature set point.

3.4. Developing VOLTTRON 273

VOLTTRON Documentation, Release 6.0

* fan_reduction - Fractional reduction in fan speeds during CPP event (default: 0.1-10%).
e damper_cpp - CPP event, minimum outdoor-air damper set point.
* max_precool_hours - Maximum allotted time for pre-cooling, in hours.

* cooling_stage_differential - Difference in actual space temperature and set-point temperature before second
stage cooling is activated.

* schedule - Day of week occupancy schedule “0” indicate unoccupied day and “1” indicate occupied day (e.g.,
[1,1,1,1,1,1,1] = [Mon, Tue, Wed, Thu, Fri, Sat, Sun]).

OpenADR (Open Automated Demand Response)

Open Automated Demand Response (OpenADR) is an open and standardized way for electricity providers and system
operators to communicate DR signals with each other and with their customers using a common language over any
existing IP-based communications network, such as the Internet. Lawrence Berkeley National Laboratory created an
agent to receive DR signals from an external source (e.g., OpenADR server) and publish this information on the
message bus. The DR agent subscribes to the OpenADR topic and utilizes the contents of this message to coordinate
the CPP event.

The OpenADR signal is formatted as follows:

'openadr/event', { 'Content-Type': ['application/json'], 'requesterID': 'openadragent'},
— {'status': 'near',

'start_at': '2013-6-15 14:00:00', 'end_at': '2013-10-15 18:00:00', 'mod_num': 0, 'id':
'18455630-abc4-4e4a-9d53-b3cf989ccflb', 'signals': 'null'}

The red text in the signal is the topic associated with CPP events that are published on the message bus. The text in
dark blue is the message; this contains the relevant information on the CPP event for use by the DR agent.

If one desires to test the behavior of a device when responding to a DR event, such an event can be simulated by
manually publishing a DR signal on the message bus. From the base VOLTTRON directory, in a terminal window,
enter the following commands:

1. Activate project:

’$ source env/bin/activate

2. Start Python interpreter:

’$ python

3. Import VOLTTRON modules:

’$ from volttron.platform.vip.agent import Core, Agent

4. Import needed Python library:

’$ import gevent

5. Instantiate agent (agent will publish OpenADR message):

’$ agent = Agent (address='ipc://Q@/home/volttron-user/.volttron/run/vip.socket")

6. Ensure the setup portion of the agent run loop is executed:

274 Chapter 3. License

VOLTTRON Documentation, Release 6.0

$ gevent.spawn (agent.core.run) .join (0)

7. Publish simulated OpenADR message:

$ agent.vip.pubsub.publish (peer="pubsub', topic='openadr/event',6 headers={},

message={'id': 'event_id', 'status': 'active', 'start_at': 10-30-15 15:00', 'end_at':
—'10-30-15
18:00'})

To cancel this event, enter the following command:

$ agent.vip.pubsub.publish (peer="pubsub', topic='openadr/event',6 headers={}, message={

—'id':
'event_id', 'status': 'cancelled', 'start_at': 10-30-15 15:00', 'end_at': '10-30-15
—18:00"'})

The DR agent will use the most current signal for a given day. This allows utilities/OpenADR to modify the signal up
to the time prescribed for pre-cooling.

DR Agent Output to sMAP

After the DR agent has been configured, the agent can be launched. To launch the DR agent from the base VOLTTRON
directory, enter the following commands in a terminal window:

1. Run pack_install script on DR agent:

$. scripts/core/pack_install.sh applications/DemandResponseAgent
applications/DemandResponseAgent/demandresponse.launch. json dr-agent

Upon successful completion of this command, the terminal output will show the install directory, the agent UUID
(unique identifier for an agent; the UUID shown in red is only an example and each instance of an agent will have a
different UUID) and the agent name (blue text):

Installed
/home/volttron-user/.volttron/packaged/DemandResponseagent-0.1-py2-none—
any.whlas 5b1706d6-b71d-4045-86a3-8be5c85ce801

DemandResponseagent—-0.1

2. Start the agent:

$ volttron-ctl start --tag dr-agent

3. Verify that agent is running:

$ volttron-ctl status
$ tail -f volttron.log

If changes are made to the DR agent’s configuration file after the agent is launched, it is necessary to stop and reload
the agent. In a terminal, enter the following commands:

$ volttron-ctl stop —--tag dr-agent
$ volttron-ctl remove —--tag dr-agent

Then re-build and start the updated agent.

3.4. Developing VOLTTRON 275

VOLTTRON Documentation, Release 6.0

Jupyter Notebooks

Jupyter is an open-source web application that lets you create and share “notebook” documents. A notebook displays
formatted text along with live code that can be executed from the browser, displaying the execution output and pre-
serving it in the document. Notebooks that execute Python code used to be called iPython Notebooks. The iPython
Notebook project has now merged into Project Jupyter.

Using Jupyter to Manage a Set of VOLTTRON Servers

The following Jupyter notebooks for VOLTTRON have been provided as examples:

¢ Collector notebooks. Each Collector notebook sets up a particular type of device driver and forwards device
data to another VOLTTRON instance, the Aggregator.

— SimulationCollector notebook. This notebook sets up a group of Simulation device drivers and forwards
device data to another VOLTTRON instance, the Aggregator.

— BacnetCollector notebook. This notebook sets up a Bacnet (or Bacnet gateway) device driver and for-
wards device data to another VOLTTRON instance, the Aggregator.

— ChargePointCollector notebook. This notebook sets up a ChargePoint device driver and forwards device
data to another VOLTTRON instance, the Aggregator.

— SEP2Collector notebook. This notebook sets up a SEP2.0 (IEEE 2030.5) device driver and forwards
device data to another VOLTTRON instance, the Aggregator. The Smart Energy Profile 2.0 (“SEP2”)
protocol implements IEEE 2030.5, and is capable of connecting a wide array of smart energy devices to
the Smart Grid. The standard is designed to run over TCP/IP and is physical layer agnostic.

» Aggregator notebook. This notebook sets up and executes aggregation of forwarded data from other VOLT-
TRON instances, using a historian to record the data.

* Observer notebook. This notebook sets up and executes a DataPuller that captures data from another VOLT-
TRON instance, using a Historian to record the data. It also uses the Message Debugger agent to monitor
messages flowing across the VOLTTRON bus.

Each notebook configures and runs a set of VOLTTRON Agents. When used as a set, they implement a multiple-
VOLTTRON-instance architecture that catures remote device data, aggregates it, and reports on it, routing the data as
follows:

276 Chapter 3. License

VOLTTRON Documentation, Release 6.0

Jupyter Notebooks for VOLTTRON

Ethernet (TCF)
AGGREGATOR |
| \,\ |
| SQLHistorian \‘ DataPuller
Fomward Agent Agent
Histarian
Agent
COLLECTOR OBSERVER
SCLite
| Database
Master
] Driver . o Message
Agent SDI:qug:?Inan Debugger
@ Agent
Device Communications
(Ethernet, Modbus, RS485, etc.) " A 4
SQLite Message
Database Viewer
DEVICE
(T hermostat,
EVSE,
Server, etc.)

Install VOLTTRON and Jupyter on a Server

The remainder of this guide describes how to set up a host for VOLTTRON and Jupyter. Use this setup process on a
server in order to prepare it to run Jupyter notebook for VOLLTTRON.

Set Up the Server and Install VOLTTRON

The following is a complete, but terse, description of the steps for installing and running VOLTTRON on a server. For
more detailed, general instructions, see Installing Volttron.

The VOLTTRON server should run on the same host as the Jupyter server.
Load third-party software:

$ sudo apt-get update

$ sudo apt-get install build-essential python-dev openssl libssl-dev libevent-dev git
$ sudo apt-get install sqglite3

Clone the VOLTTRON repository from github:

cd ~

mkdir repos

cd repos

git clone https://github.com/VOLTTRON/volttron/

v W A

Check out the develop (or master) branch and bootstrap the development environment:

3.4. Developing VOLTTRON 277

VOLTTRON Documentation, Release 6.0

$ cd volttron
$ git checkout develop
$ python2.7 bootstrap.py

Activate and initialize the VOLTTRON virtual environment:

Run the following each time you open a new command-line shell on the server:

export VOLTTRON_ROOT=~/repos/volttron
export VOLTTRON_HOME=~/.volttron

cd $VOLTTRON_ROOT

source env/bin/activate

v »r W

Install Extra Libraries
Add Python libraries to the VOLTTRON virtual environment:

These notebooks use third-party software that’s not included in VOLTTRON’s standard distribution that was loaded
by bootstrap.py. The following additional packages are required:

* Jupyter

* SQLAIchemy (for the Message Debugger)
* Suds (for the ChargePoint driver)

e Numpy and MatPlotLib (for plotted output)

Note: A Jupyter installation also installs and/or upgrades many dependent libraries. Doing so could disrupt other
work on the OS, so it’s safest to load Jupyter (and any other library code) in a virtual environment. VOLTTRON runs
in a virtual environment anyway, so if you’re using Jupyter in conjunction with VOLTTRON, it should be installed
in your VOLTTRON virtual environment. (In other words, be sure to use cd $VOLTTRON_ROOT and source
env/bin/activate to activate the virtual environment before running pip install.)

Install the third-party software:

pip install SQLAlchemy==1.1.4
pip install suds-jurko==0.6
pip install numpy

pip install matplotlib

pip install jupyter

v W r

Note: If pip install fails due to an untrusted cert, try using this command instead:

$ pip install --trusted-host pypi.python.org <libraryname>

(An InsecurePlatformWarning may be displayed, but it typically won’t stop the installation from proceeding.)
Configure VOLTTRON

Use the volttron—-cfg wizard to configure the VOLTTRON instance. By default, the wizard configures a VOLT-
TRON instance that communicates with agents only on the local host (ip 127.0.0.1). This set of notebooks manages
communications among multiple VOLTTRON instances on different hosts. To enable this cross-host communication
on VOLTTRON’s web server, replace 127.0.0.1 with the host’s IP address, as follows:

$ volttron-cfg

* Accept all defaults, except as follows.

e If a prompt defaults to 127.0.0.1 as an IP address, substitute the host's IP address (this may happen
multiple times).

278 Chapter 3. License

VOLTTRON Documentation, Release 6.0

* When asked whether this is a volttron central, answer Y.

* When prompted for a username and password, use admin and admin.
Start VOLTTRON
Start the main VOLTTRON process, logging to $VOLTTRON_ROOT/volttron.log:

’$ volttron -vv -1 volttron.log —--msgdebug

This runs VOLTTRON as a foreground process. To run it in the background, use:

’$ volttron -vv -1 volttron.log —--msgdebug &

This also enables the Message Debugger, a non-production VOLTTRON debugging aid that’s used by some notebooks.
To run with the Message Debugger disabled (VOLTTRON’s normal state), omit the ——msgdebug flag.

Now that VOLTTRON is running, it’s ready for agent configuration and execution. Each Jupyter notebook contains
detailed instructions and executable code for doing that.

Configure Jupyter

More detailed information about installing, configuring and using Jupyter Notebooks is available on the Project Jupyter
site, http://jupyter.org/.

Create a Jupyter configuration file:

$ jupyter notebook —--generate-config

Revise the Jupyter configuration:

Open ~/ . jupyter/jupyter_notebook_config.py in your favorite text editor. Change the configuration to
accept connections from any IP address (not just from localhost) and use a specific, non-default port number:

¢ Un-comment c.NotebookApp.ip and setitto: '+ "' instead of ' localhost"'
* Un-comment c.NotebookApp.port and setitto: '8891 "' instead of '8888"'
Save the config file.
Open ports for TCP connections:
Make sure that your Jupyter server host’s security rules allow inbound TCP connections on port 8891.

If the VOLTTRON instance needs to receive TCP requests, for example ForwardHistorian or DataPuller messages
from other VOLTTRON instances, make sure that the host’s security rules also allow inbound TCP communications
on VOLTTRON’s port, which is usually 22916.

Launch Jupyter
Start the Jupyter server:

In a separate command-line shell, set up VOLTTRON’s environment variables and virtual environment, and then
launch the Jupyter server:

export VOLTTRON_HOME= (your volttron home directory, e.g. ~/.volttron)
export VOLTTRON_ROOT= (where volttron was installed; e.g. ~/repos/volttron)
cd S$VOLTTRON_ROOT

source env/bin/activate

cd examples/JupyterNotebooks

jupyter notebook —--no-browser

RO IR OO ()T (oI oY

3.4. Developing VOLTTRON 279

http://jupyter.org/

VOLTTRON Documentation, Release 6.0

Open a Jupyter client in a web browser:

Look up the host’s IP address (e.g., using ifconfig). Open a web browser and navigate to the URL that was displayed
when you started jupyter, replacing 1ocalhost with that IP address. A Jupyter web page should display, listing your
notebooks.

Python for Matlab Users

Matlab is a popular, proprietary programming language and tool suite with built in support for matrix operations and
graphically plotting computation results. The purpose of this document is to introduce Python to those already familiar
Matlab so it will be easier for them to develop tools and agents in VOLTTRON.

A Simple Function

Python and Matlab are similar in many respects, syntactically and semantically. With the addition of the NumPy
library in Python, almost all numerical operations in Matlab can be emulated or directly translated. Here are functions
in each language that perform the same operation:

% Matlab

function [result] = times_two (number)
result = number * 2;

end

Python

def times_two (number) :
result = number x 2
return result

Some notes about the previous functions:

1. Values are explicitly returned with the return statement. It is possible to return multiple values, as in Matlab, but
doing this without a good reason can lead to overcomplicated functions.

2. Semicolons are not used to end statements in python, and white space is significant. After a block is started (if,
for, while, functions, classes) subsequent lines should be indented with four spaces. The block ends when the
programmer stops adding the extra level of indentation.

Translating

The following may be helpful if you already have a Matlab file or function that will be translated into Python. Many of
the syntactic differences between Matlab and Python can be rectified with your text editor’s find and replace feature.

Start by copying all of your Matlab code into a new file with a .py extension. I recommend commenting everything
out and uncommenting the Matlab code in chunks. This way you can write valid Python and verify it as you translate,
instead of waiting till the whole file is “translated”. Editors designed to work with Python should be able to highlight
syntax errors for you as well.

1. Comments are created with a %. Find and replace these with #.
2. Change elseif blocks to elif blocks.

3. Python indexes start at zero instead of one. Array slices and range operations, however, don’t include the upper
bound, so only the lower bound should decrease by one.

4. Semicolons in Matlab are used to suppress output at the end of lines and for organizing array literals. After
arranging the arrays into nested lists, all semicolons can be removed.

280 Chapter 3. License

VOLTTRON Documentation, Release 6.0

5. The end keyword in Matlab is used both to access the last element in an array and to close blocks. The array use
case can be replaced with -/ and the others can be removed entirely.

A More Concrete Example

In the Building Economic Dispatch project, a sibling project to VOLTTRON, a number of components written in
Matlab would create a matrix out of some collection of columns and perform least squares regression using the matrix
division operator. This is straightforward and very similar in both languages so long as all of the columns are defined
and are the same length.

% Matlab
XX = [U, xbp, xbp2, xbp3, xbp4, xbpbdl];
AA = XX \ ybp;

Python
import numpy as np

XX = np.column_stack ((U, xbp, xbp2, xbp3, xbp4, xbpbd))
AA, resid, rank, s = np.linalg.lstsg(XX, ybp)

This pattern also included the creation of the U column, a column of ones used as the bias term in the linear equation.
In order to make the Python version more readable and more robust, the pattern was removed from each component
and replaced with a single function call to least_squares_regression.

This function does some validation on the input parameters, automatically creates the bias column, and returns the
least squares solution to the system. Now if we want to change how the solution is calculated we only have to change
the one function, instead of each instance where the pattern was written originally.

def least_squares_regression (inputs=None, output=None) :
if inputs is None:
raise ValueError ("At least one input column is required")
if output is None:
raise ValueError ("Output column is required")

if type(inputs) != tuple:
inputs = (inputs,)
ones = np.ones (len(inputs[0]))
x_columns = np.column_stack((ones,) + inputs)
solution, resid, rank, s = np.linalg.lstsqg(x_columns, output)

return solution

Lessons Learned (sometimes the hard way)
Variable Names

Use descriptive function and variable names whenever possible. The most important things to consider here are reader
comprehension and searching. Consider a variable called hdr. Is it header without any vowels, or is it short for
high-dynamic-range? Spelling out full words in variable names can save someone else a lot of guesswork.

Searching comes in when we’re looking for instances of a string or variable. Single letter variable names are impossible
to search for. Variables with two or three characters are often not much better.

3.4. Developing VOLTTRON 281

https://github.com/VOLTTRON/econ-dispatch

VOLTTRON Documentation, Release 6.0

Matlab load/save

Matlab has built-in functions to automatically save and load variables from your programs to disk. Using these
functions can lead to poor program design and should be avoided if possible. It would be best to refactor as you
translate if they are being used. Few operations are so expensive that that cannot be redone every time the program is
run. For part of the program that saves variables, consider making a function that simply returns them instead.

If your Matlab program is loading csv files then use the Pandas library when working in python. Pandas works well
with NumPy and is the go-to library when using csv files that contain numeric data.

More Resources

NumPy for Matlab Users Has a nice list of common operations in Matlab and NumPy.
NumPy Homepage

Pandas Homepage

3.4.8 Development History and Roadmap

For information on updating to the latest version of the platform see 4.0 to 5.0 migration.

Migration from 1.2 - 2.0
The most significant changes to the base VOLTTRON platform are the set of commands for controlling the platform
and the way agents are managed.

Existing agent code does not need to be modified except in cases of hardcoded paths and some imports. The way
agents are packaged has changed but that does not change the setup.py file or any configuration agents were using.

Summary of changes:
¢ “lite” has been removed from the code tree. For packages, “lite” has been replaced by “platform”.
* The agents are no longer built as eggs but are instead built as Python wheels
 There is a new package command instead of using a script to build an egg

* Agents are no longer installed with a 2 step process of “install-executable” and “load-agent”. Now the agent
package is configured then installed.

* Agents are no longer distinguished by their configuration files but can by a platform provided uuid and/or a user
supplied tag.

* The base topic for publishing data from devices is no longer “RTU” but “devices”

* Application configuration files no longer need to contain the “exec” information. For an example of launching
a non-Python agent, please see ProcessAgent

Migration from 2.x to 3.x
If you are upgrading an existing 2.0 installation, there are a few manual steps. From the project directory in unactivated
mode:

* rm -r env

* rm -r volttron/platform/control

282 Chapter 3. License

https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html
http://www.numpy.org/
http://pandas.pydata.org/
ProcessAgent

VOLTTRON Documentation, Release 6.0

* python bootstrap.py

An overview of changes can be found at: VOLTTRON Primer Overview

Drivers

Drivers are no longer tied to smap. Please see the drivers page.

sMAP Driver INI File

Previously, all driver setup was done in an smap.ini file with sections for each device. Now, this setup is done in two
parts: the Master Driver Agent and individual drivers. The sections from the smap ini are now contained in their own
files. These files are tied together by the master-driver.config:

{
"agentid": "master_driver",
"driver_config_list": [
"/home/volttron/git/config/bacnet-devicel.config",
"/home/volttron/git/config/bacnet-device2.config"

]

The following portion of the file is no longer needed for the driver but could be used to setup an SMAP Historian

[report 0]
ReportDeliveryLocation = http://\<IP\>/backend/add/\<KEY\>

[/datalogger]
type = volttron.drivers.data_logger.DatalLogger
interval =1

Setting up paths for the collection and devices are now handled in the driver config file:

[/1

type = Collection
Metadata/SourceName = MySource
uuid = <UUID>

[/Campus]
type = Collection
Metadata/Location/Campus = My Campus

[/Campus/Building]
type = Collection
Metadata/Location/Building = Building

[/Campus/Building/device]

type = volttron.drivers.bacnet.BACnet

target_address = IP

self_address = IP:PORT

interval = 60

Metadata/Instrument/Manufacturer = Manufacturer
Metadata/Instrument/ModelName = Model Name

register_config = /home/volttron/git/volttron/config/my-bacnet-config.csv

Becomes bacnet-devicel.config:

3.4. Developing VOLTTRON 283

http://transactionalnetwork.pnnl.gov/documents/2015_techmeeting/14.%20VOLTTRON_3.0_Primer%20(Haack%20and%20Carpenter).pdf

VOLTTRON Documentation, Release 6.0

"driver_config": {
"device_address": "13200:56"
}I
"campus": "Campus",
"building": "Building",
"unit": "Device",
"driver_type": "bacnet",
"registry_config": "/home/volttron/git/volttron/config/my-bacnet-config.csv",
"interval": 60,
"timezone": "US/Pacific"

Register Files (CSV)

These files are almost unchanged from v2.0. The sole change is the renaming of “PNNL Point Name” to “Volttron
Point Name” This was a legacy label from the initial version of the platform and has now been updated.

Point Name,PNNL Point Name,Units,Unit Details,BACnet Object Type,Property,
Writable, Index, Notes

Becomes:

Point Name,Volttron Point Name,Units,Unit Details,BACnet Object Type,Property,
Writable, Index, Notes

The rest of the file remains the same.

Historian

Please look through the page [[HistorianlVOLTTRON-Historians]] to see the support storage solutions. sMAP can
still be used but is now optional.

ActuatorAgent

The Actuator can now be accessed via RPC which greatly simplifies the code needed to work with devices. The
following shows how the old SchedulerExample agent was upgraded. The use_rpc method contains examples for
replacing all the code for the pubsub interaction.

Agents

3.X drivers

Changes from v2.X

PNNL Point Name is now: Volttron Point Name
* Drivers are now agents

* No more smap config file, now it is an Agent config file.

MODBUS, add port argument to driver_config dictionary

BAChnet Change of Value services are supported by the Master Driver Agent starting with version 3.2.

284 Chapter 3. License

https://github.com/VOLTTRON/volttron/commit/53b1b40d429ca78789838e365c399a2eb24635de

VOLTTRON Documentation, Release 6.0

» Agent config file has links to driver config files which have links to driver register file.

Edit the master driver config. This points to the configuration files for specific drivers. Each of these drivers uses a

CSV file to specify their points (registry file).

Master Driver Config

* agentid - name of agent

e driver_config_list - list of configuration files for drivers under this master

“agentid”: “master_driver”,
“driver_config_list™: [

“/home/user/git/volttron/services/core/MasterDriverAgent/master_driver/test_modbus]l.config” |] | }

Device Driver Config

* driver_config - driver specific information, modbus just needs the ip for the device being controlled

 campus/building/unit - path to the device

e driver_type - specify the type of driver (modbus, bacnet, custom)
* registry_config - the registry file specifying points to collect

* interval - how often to grab/publish data

* timezone - TZ of data being collected

* heart_beat_point - registry point to use as a hearbeat to indicate that VOLTTRON is still controlling device

99,

“driver_config”: {“device_address”: “”,

“proxy_address”: “9f18c8d7-ec4b-4674-ad49-e7d0d3328f99},
“campus’: “campus”,

“building”: “building”,

“unit”: “bacnetl”,

“driver_type”: “bacnet”,

“registry_config”:”/home/user/git/volttron/volttron/drivers/bacnet_lab.csv”’, | “interval”: 5, | “timezone”:
13 6UTC’ 9’ | }
3.4. Developing VOLTTRON 285

VOLTTRON Documentation, Release 6.0

Migration from 3.0 to 3.5

Drivers

The BACnet driver configurations now require device ids.

3.0 configurations had the line:

"driver_config": {"device_address": address},

3.5 configs needs the following addition to the the driver_config dictionary:

"driver_config": {"device_address": address,
"device_id": id},

Historian

The 3.5 MySQL historian will try adding rows to a metadata table but will not create the table automatically. It can be
added to the database with

CREATE TABLE meta (topic_id INTEGER NOT NULL,
metadata TEXT NOT NULL,
PRIMARY KEY (topic_id));

ActuatorAgent

The Heartbeat agent has been removed in version 3.5, its job now being done from within the actuator. The period of
the heartbeat toggle function can be set by adding

"heartbeat_period": 20

to the actuator’s config file. This period defaults to 60 seconds if it is not specified.

Migration from 4.1 t0 5.0
5.0 includes numerous changes (Tagging Service, Message Bus performance increase, Multi-platform pub/sub, etc.),
but the majority of these should be invisible to most users.

Key issues to note are:

Operations Agents

Several agents have been moved from “services/core” to “services/ops” to highlight their use in monitoring a deploy-
ment. They are not necessary when developing against a single instance, but are essential for VOLTTRON(tm) in a
deployed environment.

Agents affected:
* services/ops/AgentWatcher
* services/ops/AlertAgent,0.4

* services/ops/AlertMonitor

286 Chapter 3. License

VOLTTRON Documentation, Release 6.0

* services/ops/Alerter

* services/ops/EmailerAgent

* services/ops/FailoverAgent

* services/ops/FileWatchPublisher

* services/ops/LogStatisticsAgent

* services/ops/MessageDebuggerAgent
* services/ops/SysMonAgent

* services/ops/ThresholdDetectionAgent

Rebuild Agents

Rebuilding agents is :underline:‘required‘ when upgrading to a new VOLTTRON(tm) version to ensure that agents
are operating with the latest code. Errors will occur if agents built in a previous version attempt to run with the latest
version of the platform.

ForwardHistorian

The ForwardHistorian configuration has been changed. Please see: https://github.com/VOLTTRON/volttron/blob/
develop/services/core/ForwardHistorian/README.rst for the new options.

Note: NOTE If you have no entry for service_topic_list in your configuration, the new default will cause

ALL data to be forwarded. Please update your configuration if you are forwarding a subset of data.

VOLTTRON Central Management Ul

The url for VOLTTRON Central Management is now http://IP:port/vc/index.html

Agent Versions

To get the versions of agents in the VOLTTRON project, run “python scripts/get_versions.py”.

Agent Name 4.1 5.0
CAgent 1.0 1.0
CSVHistorian N/A | 1.0.1
ConfigActuation 0.1 0.1
DataPublisher 3.0.1 | 3.0.1
DataPuller N/A | 35
ExampleDrivenControlAgent | 0.1 0.1
ExampleSubscriber 3.0 3.0
ListenerAgent 32 32
ProcessAgent 0.1 0.1
SchedulerExample 0.1 0.1
SimpleForwarder 3.0 3.0

Continued on next page

3.4. Developing VOLTTRON 287

https://github.com/VOLTTRON/volttron/blob/develop/services/core/ForwardHistorian/README.rst
https://github.com/VOLTTRON/volttron/blob/develop/services/core/ForwardHistorian/README.rst
http://IP:port/vc/index.html

VOLTTRON Documentation, Release 6.0

Change Logs

1/31/2014

Table 4 — continued from previous page

Agent Name 4.1 5.0
SimpleWebAgent 0.1 0.1
WeatherForecastCSV_UW

WebRPC

WebSocketAgent 0.0.1 | 0.0.1
PrometheusScrapeAgent N/A | 0.0.1
WeatherAgent

ActuatorAgent 1.0 1.0
BACnetProxy 0.2 0.3
CrateHistorian 1.0.1 | 1.0.2
DataMover 0.1 0.1
ExternalData 1.0 1.0
ForwardHistorian 3.7 4.0
MQTTHistorian 0.1 0.2
MasterDriverAgent 3.1.1 | 3.1.1
MongodbAggregateHistorian | 1.0 1.0
MongodbHistorian 2.1 2.1
MongodbTaggingService N/A | 1.0
OpenEISHistorian 3.1 3.1
SEP2Agent N/A | 1.0
SEP2DriverTestAgent N/A | 1.0
SQLAggregateHistorian 1.0 1.0
SQLHistorian 3.6.1 | 3.6.1
SQLiteTaggingService N/A | 1.0
VolttronCentral 403 | 42
VolttronCentralPlatform 4.0 45.2
WeatherAgent 3.0 3.0
AgentWatcher 0.1 0.1
AlertAgent 0.4 0.4
AlertMonitor 0.1 0.1
Alerter 0.1 0.1
EmailerAgent 1.3 1.3.1
FailoverAgent 0.2 0.2
FileWatchPublisher 3.6 3.6
LogStatisticsAgent 1.0 1.0
MessageDebuggerAgent N/A | 1.0
SysMonAgent 3.6 3.6
ThresholdDetectionAgent 3.7 3.7

The VOLTTRON(tm) 1.0 release includes the following features:

* Scheduler 2.0: The new ActuatorAgent scheduler allows applications to reserve devices ahead of time
* SchedulerExample: This simple agent provides an example of publishing a schedule request.

VOLTTRON v1.0 also includes features in a beta stage. These features are slated for release in v1.1 but are included

in 1.0 for those who wish to begin investigating them. These features are:

288

Chapter 3. License

VOLTTRON Documentation, Release 6.0

* Multi-node communication: Enables platforms to publish and subscribe to each other
* BACNet Driver: Enables reading/writing to devices using the BACNet protocol

Included are PNNL developed applications: AFDD and DR which are in the process of being modified to work with
the new scheduler.DR will not currently function with Scheduler 2.0.

11/7/2013

* Renamed Catalyst driver to Modbus driver to reflect the generic nature of the driver.

» Changed the configuration for the driver to fully take advantage of the Python struct module.

9/9/2013

* Catalyst registry file update for 372s

e catalystreg.csv.371 contains the points for the 371

9/4/2013

* Scheduling implemented

* Logging implemented

8/21/2013

* Added libevent-dev to required software

8/6/2013

WeatherAgent updated and back into the repository.

7/22/2017

The agent module was split into multiple pieces.
* The BaseAgent and PublishMixin classes and the periodic decorator remain in the agent package.
* The matching module was moved under the agent package and is now available as volttron.lite.agent.matching.

 The utility functions, like run_agent (which is deprecated) and the base agent ArgumentParser, were moved to
volttron.lite.agent.utils.

All low-level messaging that is not agent-specific was moved to volttron.lite.messaging and includes the following
new submodules:

* headers: contains common messaging headers, like CONTENT_TYPE, and values as constants
* topics: provides topic templates; see the module documentation for details

* utils: includes the Topic class and other messaging/topic utilities

3.4. Developing VOLTTRON 289

VOLTTRON Documentation, Release 6.0

The listener, control, archiver, and actuator agents were updated to use and demonstrate the changes above. Some of
them also show how to use agent factories to perform dynamic matching. Using mercurial to show the diffs between
revisions is a good technique for others to use to investigate how to migrate their agents.

6/24/2013

¢ Initial version of ExampleControllerAgent committed. This agent monitors outdoor air temp and randomly sets
the coolsuppy fan if temp has risen since the last reading. Wiki explanation for agent coming soon.

* Updates to ActuatorAgent
* ListenerAgent updated to reflect latest BaseAgent

» Use -config option instead of -config_path when starting agents

6/21/2013

» Updated ArchiverAgent checked in.

¢ ActuatorAgent for sending commands to the controller checked in.

6/19/2013

* Fixed a command line arg problem in ListenerAgent and updated wiki.

Version 1.0

This is the initial release of the Volttron Lite platform. The features contained in it are:
* Scripts for building the platform from scratch as well as updating

* A BaseAgent which expresses the basic functionality for an agent in the platform as well as hooks for adding
functionality

» Example agents which utilize the BaseAgent to illustrate more complex behavior

In addition, this wiki will be constantly updated with documentation for working with the platform and developing
agents in it. We intend to document as much as possible but please submit TRAC tickets in cases where documentation
does not exist yet or there is difficulty locating it. Also, this is a living document so feel free to add your own content
to this wiki and even make changes to the documentation if you can improve on its clarity and usefulness.

Please subscribe to this page to receive notification when new changelogs are posted for future releases.

Transitioning from 1.x to 2.x

VOLTTRON(tm) 2.0 introduces new features such as agent packaging/verification, agent mobility, and agent resource
monitoring. In addition, some existing features from 1.2 have been refactored. These changes are mostly confined
to platform administration and should require minimal changes to existing agents aside from fixing imports and any
hardcoded paths/topics in the code.

 “lite” has been removed from the code tree. For packages, “lite” has been replaced by “platform”.
* The agents are no longer built as eggs but are instead built as Python wheels

* There is a new package command instead of using a script to build an egg

290 Chapter 3. License

VOLTTRON Documentation, Release 6.0

* Agents are no longer installed with a 2 step process of “install-executable” and “load-agent”. Now the agent
package is configured then installed.

* Agents are no longer distinguished by their configuration files but by a platform provided uuid and/or a user
supplied tag.

* The base topic for publishing data from devices is no longer “RTU” but “devices”

The most visible changes have been to the platform commands for building and managing agents. Please see [Plat-
formCommands] (PlatformCommands “wikilink”) for these changes.

VOLTTRON Versions

VOLTTRON 1.0 - 1.2

* VOLTTRON platform based on PNNL research and needs of the RTU Network project
* Open Source Reimplementation omitting patented features

* Integrates researcher applications, devices, and cloud applications and resources

* 1.0 Focused on building up the framework

* Agent execution environment

* Basic platform services

* Modbus driver

1.2 Expanded capabilities of platform

* BACnet support

* Multi-node communication

¢ Released on GitHub

VOLTTRON 2.0

¢ 2.0 Incorporated PNNL IP from the original research

* Different license: Free for buildings domain

* Resource monitoring

* Agents must present an execution contract to the platform stating their resource requirements
* Platform rejects agents which it cannot support

» Expandable framework for specify additional resources

* Agent signing and verification

» Agent package contains multiple layers which can be signed by different entities
* Creator of code

* Administrator of ‘Scope of Influence’/Deployment

* Instantiator of agent

* Most recent platform (for mobile agents)

* Each level verified before agent is allowed to run

3.4. Developing VOLTTRON 291

VOLTTRON Documentation, Release 6.0

« Entities cannot change content of other layers

* Agent Mobility

* Admin can send an agent to another platform for deployment/updating
* Agent can request to move

* Agent can bring along working files as part of ‘mutable luggage’

* Receiving platform verifies agent package and examines resource contract before executing agent

VOLTTRON 3.0

* Modularized Historian
* Historians can be built for any storage solution
— Previous versions did not have option for local storage
* BaseHistorian
— Can be extended for any solution
— Handles subscribing to Bus
— Local cache
* Modularized Drivers
* Standardized creating custom drivers to scrape data and publish to the message bus
» Simplify developing drivers and contributing new capabilities back to VOLTTRON
 Abstracted out driver interfaces allowing Actuator Agent to handle controlling devices via any protocol
e VIP - VOLTTRON Interconnect Protocol
¢ Increase security of the message bus and allow direct communication where appropriate
* New communication model underneath VOLTTRON Message Bus
» Compatibility layer so changes are transparent to existing agents
* Platform Agent
* Provides point of contact for the platform
* Enables VOLTTRON Management Central control of platform
* VOLTTRON Management Central

* Web interface for administering VOLTTRON platforms in deployment

3.5 Core Services

Platform services provide underlying functionality used by applications to perform their tasks.

292 Chapter 3. License

VOLTTRON Documentation, Release 6.0

3.5.1 Service Agents

ActuatorAgent

This agent is used to manage write access to devices. Agents may request scheduled times, called Tasks, to interact
with one or more devices.

Actuator Agent Communication

Scheduling and canceling a Task.

Interacting with a device via the ActuatorAgent.
AcutatorAgent responses to a schedule or cancel request.
Schedule state announcements.

What happens when a running Task is preempted.

Setup heartbeat signal for a device.

ActuatorAgent configuration.

Notes on programming agents to work with the ActuatorAgent

Notes on Working With the ActuatorAgent

* An agent can watch the window value from device state updates to perform scheduled actions within a timeslot.

— If an Agent’s Task is LOW_PREEMPT priority it can watch for device state updates where the window is
less than or equal to the grace period (default 60.0).

* When considering if to schedule long or multiple short time slots on a single device:
— Do we need to ensure the device state for the duration between slots?
— Yes. Schedule one long time slot instead.

— No. Is it all part of the same Task or can we break it up in case there is a conflict with one of our time
slots?

* When considering time slots on multiple devices for a single Task:
— Is the Task really dependent on all devices or is it actually multiple Tasks?

* When considering priority:

Does the Task have to happen on an exact day?

No. Consider LOW and reschedule if preempted.
Yes. Use HIGH.

Is it problematic to prematurely stop a Task once started?
No. Consider LOW_PREEMPT and watch the device state updates for a small window value.
Yes. Consider LOW or HIGH.

« If an agent is only observing but needs to assure that no another Task is going on while taking readings it can
schedule the time to prevent other agents from messing with a devices state. The schedule updates can be used
as a reminder as to when to start watching.

3.5. Core Services 293

VOLTTRON Documentation, Release 6.0

* Any device, existing or not, can be scheduled. This allows for agents to schedule fake devices to create reminders
to start working later rather then setting up their own internal timers and schedules.

ActuatorAgent Configuration

schedule_publish_interval:: Interval between '\ °~ ‘published
schedule announcements <ActuatorScheduleState> ¢ in seconds. Defaults to 30.°° |
preempt_grace_time:: Minimum time given to Tasks which have been preempted to clean up in

Defaults to 60.|schedule_state_file:: File used to save and restore Task states if the Act:
File will be created if it does not exist when it is needed.

Sample configuration file

“schedule_publish_interval”: 30,
“schedule_state_file”: “actuator_state.pickle”

Heartbeat Signal

The ActuatorAgent can be configured to send a heartbeat message to the device to indicate the platform is running.
Ideally, if the heartbeat signal is not sent the device should take over and resume normal operation.

The configuration has two parts, the interval (in seconds) for sending the heartbeat and the specific point that should
be modified each iteration.

The heart beat interval is specified with a global “heartbeat_interval” setting. The ActuatorAgent will automatically
set the heartbeat point to alternating “1” and “0” values. Changes to the heartbeat point will be published like any
other value change on a device.

The heartbeat points are specified in the driver configuration file of individual devices

Task Preemption

Both LOW and LOW_PREEMPT priority Tasks can be preempted. LOW priority Tasks may be preempted by a
conflicting HIGH priority Task before it starts. LOW_PREEMPT priority Tasks can be preempted by HIGH priority
Tasks even after they start.

When a Task is preempted the ActuatorAgent will publish to “devices/actuators/schedule/response” with the following
header:

#python

{
'type': 'CANCEL_SCHEDULE',
'requesterID': <Agent VIP identity for the preempted Task>,
'taskID': <Task ID for the preempted Task>

And the message (after parsing the json):

294 Chapter 3. License

VOLTTRON Documentation, Release 6.0

#python

{
'result': 'PREEMPTED',
'info': '',
'data':
{
'agentID': <Agent VIP identity of preempting task>,

'taskID': <Task ID of preempting task>

Preemption Grace Time

If a LOW_PREEMPT priority Task is preempted while it is running the Task will be given a grace period to clean
up before ending. For every device which has a current time slot the window of remaining time will be reduced to
the grace time. At the end of the grace time the Task will finish. If the Task has no currently open time slots on any
devices it will end immediately.

Requesting Schedule Changes

For information on responses see AcutatorAgent responses to a schedule or cancel requests.

For 2.0 Agents using the pubsub interface: The actuator agent expects all messages to be JSON and will parse
them accordingly. Use publish_json to send messages where possible.

3.0 agents using pubsub for scheduling and setting point values should publish python objects like normal.

Scheduling a Task

An agent can request a task schedule by publishing to the “devices/actuators/schedule/request” topic with the following
header:

#python
{

"type': 'NEW_SCHEDULE',

'requesterID': <Ignored, VIP Identity used internally>

'taskID': <unique task ID>, #The desired task ID for this task. It must be unique_
—among all other scheduled tasks.

'priority': <task priority>, #The desired task priority, must be 'HIGH', 'LOW',_
—or '"LOW_PREEMPT'
}

with the following message:

#python
[

["campus/building/devicel", #First time slot.

"2013-12-06 16:00:00", #Start of time slot.
"2013-12-06 16:20:00"7, #End of time slot.
["campus/building/devicel", #Second time slot.
"2013-12-06 18:00:00", #Start of time slot.
"2013-12-06 18:20:00"7, #End of time slot.

["campus/building/device2", #Third time slot.

(continues on next page)

3.5. Core Services 295

VOLTTRON Documentation, Release 6.0

(continued from previous page)

"2013-12-06 16:00:00", #Start of time slot.
"2013-12-06 16:20:00"7], #End of time slot.
fetc. ..

Warning: If time zones are not included in schedule requests then the Actuator will interpret them as being in
local time. This may cause remote interaction with the actuator to malfunction.

Points on Task Scheduling

» Everything in the header is required.
* Task id and requester id (agentid) should be a non empty value of type string
¢ A Task schedule must have at least one time slot.

* The start and end times are parsed with dateutil’s date/time parser. The default string representation of a
python datetime object will parse without issue.

* Two Tasks are considered conflicted if at least one time slot on a device from one task overlaps the time slot of
the other on the same device.

¢ The end time of one time slot can be the same as the start time of another time slot for the same device. This will
not be considered a conflict. For example, time_slotl(device0, timel, time2) and time_slot2(device(,time2,
time3) are not considered a conflict

A request must not conflict with itself.

* If something goes wrong see this failure string list for an explanation of the error.

Task Priorities

HIGH: This Task cannot be preempted under any circumstance. This task may preempt other conflicting preempt-
able Tasks.

LOW: This Task cannot be preempted once it has started. A Task is considered started once the earli-
est time slot on any device has been reached. This Task may not preempt other Tasks.

LOW_PREEMPT: This Task may be preempted at any time. If the Task is preempted once it has begun run-
ning any current time slots will be given a grace period (configurable in the ActuatorAgent configuration file, de-
faults to 60 seconds) before being revoked. This Task may not preempt other Tasks.

Canceling a Task

A task may be canceled by publishing to the “devices/actuators/schedule/request” topic with the following header:

#python
{
'type': 'CANCEL_SCHEDULE',
'requesterID': <Ignored, VIP Identity used internally>
'taskID': <unique task ID>, #The desired task ID for this task. It must be unique_

—among all other scheduled tasks.

}

296 Chapter 3. License

http://labix.org/python-dateutil#head-c0e81a473b647dfa787dc11e8c69557ec2c3ecd2

VOLTTRON Documentation, Release 6.0

Points on Task Canceling

* The requesterID and taskID must match the original values from the original request header.

e After a Tasks time has passed there is no need to cancel it. Doing so will result in a
“TASK_ID_DOES_NOT_EXIST” error.

* If something goes wrong see this failure string list for an explanation of the error.

ActuatorAgent Response

In response to a Task schedule request the ActuatorAgent will respond on the topic “devices/actuators/schedule/result”
with the header:

#python

{
'type': <'NEW_SCHEDULE', 'CANCEL_SCHEDULE'>
'requesterID': <Agent VIP identity from the request>,
'taskID': <Task ID from the request>

And the message (after parsing the json):

#python
{
'result': <'SUCCESS', 'FAILURE', 'PREEMPTED'>,
'info': <Failure reason, if any>,
'data': <Data about the failure or cancellation, if any>

The ActuatorAgent may publish cancellation notices for preempted Tasks using the “PREEMPTED” result.

Preemption Data

Preemption data takes the form:

#python

{
'agentID': <Agent ID of preempting task>,
'taskID': <Task ID of preempting task>

Failure Reasons

In many cases the ActuatorAgent will try to give good feedback as to why a request failed.

General Failures

INVALID_REQUEST_TYPE:: Request type was not "NEW_SCHEDULE" or "CANCEL_SCHEDULE".

MISSING_TASK ID:: Failed to supply a taskID.

3.5. Core Services 297

VOLTTRON Documentation, Release 6.0

MISSING_AGENT_ID:: AgentID not supplied.

Task Schedule Failures

TASK_ID_ALREADY_EXISTS: The supplied taskID already belongs to an existing task.

MISSING_PRIORITY: Failed to supply a priority for a Task schedule request.
INVALID_PRIORITY: Priority not one of "HIGH", "LOW", or "LOW_PREEMPT".
MALFORMED_REQUEST_EMPTY: Request list is missing or empty.
REQUEST_CONFLICTS_WITH_SELF: Requested time slots on the same device overlap.
MALFORMED_REQUEST: Reported when the request parser raises an unhandled
exception. The exception name and info are appended to this info string.
CONFLICTS_WITH_EXISTING_SCHEDULES: This schedule conflict with an existing
schedules that it cannot preempt. The data item for the results will contain
info about the conflicts in this form (after parsing json):

#python
{
'<agentID1>":
{
'<taskID1>"':
[
["campus/building/devicel",
"2013-12-06 16:00:00",
"2013-12-06 16:20:00"1,
["campus/building/devicel",
"2013-12-06 18:00:00",
"2013-12-06 18:20:00"]
]
'<taskID2>"':[...]
}
'<agentID2>"': {...}

Task Cancel Failures

TASK_ID_DOES_NOT_EXIST:: Trying to cancel a Task which does not exist.
This error can also occur when trying to cancel a finished Task.
AGENT_ID_TASK_ID_MISMATCH:: A different agent ID is being used when trying to cancel a Tas]

Schedule State Broadcast

Periodically the ActuatorAgent will publish the state of all currently used devices.

For each device the ActuatorAgent will publish to an associated topic:

#python
'devices/actuators/schedule/announce/<full device path>'

298 Chapter 3. License

VOLTTRON Documentation, Release 6.0

With the following header:

#python

{
'requesterID': <VIP identity of agent with access>,
'"taskID': <Task associated with the time slot>
'window': <Seconds remaining in the time slot>

The frequency of the updates is configurable with the “schedule_publish_interval” setting.

ActuatorAgent Intera